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ABSTRACT

The uniform and the statistical leverage-scores-based (nonuniform) distributions are frequently used
in the analysis of data of massive size. Both distributions, however, are not effective in extraction of
important information in data. In this article, we construct the A-optimal subsampling estimators of
parameters in generalized linear models (GLM) to approximate the full-data estimators, and derive
the A-optimal distributions based on the criterion of minimizing the sum of the component variances
of the subsampling estimators. As the distributions have the same running time as the full-data
estimator, we generalize the Scoring Algorithm introduced in Zhang, et al.(2023) in a Big Data
linear model to GLM using the iterative weighted least squares. The paper presents a comprehensive
numerical evaluation of our approach using the simulated and real data through the comparison of
its performance with the uniform and the leverage-scores- subsamplings. The results exhibited that
our approach substantially outperformed the uniform and the leverage-scores subsamplings and the
Algorithm significantly reduced the computing time required for implementing the full-data estimator.

Keywords A-optimality - Big Data - Generalized Linear Models - Negative Binomial Regression - Optimal
Subsampling - Poisson Regression

1 Introduction

Big Data are data on a massive scale with regard to volume, velocity, variety, and veracity that exceed both the capacity
of the conventional software tools and the memory limit of computers, see e.g. Ma, et al.(2015) and Fan, et al.(2013).
Big Data pose two computational bottlenecks: (1) the sizes exceed a computer’s memory, and (2) the computing
task requires too long time to finish. The two bottlenecks can be simultaneously addressed by judiciously choosing a
subsample as a surrogate for the full sample and completing the data analysis.
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While the Divide-and-Conquer method easily overcomes the memory limit and often routinely amalgamates the sectional
results such as by averaging (which, however, is not always mathematically justifiable), the Subsampling approach
breaks the limit and saves computing time in the meantime, and gives the result with no necessity of amalgamation.
Due to its mathematical simplicity and computational ease, the uniform sampling is often used for intensive computing,
for the development of fast randomized algorithms, and for Monte Carlo and bootstrap. The uniform sampling, however,
is not effective in extracting information in data. In this article, nonuniform sampling distributions will be sought based
on the criterion of A-optimality, specifically, minimizing the trace norm of the asymptotic variance-covariance matrix
(equivalently, the sum of the component variances) of the subsampling estimator.

Mathematicians, computer scientists and statisticians have already made important progress in this area. Drineas,
et al.(2006a) constructed fast Monte Carlo algorithms to approximate matrix multiplication. Drineas, et al.(2006b)
presented a sampling algorithm for the least squares fit problem and studied its algorithmic properties. A key feature
of the foregoing algorithms is the nonuniform sampling. Ma and Sun (2014) and Ma, et al.(2015) explored the
leverage-scores-based distribution in a Big Data linear regression model. Xu, et al.(2016) presented subsampled newton
methods with nonuniform sampling. Liang, et al.(2013) constructed a resampling-based stochastic approximation for
large geostatistical data. Kleiner, ef al.(2014) proposed a scalable bootstrap for data of massive. See also the monograph
by Mahoney (2011) on nonuniform random subsampling for matrix based machine learning.

Recently, Wang, et al.(2018) proposed the A-optimal Subsampling approach to the Big Data large logistic regression.
Wang, et al.(2019) introduced information-based subdata selection for large linear regression. Wang, et al.(2022)
showed that the unweighted subsampling estimators are more efficient than the weighted estimators. Ma, et al.(2022)
conducted asymptotic analysis of sampling estimators for randomized numerical linear algebra algorithms. Zhang,
et al.(2023) presented a systematic treatment of the A-optimal Subsampling in the framework of Big Data linear
regression. The authors gave three types of the A-optimal distributions, studied the relationship to the leverage-scores-
based distribution, suggested truncation which is useful for inverse probability weighted estimation, and constructed
the Scoring Algorithm for fast computing—an analogue of the Scoring Method for improving estimation efficiency.
Motivated by the computational burden in fitting single index models caused by high parameter dimensionality and
possibly compounded by data of massive size, Smithson, et al.(2024) constructed the A-optimal subsampling estimators
to approximate the full data estimators. The authors studied dimension asymptotics and established higher efficiency of
the unweighted subsampling estimators than that of the weighted estimators.

Count data are observations of the number of occurrences of a behavior in a fixed period of time. Count data are
common, for example, hospital visits, blog comments, car/bike renters, and questionnaire respondents. The scope of
count data is very wide, including sociology, marketing, demographic economics, accident insurance, manufacturing
defects, etc. The analysis of count data has drawn a lot of attention and been an influential part in statistical modeling.
Linear regression is not an appropriate technique for count data, as it fails to take into account the limited number of
possible values of the count response variable. Standard regression methods include the Poisson, the Overdispersed
Poisson, the Negative Binomial, and the Zero-Inflated Poisson regressions, as well as truncated methods and the
quasi-likelihood approach.

The Poisson regression and the Negative Binomial regression are often used, motivated by the ordinary consideration
for regression analysis, meanwhile, seek to protect and exploit the nonnegative integer-valued characteristic of the
outcome as much as possible. The Poisson regression requires distributional assumptions, which restricts its use in
reality because real count data usually exhibit over-dispersion, an inflated number of zeros, an absence of certain
counts, censoring counts, and missing counts. Overdisperson can be handled by generalizing the Poisson models to, for
instance, quasi-Poisson models. Another useful approach is the Negative Binomial model. These models constitute the
main components of generalized linear models, see, e.g., McCullagh and Nelder (1984).

The above models can deal with over-dispersion rather well, but are not enough for modeling excessive zeros. To
address this problem, researchers have developed methods for zero-inflated data by including another model component
to capture zero counts. This is done by a mixture model that combines a count component with a point mass at zero, see
Cameron and Trivedi (2005).

The article is organized as follows. In Section[2] we construct the weighted and unweighted subsampling estimators and
compare their efficiencies, derive the A-optimal distributions, and present the Scoring Algorithm. In Section 3} we
review a few count regression models used in our simulations and real data applications, followed by the simulation
results. Section[d]reports a real data application. Section [5|contains some supplementary tables.
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Alg.1 The (Weighted) Subsampling Estimator Bjﬁ

1. Construct a distribution 7r on the data points (x;, Y;)’s, use it to draw a subsample (X*,Y*) of size r << n
and formulate the diagonal matrix W* = diag(1/ra*) with 7v* the corresponding probability vector.

2. Calculate the (weighted) subsampling estimator Bﬁ as a solution to the weighted GEE,

Y om® % o

LV (B) 6 (B
where i3 (8) = h(x; T B), V7 (8) = V(3(8)) and ;" (8) = g} (113 (8)).
2 The A-optimal Subsampling In Big Data GLM

In a generalized linear regression model (GLM), the response variable Y; and covariate vector x; satisfy
Y; =h(x]B)+e, i=1,...,n, 2.1

where 3 € RP? is an unknown parameter vector, h is the inverse of a link function g, and ¢;’s are independent random
errors with zero mean E(g;) = 0 and finite variance Var(g;) = V (;) for some variance function V(-) of the mean
w; = E(Y;) of Y;. Assume that x; are non-random. If x;’s are random, we replace the relevant assumptions with the
conditional versions given x;’s, and the results typically hold. Let 11;(3) = h(x, B) and g;(B) = g(u:(B)).

The parameter (3 can be estimated by the solution Bn to the generalized estimating equation (GEE),

Y —pi(B) x
Vi(B)  4i(B)

=0, gi(B)=4g(n(B)). (2.2)

i=1
2.1 The (Weighted) Subsampling Estimator

When n is of massive size (often accompanied with large p), it becomes a challenging task to compute the usual B
using the conventional computers and software tools. We now take a random subsample (X*,Y*) of size r << n as

surrogate and construct a (weighted) subsampling estimator ,6'* in the algorithm in Alg. |1 Ito approximate ,8 B

Notation ¢;(8) = Y; — pi(8), Vi(B) = Var(ei(8)). X(B8) = Dlag(V(B)) g(m) = g'(m), pi = pi(By), Vi =
Vi(Bo), gi = 9i(By). i = Yi — pi, © = Diag(Vy), ji; = 1(B), & = Vi — fui, Vi = Vi(B). 9i = 9:(B), and ¥ = X(3).
Denote by 7} the “standarization” of n such as &; = (Y; — pu;)/ \/Vl and the “hat” version &; = (Y; — i;)/ \/E of &;.

In GLM, the hat matrix is defined as H(3) = El/Q(ﬁ)X(XTE(,B)X) 1XT21/2(,8). As H = H(3,) contains

the unknown parameter 3, one estimates it by the plug-in estimate H = H(,B) When ¥ is the identity matrix, H
simplifies to the hat matrix in a linear regression model. The hat matrix H in GLM possesses similar properties as
the hat matrix in a linear model. Like in a linear model, the diagonal entries h; ; of H induce a sampling distribution
£ = (¢;) as follows:

gi O(hiﬂ‘7 1= 1,...,TL, (23)
where b  ¢; denote b; = ¢;/ Zj ¢; for all i. Clearly, £ = (h; ;/p) as in a linear model.

The A-optimal Distributions Under suitable conditions, the subsampling estimator Bji is asymptotically normal, i.e.,

vV, P (m)Vr(BE - B) = N(0,1,), as. r— oo, 2.5)
where V(ﬂ') is the asymptotic variance-covariance matrix (abusing a bit of the parlance) given by
V(m) = AVar*(8%) = (X" 2X)~1(£Y/2X) "Diag(&? /rm) LY/ 2X(XTEX) L. (2.6)

Let A be a nonsingular ¢ X p matrix. The plug-in estimator Aﬁ;ﬁ of the linear transformation A3 of 3 then has the
asymptotic variance-covariance matrix AV(#)AT. The criterion of A-optimality is to seek a sampling distribution 7
on the data points {(x;, Y;)} which minimizes the trace norm 7 (7) = Tr(AV (7)AT) of the matrix. Equivalently,
the criterion seeks 7 to minimize the sum of the variances of the components of AB;ﬁ It is not difficult to see that

#a (1) = Tre(AV (m Z ”aZ” i @7

where a; = A(XT2X)~151/2x,. Using Lagrange’s multipliers, we derive
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Theorem 1 Suppose that A is mdependent of w. Assume that X T$X is invertible such that A(XTEX) 1$51/2%, #0
and the diagonal entries hZ iof H satisfy hy i # 1fori=1,...,n. Then there exists a unique A-optimal distribution
A = (fa) for Aﬁjﬁ to approximate the best linear unblased estimate A3 of A3, which is given by

a o ([laill 15:1)- (2.8)

This shall be referred to as the A—optimal as in Zhang, et al.(2023). Let
H, = (hai;) = S2X((XTEX)2XT2Y2 0 =0,1,2.
It can be estimated by H, = H, (3). One has H; = H and Hy = X/2XXT¥Y2 For A = (XT2X)1-2/2,
A = Ty X ( o Z|€2|)
Thus, the A—optimal distribution for B: to approximate ﬁ is the case of o = 2, i.e.,
7y oc (hy/F; 144]). (2.9)
Another two A-optimal sampling distributions of possibly computational ease are
7o o (V' 2xill &), A1 o< (hag &) (2.10)

In the simulated and real data, the Poisson (Poi), the Negative Binomial (NB) and the Quasipoisson (QPoi) models
were used with the log-link g(m) = log(m), so that /i; = exp(x; 3) and &; = (V; — ﬂi)/f/il/z, where V; are equal to

fii(Poi), (14 aji;)(NB), éji(QPoi), i=1,2,...,n, (2.11)
where quS, & are estimates of ¢, « such as the empirical estimators using the full sample in our analysis of real data.

The A-optimal Distributions via Conditioning. Consider minimizing the trace norm of the conditional covariance

matrix given X. Write 74 (7) = 74 (3, 7) to stress the dependence on 3, and let let 74 () = E(7a (8, 7)|X). We
integrate out the standardized squared residuals in 74 (7r) (that is, Var(¢;) = 1) and get

15~ llaodll® 1S lladl®
= — —_—l - =: 2.12
r; - r; =i (), 2.12)

where ag; = A(XT2X)'2!/2x,. Analogously, we minimize 7(7) and achieve

Theorem 2 Suppose that the assumptions in Theoremlhold Then there exists a unique A-optimal distribution 7 a
Sfor AB* to approximate the BLUE AB of the linear transformation A3, given by

7a x ([lag])- (2.13)

The A-optimal distribution for ,G';‘f to approximate the full-sample estimator B is now given by
7y oc (hy/ ). (2.14)
Another two alternative A-optimal distributions of possibly computational ease are

o oc (V2% ), 71 oc (A1) 2.15)
Truncation Observe that (2.8) implies that the i-th data point (x;, Y;) must be drawn with probablhty TA,; proportional
to the ¢-th standardized residual |€, |. Since each probability is 1nversely used in constructing ,8 7t A must be truncated

from below in order to guarantee appropriate statistical properties for [)',’f. Here we follow Zhang, et al.(2023) to truncate
A = (7 a,;) from below by L/n, and define 7 A (1) as

7a(l) x (ﬁAyil[ﬁA’iZL/n] + (1/77,):|_[7ATAA’Z-<L/TLD7

where L is a threshold value, and typically 0 < L < 1. As pointed out by the above authors, we may drop “unimportant
observations by taking [ = 0 for fast computing, otherwise [ = L. To determine the value of L, we must take it into
consideration the desired running time and the accuracy. Our extensive simulated and real data exhibited that the
truncation led to only a slight loss of efficiency.

99
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Alg.2 The Scoring Algorithm
1. Take a uniform pre subsample (X5,y0) of size rg << r << n from (X, y), and use it to compute H , and
& described in (2.18) and the distribution 7f, , = (diag(Hp , ;) : k = 1,..., K) for given o

2. Call the algorlthm in Alg. E] with the subsample size r and the sampling distribution 7 .

The Scoring Algorithm Like a typical non-uniform subsamphng, the optimal distributions 7, and 74, = 0,1,2

have the same running time as the full-data estimator ﬁ Here we generalize it to GLM as described in Alg. I 2| the
Scoring Algorithm introduced for the A-optimal subsampling in a Big Data linear regression model by Zhang, et
al.(2023) as follows.

One advantage of GLM is that the estimator B can be found by the iterative weighted least squares estimate (IWLSE).
Specifically, we rewrite (2.2) in a matrix form,

XTW(B)g(B)(Y — n(B)) =0, (2.16)
where /J’(/B) = (:U‘la e a:un)T|,3’ g(m) = Dlag(giv e ag;z)|m and W(/@) = Dlag(l/vlg/127 R I/Vngg”ﬂ Let
70 = x30 4 O (Y — M(O))7

where 8% is an initial value (which is automatically provided in the R package), W(?) = W(ﬁ(o)), g0 = g(ﬁ(‘”)
and pu(0) = u(ﬁ(o)). The estimate 3 can now be obtained by a few iterations of the weighted least squares. Formally,

B = (XTWOX)IXTWOZO) (2.17)

Since the computational bottleneck is to calculate the matrix X "W)X, which takes O(n(p + d)?) time, we shall
approximate it by a subsampling matrix X(*JTW(()O)*X(’; based on a computationally easy pre-subsample (X¢, y§) from
the full data (X,Y). The same consideration applies to X " W (9 Z(%) resulting in the pre-subsample estimator,

% * 1 0)%~rx\ — x 1 0)x* 0)x* Ea o
ﬁoz(xo W(()) Xo) 1X0 W(()) Z(()), 20:2(50)~

While a uniform pre-subsample is almost immediate, more efficient pre-subsamples are in fact possible. When the n X p
matrix X exceeds the memory limit, one may break X into K submatrices X}, of lower dimension nj X p, compute

Ehn=Yi—XuB5, My, =S)PXe(Xy T S0X0) XIS k=1,... K, (2.18)

and ‘amalgamate’ them to get &5 and H, , for computing the distributions in (2.9)-(2.10) and (2.14)-(2.15), where

Y, EO & are defined in an obvious way and E* is the corresponding subsampling matrix from 329. One doesn’ t really
amalgamate but extract the diagonal entries to obtam the sampling distribution. These details are summarized in Alg. [2]
Our extensive simulated and real data in Sections [3H4] exhibited that the Scoring Algorithm in Alg. [2] worked well.

2.2 The Unweighted Subsampling Estimator and its Efficiency

Analogously, we construct the unweighted subsampling estimator B* via calling the algorithm in Alg. in which we
set w7 = 1 for all j. In particular, 3" solves the unweighted GEE,

T i Y* J (ﬁ) X;f
=288 = =0. 2.19
o= 2 &) Z RO 219)
Let G, (8, 7) = E*(G*(8)), and let 3 be a solution to G,,(3, ) = 0, that is, 3 solves the weighted GEE,
- —~_Yi—m(B) x
w) = migi(B) = T =0. (2.20)
; ; Vi(B) gi(ﬁ)

The B is the generalized bootstrap estimator for the GEE studied by Chatterjee and Bose (2002), who proved the
asymptotic normality for growing parameter dimension. Let H(n) = G, (B, m)/013 be the Hessian matrix, and write
g = 2:(8). Then G* =0, & with E*(G*) = G,(B,7) = 0. As a result,

Y =X(x) = Var*(Gy) =r Y _mgd”. (2.21)
i=1
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Let V(7)) = AVar*(37) = H ' (7)2(7)H T (7). Under suitable conditions, for any sampling distribution r,
VY27 /(B — B) = N(0,1L,), a.s. (2.22)

Wang, et al.(2023) proved that the unweighted subsampling estimators in GLM are more efficient than the weighted
estimator. Smithson, et al.(2024) demonstrated that the unweighted subsampling estimators of parameters in the
penalized single index model (SIM) are asymptotically more efficient than the weighted estimators on an event whose
probability tends to one as r tends to infinity. As the SIM extends the GLM by allowing the link to be unknown,
the latter is obviously a special case of the former. Thus, the result in Smithson, et al.(2024) applies to the GLM,
specifically, for any u, as r — oo,

u' (V7 (m, B%) — V7l (m, B))u > op(1),

for an arbitrary sampling distribution 7r which is independent of the random errors ¢;. Clearly, the A-optimal distribution
7 a in (2.13) including 7r5 in (2.14)) are independent of the random errors. The authors exhibited that the result holds
with no restriction on the relationship of r and n under some typical boundedness conditions.

3 A Large Simulation Study

In this Section, we first review count data regression models used in our analysis of simulated and real data, followed by
the simulation results.

3.1 Count Data Regression Models

The Poisson Model Let Y have a Poisson distribution with mean p, Poi(u), i.e., the probability mass function (pmf) is

Jooi(ys ) = e ¥ [yl y=0,1,2,... 3.1

The mean and variance are equal, Var(Y) = u = E(Y). In real-life data, however, the equality is usually not met,
which is termed as overdisperson in the literature.

In the presence of overdispersion, the standard errors (SE) of the estimates in Poisson regression model are deflated,
leading to exaggerated test statistic values for parameters and false significant findings accordingly. Overdispersion
can often be tested by the usual goodness-of-fit statistic. In our real data analysis, we should perform such tests. An
alternative option to handle overdispersion is

The Negative Binomial Model Let Y have a Negative Binomial with mean ;. and overdispersion parameter o > 0,
Nb(u, «), i.e., with the pmf,

I'(y+1/a)
I(1/a)y!
Then E(Y) = pand Var(Y) = pu + ap? satisfy Var(Y) > E(Y), and Var(Y) = E(Y) if and only if o = 0.

The Quasi-likelihood Model Another popular option to handle overdispersion is the quasi-likelihood model. This has
the advantage of requiring only to specify the mean and variance but not a distribution for the response Y. Specifically,
the statistical inference is based on the quasi-likelihood equation,

Fan (Y3 1, @0) = (1 +ap) ™ (u/(p+1/a) 7Y, y=0,1,2,... (3.2)

Y ey o =0
i=1 N

where p;(3) = E(Y;|x;) and V;(3, ¢) = Var(Y;|x;) are the mean and variance functions to be specified, and ¢ is an
overdisperson parameter,

The quasi-likelihood model has great flexibility and unifies several models in the sense that the maximum likelihood
estimate (MLE) of the models are special cases. Setting V; = u;, Eqt is the estimating equations for the MLE of
the parameters in the Poisson model. Setting V; = u;(1 4+ ap;) with ¢ = «, Eqt is the estimating equations for
the MLE of the parameters in the Negative Binomial model. Another frequent choice of the variance for overdispersion
is V; = ¢pu; with ¢ > 0. All the three cases can be unified with the form of V; = y; + ap? forp =1,2.

The Zero-Inflated Poisson Model In many real count data, there is an excess of zero counts for which the Poisson
model can not account. Consider a mixture model of a degenerate distribution at 0 and a Poisson distribution,

faip (s 1, 0) = pfo(y) + (L= p) fooi(ys 1), y=0,1,2,..., (3.4)
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where fo(y) = 1[y = 0] is the point mass at zero to account for structural zeros. Since

Jaip(0; 1, p) = p+ (1 = p) exp(—p),
it follows from 0 < f,;,(0; 1, p) < 1that 1/(1 — exp(p)) < p < 1. This shows that p can be negative. A positive p
represents that the probability of structural zeros is above the expected number of zeros under the Poisson f;,0;, and a
negative p represents that the probability is below the expected number. The MLE 3 solves the GEE,

fpoi(yi§ wi) yi — pi(B)
—1 fzip(yi;ui,ﬂ) 1i(B)

To estimate p, one can find another equation by differentiating the log likelihood w.r.t. p. For simplicity, we shall
estimate p by the sample percentage p of the zero observations in data. Substituting p in 1i we then solve for 3.

n(x] B)x; = 0. (3.5)

3.2 The Simulation Results

In our simulations, the covariates x; were generated from each of next four distributions. (GA) The Gaussian N(0,3)
with 2; ; = 0.3/"3l; (MG) The Mixture Gaussian $ N (0, X) + $N(0,3%); (LN) The Log-normal LN (0, ); (T5)
The student ¢ with 5 degrees of freedom T (0, %E) The responses Y; were generated from the P01ss0n and the
Negative Binomial models with the variance structure Var(Y;) = ju; + 5u?. We used the logarithmic link, so that
pi = E(Y;) = exp(x] By). We chose n = 50,000, p = 50, and By = (0.1, =0.1 x 1] 5,0.1 x 1) 7.

subsample of size r was drawn, and the subsampling estimator B’; then calculated using the algorithm in Alg.
repeated the process B = 1, 000 times and computed the empirical mean squared errors (EMSE) as follows:

1 o
EMSE = — g 187, = BI* (3.6)

where ﬁ* 1 18 the subsampling estimator calculated on the bth subsample of size r. The results are reported as figures
and tables below (in Section 5] as supplementary tables) for the Poisson model (the Negative Binomial model), where
the symbols hpiO(7r(), hpil(7ry), ..., bpi2(7r2) are used. We summarized the results below.

Efficiency Comparlson Reported in Tablelare the simulated EMSE (and their ratios) of the weighted 75- subsampling
estimator ﬁ* and the unweighted estimator 3*. We generated X from the four distributions and Y from the Poisson
model. The MSE are calculated by the formula in which ,6' is replaced with the true value 3. As pointed out
in Subsection L o given in satisfies the condltion for the unweighted subsampling estimator B* to be more
efficient than the weighted estimator ,3* We chose 7y = 500 in the Scoring Algorithm in Alg. [2|to calculate an
approximation to 7ro. As the sample size n = 50, 000 exceeds our laptop, we broke the full data X of dimension
50,000 x 50 into five chunks X}, of dimension 10, 000 x 50 to calculate the approximation. The MSE were calculated
for a few subsample sizes r based on 500 repetitions. One can see that the ratios of the simulated EMSE were
significantly less than one with the smallest ratios about less than 40% with X generated from T'5(0, %E), suggesting
that the unweighted estimator was substantially more efficient than the weighted estimator.

Variabability of A- and A-optimal Distributions Reported in Fig. |1/ (Fig. [5) are the boxplots of the probabilities of
six optimal distributions using the responses Y; generated from the Poisson model (the Negative Binomial model). In
each plot, all 7r;, were more spread out than all 7, but the medians of 7r;, were slightly bigger than those of 7, for
k=0,1,2.

EMSE Reported in Fig. 2] (Fig[6) are the plots of the log (EMSE) against subsmaple size  in the Poisson model (the
Negative Bionomial model). For the four datasets, the EMSE was decreasing with the increasing r. Both 73 and 7,

had smaller EMSE than the uniform; the fl-sampling outperformed the A-sampling; 75 was the best among 7, and 75
was the best among 7, for k = 0,1,2

Coverage Probability Reported in Fig. [3|(Fig. [7) are the plots of the simulated percentages of the 95% confidence
intervals catching the true value of the coefficient 35 against the subsample size r based on 2, 000 repetitions, with
the responses Y; generated from the Poisson model (the Negative Binomial model). The confidence intervals were
calculated using the formula 35 T Z0.9755E( 52 ) with SE( 52 ) =V V. Fig.[3 exhibited that when the subsample

size r was small, the coverage probabilities were lower than the nominal level 957 0, and were closer to the nominal
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level with the increasing r. Except for GA and LN, the coverage probabilities under the 7r2- and 72- subsampling were
closer to the nominal level than the uniform subsampling.

EMSE Ratio Reported in Table |3| (Table are the ratios of the EMSE of the A-optimal subsampling estimators
to the EMSE of the uniform subsampling estimator, with the responses Y; generated from the Poisson model (the
Negative Binomial model). (1) All the ratios in the Tables were less than one, indicating all the optimal subsampling
outperformed the uniform. (2) 7, outperformed 7, and 7ro was superior to all others. (3) The EMSE ratios using
the truncated 7y, and 7y, resulted in only slight loss of efficiency compared to those using the untruncated ones for
k = 0,1, 2. This property is useful in the Analysis of Big Data because the loss of efficiency would be small when
dropping unimportant observations for fast computing according to whether the sampling probabilities are less than
certain threshold value. (4) Truncation is necessary to guarantee the theoretical properties of the subsampling estimators,
see Zhang, et al.(2023).

Reported in Table 8] (Table [I9) are the EMSE ratios where the Sconng Algorithm was used. We first chose a uniform
pre-subsample of size 1y = 500; obtained an initial estimator ﬂ* to approximate ﬁ then approximated the sampling

distributions and used them to draw subsamples; calculated the subsampling estimator B;‘, in the end. Observe that the
Scoring Algorithm saved significant amount of time while the loss of efficiency was marginal.

Running Time Reported in Tables are the running times for computing the 7ro- and 7ro-subsampling estimators
3 ~, using the statistical computing package R. Those times were computed on a desktop with Intel i5 processor and
8GB memory. We recorded the CPU times for 1000 repetitions, then took the average of the times for fair comparison.
It is noteworthy that although 75 spent longer computing time than 7o, all the proposed methods spent significant less
computing time than for computing the full-sample estimator. One found in Table 2] that the proposed Subsampling
approach had similar number of iterations, indicating that small subsample sizes did not necessarily increase the
iterations in using Newton’s algorithms.
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Figure 1: The boxplots of log(probability) of the A-optimal distributions with Y; generated from the Poisson model and
the full-sample estimator 3 with n = 50,000 & p = 50.
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Figure 2: The plots of log (EMSE) of the subsampling estimate Bi under different samplings against the subsample
size r with Y; generated from the Poisson model and the full-sample estimate 3 with n = 50,000 & p = 50.
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Table 1: The simulated EMSE (and their ratios) of the unweighted (UW) and weighted (W) 7r2- subsampling estimators
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T
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LN

T
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25000
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uniform
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bpi2
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bpio

o
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T
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T
15000

20000

25000

log(MSE)

l0g(MSE)

MG
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hpi2
hpil
hpio
bpi2
bpil
bpi0

5000
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15000

T5

20000

B

<4 b4

uniform
hpi2
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bpi2
bpil
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5000

10000

15000

20000

B* and B* with the pre-subsample size o = 500, p = 50 and n = 50, 000.

T
25000

7| 1200 1400 1600 1800 2000 | 1200 1400 1600 1300 2000
GA MG

UW | 4261 3620 3139 2705 2458 | .0577 0493 .0423 .0375 .0346

W | 5361 4592 3987 3460 3099 | .1070 .0935 .0802 .0704 .0625

Ratio | 7948 7883 7873 7818 7932 | 5396 5275 5271 5334 5547
LN T,

UW | 5507 4887 4304 3706 3617 | .1173 0994 .0791 .0709 .0630

W | 8203 .7078 .6421 .5668 .5206 | .3031 2580 2166 .1920 .1793

Ratio | .6713 6904 6703 6538 6943 | 3871 3854 3653 3692 3514
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Figure 3: The plots of the simulated percentages of the 95% confidence intervals catching the true coefficient S5 under
different samplings against the subsample size r with Y; generated from the Poisson model with pre-subsample size
ro = 500, n = 50,000 & p = 50.

GA MG

(=] (=]

S; - —e— uniform 3 b —e— uniform
=& hpi2 =& hpi2
+- bpi2 +- bpi2

. A e e +
0 0 +- el LTI sl
z 3 z 3 ; R ==
3 3 B ~
2 8 . A
<) < + 4
a a N ’
[ [} o /
g g o
[ [
3 3 !
© 8 © 84

S s 1,

A

wn wn

@ 4 @ 4

o o

T T T T T T T T T T T T

0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
r r
LN T5

=3 . =3 .

S —e— uniform S —e— uniform
-&  hpi2 -&  hpi2
+ bpi2 + bpi2

wn wn

52 52

2 o z o
o o

< <

2 2

< <

a a

(] (]

o o

o o

o o

3 3

o 8 o 84

S S

n n

@ 4 © -

S} S}

T T T T T T T T T T T T
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

Table 2: The averages of the iterations in Newton’s algorithm with Y; generated from the Poisson model and x; from
the GA for g = 500 and various r. The average of the iterations for the full data is 8.4.

o o Uniform

r | Stepl Step2 | Stepl Step2
500 | 8.89  8.77 8.67  8.49 8.40
1000 | 875 856 | 856 823 8.80
1500 | 856 832 | 859 839 8.54
2000 | 855 8.0l 858 853 8.34
2500 | 8.60 891 8.62  8.85 8.27
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Table 3: The simulated ratios of the EMSE of the A-optimal subsampling estimator Bj to those of the uniform
subsampling estimator, calculated with Y; generated from the Poisson and the full-sample estimator 3 for n = 50, 000

& p = 50.

T 500

1000

2500 5000

10000

25000

r.in 1%

2%

5% 10%

20%

50%

GA

72 0.6533
71 0.6554
7o 0.6494
7wy 0.7715
w1 0.7665
o 0.7592

0.5937
0.6064
0.6003
0.7705
0.7743
0.7753

0.5627 0.5434
0.5613 0.5461
0.5672  0.5480
0.7898  0.7888
0.7960  0.7939
0.7794  0.8120

0.5343
0.5322
0.5346
0.7972
0.7975
0.8020

0.5231
0.5170
0.5262
0.7897
0.8046
0.7979

MG

7o 03678
71 0.3502
7o 0.3529
o 0.4230
T 04186
o 0.4098

0.3642
0.3502
0.3536
0.4521
0.4567
0.4436

0.3629  0.3558
0.3492  0.3478
0.3489  0.3465
0.4856 0.5137
0.4905 0.5166
0.4877 0.5193

0.3467
0.3504
0.3565
0.5268
0.5251
0.5393

0.3524
0.3588
0.3609
0.5451
0.5608
0.5466

LN

72 05328
71 0.6002
7o 0.6267
o 0.6602
w1 0.7049
7o 0.7348

0.5285
0.5776
0.5914
0.6842
0.7390
0.7644

0.4992  0.4573
0.5177  0.4989
0.5418  0.5250
0.7031 0.7120
0.7586  0.7811
0.7840 0.7679

0.4823
0.5560
0.5200
0.7010
0.8152
0.8163

0.4756
0.5549
0.5248
0.7114
0.8336
0.7998

T5

72 03587
71 0.3469
7o 0.3318
7y 04013
71 0.3807
o 0.3622

0.3137
0.2987
0.2872
0.3695
0.3527
0.3351

0.2867 0.2714
0.2709 0.2608
0.2598 0.2578
0.3596  0.3636
0.3426  0.3562
0.3445 0.3629

0.2760
0.2678
0.2657
0.3861
0.3812
0.3867

0.2810
0.2784
0.2822
0.4229
0.4207
0.4240

Table 4: The CPU times in seconds for computing the subsampling estimator B;ﬁ with Y; generated from the Poisson
model and x; from the GA model using the Scoring Algorithm 2] with pre-subsample size 7o = 500, n = 50,000 &

p = 50.

T 500 1000

1500 2000 2500

5000

r.n 1% 2%

3% 4% 5%

10%

T  4.191 4205
Ty 2313 2334

4.226 4.241
2356 2.395

4.567
3.025

4.632
3.564

The CPU time for the full-data estimator 3 is 5.872 seconds

Table 5: The CPU times in seconds for computing ij with Y; generated from the Poisson and x; from the GA model
using Newton’s Algorithm for the full-sample sizes with pre-sample size 7o = 500 & r = 2, 000.

n 10T 10° 105 0.5 x 107

7wy 0.70 4.67 26.30 98.06

my 0.64 350 1522 49.22
Fulldata 0.76 6.59 58.26 299.18
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Table 6: Same as Table except for truncation 10%.

r

500

1000

2500 5000

10000

25000

Tn

1%

2%

5% 10%

20%

50%

GA

0.6434
0.6271
0.6299
0.7730
0.7688
0.7701

0.5718
0.5811
0.5823
0.7662
0.7658
0.7726

0.5499  0.5325
0.5450  0.5389
0.5481 0.5410
0.7898  0.7965
0.8021 0.8032
0.7866  0.8121

0.5310
0.5265
0.5302
0.7980
0.7968
0.8122

0.5159
0.5199
0.5163
0.7960
0.8079
0.7935

MG

0.3671
0.3525
0.3488
0.4236
0.4201
04111

0.3571
0.3527
0.3410
0.4483
0.4555
0.4473

0.3534  0.3444
0.3404  0.3464
0.3441  0.3527
0.4925 0.5070
0.4938 0.5070
0.4915 0.5202

0.3483
0.3534
0.3524
0.5306
0.5340
0.5354

0.3540
0.3633
0.3629
0.5486
0.5497
0.5510

LN

0.5230
0.5865
0.5853
0.6571
0.6965
0.7126

0.5275
0.5411
0.5853
0.6894
0.7325
0.7565

0.4854  0.4466
0.5404  0.4924
0.5359  0.4973
0.6773  0.6833
0.7799  0.7791
0.8055 0.7710

0.4847
0.5453
0.5124
0.7002
0.8176
0.8076

0.4764
0.5439
0.5395
0.7404
0.8318
0.8029

T5

0.3538
0.3394
0.3233
0.4081
0.3844
0.3613

0.3060
0.2900
0.2793
0.3721
0.3565
0.3356

0.2815 0.2722
0.2678  0.2595
0.2604  0.2587
0.3595 0.3680
0.3451  0.3600
0.3453  0.3667

0.2753
0.2650
0.2659
0.3872
0.3812
0.3885

0.2823
0.2817
0.2824
0.4241
0.4232
0.4258

Table 7: Same as Table except for truncation 30%.

r

500

1000

2500 5000

10000

25000

Tin

1%

2%

5% 10%

20%

50%

GA

T2
T
o
T2
gt
0

0.6196
0.6198
0.6185
0.7816
0.7832
0.7774

0.5769
0.5752
0.5723
0.7805
0.7811
0.7823

0.5551 0.5372
0.5480  0.5435
0.5465 0.5486
0.8033  0.8041
0.8103  0.8055
0.7997  0.8125

0.5371
0.5381
0.5377
0.8077
0.8137
0.8140

0.5317
0.5373
0.5345
0.8126
0.8168
0.8043

0.3667
0.3515
0.3502
0.4309
0.4250
0.4102

0.3625
0.3556
0.3493
0.4629
0.4539
0.4484

MG
0.3568  0.3573
0.3491 0.3544
0.3488  0.3590
0.4868  0.5226
0.4985 0.5176
0.4977 0.5193

0.3536
0.3660
0.3515
0.5351
0.5354
0.5393

0.3633
0.3674
0.3611
0.5524
0.5630
0.5617

LN

0.5193
0.5619
0.5596
0.6654
0.6989
0.7181

0.5118
0.5496
0.5675
0.6930
0.7329
0.7604

0.4905 0.4791
0.5325 0.5132
0.5274  0.5120
0.7116  0.7232
0.7832  0.7546
0.7909  0.7819

0.4721
0.5637
0.5204
0.7366
0.8173
0.8316

0.5021
0.5466
0.5371
0.7309
0.8252
0.8255

T5

0.3608
0.3460
0.3295
0.4121
0.3882
0.3676

0.3160
0.2966
0.2843
0.3778
0.3588
0.3374

0.2893  0.2763
0.2785  0.2700
0.2629  0.2658
0.3704 0.3645
0.3493  0.3602
0.3424  0.3639

0.2826
0.2724
0.2763
0.3875
0.3860
0.3911

0.2880
0.2864
0.2954
0.4239
0.4232
0.4198
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Table 8: Same as Table [3|except for using the Scoring Algorithm in Alg. [2|(instead of the full-sample 3) with
presample size o = 500.
r 500 1000 2500 5000 10000 25000
rin 1% 2% 5% 10% 20% 50%
GA
o 0.7778 0.7375 0.7749 0.8050 0.8276 0.8499
71 07794 0.7594 0.7781 0.7898 0.8259 0.8778
7o 0.7792  0.7657 0.7750 0.8096 0.8413 0.8725
7wy 0.7805 0.7879 0.8036 0.8237 0.8300 0.8205
m  0.7930 0.7888 0.8188 0.8341 0.8271 0.8174
o 0.7911 0.7967 0.8293 0.8419 0.8494 0.8416
MG
7o 04192 04869 0.5671 0.6089 0.7003 0.7533
71 04339 0.5021 0.5856 0.6567 0.7313  0.7869
7o 04486 0.5219 0.5941 0.6723 0.7247 0.7884
wy 04270 04712 04905 0.5279 0.5555 0.5557
m 04195 04579 05144 05157 0.5618 0.5620
wo 0.4254 0.4603 04854 0.5371 0.5735 0.5805
LN
7wy 0.6271 0.6467 0.6639 0.6623 0.7056 0.7639
71 0.6990 0.7057 0.6935 0.7226 0.8034 0.8218
o 0.7114 0.7384 0.7262 0.7301 0.8335 0.8643
Ty 0.6606 0.6884 0.7185 0.7238 0.7160 0.7500
T 0.6960 0.7362 0.7549 0.7833 0.8286 0.8412
o 0.7329 0.7824 0.8193 0.7992 0.8546 0.8145
TS
7o 03184 03077 0.2828 0.2969 0.3139 0.3291
71 03079 0.2933 0.2964 0.2957 0.3111 0.3295
7o 03260 0.3087 0.3022 0.3084 0.3240 0.3419
wy 03956 03808 0.3626 0.3719 0.3927 0.4156
7 03744 03483 03500 0.3596 0.3853 0.4209
o 03419 03425 03521 0.3628 0.3967 0.4285

Table 9: 23 Features In the Blog Feedback Data

Tc Total number of comments before basetime

Cl24 Number of comments in the 24 hours right before the basetime

Ctlt2 Number of comments in the time period between T'1 and 72, where T'1 denotes
the time 48 hours before basetime, 72 denotes the date time 24 hours before basetime,

Cf24 Number of comments in 24 hours immediately after publication of the post but before basetime

Tt Total number of trackbacks before basetime,

TI24 Number of trackbacks in the last 24 hours before the basettime

Tt1t2 Number of trackbacks between T1 and T2, where T1 is the time point 48 hours before basetime
and T2 the time point 24 hours before basetime

Tf24 Number of trackbacks in 24 hours immediately after publication of the post but before basetime

Ltime Length of time between the publication of the blog post and basetime

Lbp Length of the blog post

Mbt, Tbt, Wbt Indicators (0 or 1) for whether Monday to whether Saturday of the basetime,

THbt, Fbt, Sbt

Mpb, Tpb, Wpb | Indicators (0 or 1) for whether Monday to whether Saturday of the blog publication date

THpb, Fpb, Spb

Ppage Number of parent pages.

4 The Blog Feedback Data

In this Section, we apply the Subsampling approach to analyzing the Blog Feedback data using the Poisson, the
Quasipoisson and the Zero-Inflated regression models. The sampling distributions were calculated using the Zero-
Inflated model in (3.5)) with the estimates given in (.1)) and the discussion therein, the Poisson and the Quasipoisson
models in 2.TT).

14
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The data is available from the UCI machine learning repository (URL: https://archive.ics.uci.edu/), and was collected
and processed from raw htmls of the blog posts. The goal is to predict the number of comments in the upcoming 24
hours relative to the base time. The base time was chosen from the past, and the blog posts selected were published
within 72 hours before the base time. The features were recorded at the base time based on the selected blog posts.

There are 52, 397 observations in the training data, and 7, 624 observations in the test data. We used the training data to
build the model, and the test data to calculate the prediction errors. There are 23 features, see Table E}

The Poisson model is not appropriate for this data because of the observed overdispersion and inflated number of
zeros. The Quasipoisson model has the same parameter estimates as the Poisson model and does not accommodate
zero-inflation, it is thus not a good choice either. The Zero-inflated Poisson model allows inflated zeros and is an
appropriate choice.

As 64.05% of the values in the response variable are 0, we shall consider fitting the zero-inflated Poisson regression
model in for the data. The estimating equation of the model contains the parameter 0 < p < 1, which accounts
for the amount of positive structural zeros beyond the sampling zeros explained by the Poisson distribution f,.;. In
the literature, p can be modeled as a function of the predictor variables, for example, via the logistic link. Here for
simplifying the estimating process, we shall estimate p first. Specifically, based on the interpretation of p and noting
that 64.05% is the proportion of zeros in the response variable while exp(y) is the probability of taking zero value in
the Poisson distribution, we estimate p by

p = 0.6405 — exp(—f), 4.1
where i is an estimator of p. As Y follows the Zero-Inflated model (3.5)), we have

P(Y =0) =p+ (1 - p)exp(—p).
On the other hand, E(Y") = (1 — p)p. Thus = E(Y)/(1 — p) and we get

po=P(Y =0) = p+ (1 - p)exp(~E(Y)/(1 - p)).

The empirical estimate of py is
. 1 _
Po=—> 1[Yi=0]=p+(1-p)exp(-Y /(1= p)).

As § = 6.765 and py = 0.6405, we get p ~ po = 0.6405. Alternatively, we can use {.1I)) to get p by plugging in
= 214.9628, yielding the same value.

To compare the Poisson and the Quasipoisson models with the Zero-Inflated Poisson model, the full-sample estimates,
the standard errors, the P-values for the three models are reported on Table Observe that while many parameters in
the Quasipoisson model were not significant, they were significant in the Zero-Inflated Poisson model.

To compare the 7,- subsampling with the uniform, the averages of the parameter estimates, the theoretical standard
errors (Tse), the empirical standard error(Ese), and the P-values based on 1000 subsamples in the Zero-Inflated Poisson
model are reported on Table[T1} Observe that the averages of the 7r5-subsampling estimates were closer to the full-
sample estimates than those of the uniform subsampling estimates, and the standard errors of the former were smaller
than those of the latter. In the presence of inflated zeros, the standard errors of the 7r-subsampling estimates were
consistent with the theoretical standard errors, whereas those of the uniform subsampling estimates were not. Observe
also that many P-values of the 7ro subsampling estimates were significant, but those of the uniform subsampling
estimates were not. For example, the effects of Tc, C124, Cf24, Tt, T124, Tt1t2, Mbt, Fbt, Sbt, Mpb, Tpb, THpb, Fpb,
Spb, and Ppage were detected by the 7ro subsampling but not by the uniform subsampling. This indicated that the
optimal subsampling estimates led to more powerful tests.

Reported on Tables are the simulated ratios of the lengths of the confidence intervals and the coverage probabilities.
All the values in Table [12| were smaller than 1, indicating that the lengths of the 95% confidence intervals constructed
by using 7r-subsampling estimates were significantly smaller than those by using the uniform subsampling estimates.

Table [14] lists the ratios of the EMSE of the 7ro-subsampling estimates to the EMSE of the uniform subsampling
estimates. The values were smaller than 0.1, indicating that the EMSE of the optimal subsampling estimates were less
than 10% percent of the EMSE of the uniform subsampling estimates.

Table [T5] reports the averages of the sum of squared predicted errors, and Fig. [ graphically represents Table [15]
Observes that when r was small, the uniform subsampling produced very large prediction errors. The prediction errors

produced by the #® subsampling were significantly smaller than those by the uniform.
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Table 10: The parameter estimates, standard errors (SE) and P-values in the Poisson, Quasipoisson and Zero-Inflated
Poisson models using the full sample n = 52, 397.

Poisson SE  P-value | Quasipoisson SE  P-value | ZIPoisson SE  P-value

Intcpt  2.70536  .01058 < .0001 270536 .08167 < .0001 3.42978 .01085 < .0001
Tc  .00371 .00004 < .0001 .00371 .00030 < .0001 .00312 .00004 < .0001
Cl24 .00282  .00004 < .0001 .00282  .00030 < .0001 .00276  .00004 < .0001
Ctlt2  .00013 .00005  .00373 .00013 .00036  .70717 .00025 .00005 < .0001
Cf24  -.00236  .00002 < .0001 -.00236 .00019 < .0001 -.00254 .00003 < .0001
Tt .18007  .00482 < .0001 18007 .03719 < .0001 15279 .00471 < .0001
TI24 -.09276  .00280 < .0001 -.09276  .02165 .00002 -09377 .00267 < .0001
Ttlt2  -.03809  .00313 < .0001 -.03809 .02412  .11438 -.04378 .00298 < .0001
Tf24  -.06000  .00456 < .0001 -.06000 .03520  .08830 -03660 .00445 < .0001
Ltime -.06277  .00014 < .0001 -.06277 .00107 < .0001 -.05235 .00015 < .0001
Lbp .00005 < .0001 < .0001 .00005 .00001 < .0001 .00004 .00001 < .0001
Mbt  .19249  .00912 < .0001 19249 .07040  .00626 09339 .00933 < .0001
Tbt  .07939  .01072 < .0001 07939 .08276  .33744 -06151 .01122 < .0001
Wbt .02238  .01104  .04267 02238 .08523 79289 -.13030 .01155 < .0001
THbt  .05547  .01067 < .0001 05547 .08238  .50077 -09195 .01108 < .0001
Fbt -.24868  .00977 < .0001 -.24868 .07542  .00098 -31279  .01002 < .0001
Sbt  -23916  .00794 < .0001 -.23916 .06128  .00010 -.22643  .00805 < .0001
Mpb 18675  .00992 < .0001 18675 .07658  .01474 15946 .01051 < .0001
Tpb 23210 .01107 < .0001 23210 .08547  .00662 22193 .01169 < .0001
Wpb 05575  .01158 < .0001 05575 .08935 53271 08395 .01204 < .0001
THpb 36164  .01134 < .0001 36164 .08755 .00004 29686 .01174 < .0001
Fpb 47488  .01037 < .0001 47488 .08004 < .0001 33577 .01060 < .0001
Spb  .19624  .00984 < .0001 19624 .07599  .00982 09328 .01011 < .0001
Ppage -.17265 .00389 < .0001 -.17265 .03005 < .0001 -.11498 .00363 < .0001

Table 11: The averages of the parameter estimates, theoretical standard errors (Tse), empirical standard errors (Ese) and
P-values based on 1000 subsamples in the Zero-Inflated Poisson model with o = 2500 and r» = 5000.

Unif o
Estimate Tse Ese  P-value | Estimate Tse Ese  P-value
Intercept  3.31604 60943 56943 < .0001 | 3.39144 .08391 .07782 < .0001
Tc .00499 00463 .00271 .28070 .00318 .00036 .00029 < .0001
Cl24 .00298 .00246 .00172 22524 .00270 .00031 .00029 < .0001
Ctlt2  -.00006 .00275 .00212 .98193 .00024 .00037 .00034 51017
Cf24  -.00407 .00332 .00266 22057 -.00252 .00026 .00019 < .0001
Tt 13274 .60876 .32564 .82739 15511 .04384 .03117 .00040
TI24  -.08212 A2111 .12792 49776 -.09500 .01955 .02092 < .0001
Ttlt2  -.04429 13443 14660 74182 -.04496 .02124 .02190 .03431
T24  -.02871 62134 32695 96314 -.03759 .04335 .02892 38585
Ltime  -.05948 .00787 .00744 < .0001 -.05443 .00168 .00164 < .0001
Lbp .00003 .00001 .00001 .02618 .00004 .00001 .00001 < .0001
Mbt .15348 49478 47033 75641 13700 .06758 .06715 .04264
Tbt 01812 1.01089 .59248 98570 -.07086 .09689 .10023 46461
Wbt  -.15888 94287 .61652 .86618 -.15383  .10749 .10257 15239
THbt  -.11398 .85801 .59002 .89431 -.08562 .10579 .10892 41830
Fbt  -.25691 72860 .53337 72438 -.25842  .09592 11123 .00706
Sbt  -.25243 62211 43792 .68491 -.23805 .08079 .08066 .00321
Mpb 18671 73179  .49846 79861 22473 .07984  .10999 .00488
Tpb .36845 76743 57054 63115 30397  .10215 .11611 .00292
Wpb 23372 71303 59162 74307 12763 10816 .11870 23797
THpb 33222 64228 .61171 .60499 29644 10121  .12326 .00340
Fpb 49398 .60383 .56036 41331 40595  .08629 .09056 < .0001
Spb 24244 57235  .50639 67186 14735  .07293 .07362 .04333
Ppage  -.13385 10897 .12224 21934 -.11631 .03527 .03816 .00097
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Table 12: The length ratios of the 95% confidence intervals of the 7r-subsampling estimates to the uniform
subsampling estimates in the Zero-Inflated Poisson model with the pre-subsample size o = 2500.

r 1000 2500 5000 10000 25000 50000
Intercept .1950 .1368 .1441  .1499  .1263  .1315
Tc .0901 .0976 .1069 .0953 .0930 .1012
Cl24 .1452 1532 .1792 .1583 .1571 .1568
Ctlt2 .1440 .1481 .1676 .1448 .1491 .1469
Cf24 0599 .0633 .0720 .0767 .0736 .0837
Tt .0848 .0761 .0915 .0863 .0792 .0810
TI24 .1048 .1152 .1579 .1522 .1641 .1751
Ttlt2 1055 .1129 .1522 1498 .1555 .1645
Tf24 .0932 .0776 .0890 .0797 .0734 .0786
Ltime .2348 .2432 2191 2124 2308 .2093
Lbp 3005 .2605 .2890 .3476 .2928  .2687
Mbt 2015 .1284 .1478 .1625 .1280 .1324
Tbt .1950 .1338 .1526 .1611 .1092  .1218
Wbt .1829 .1543 1669 .1694 1312  .1289
THbt 2104 .1747 .1678 .1635 .1480 .1399
Fbt .2024 .1512 .1632 .1571 .1486 .1556
Sbt 2066 .1591 1737 .1632 .1438 .1602
Mpb .1602 .1746 .1666 .1742  .1548  .1285
Tpb .1756 .1622 1721 .1910 .1795 .1407
Wpb 1782 .1923 1725 .1979 .1810 .1415
THpb .1922 .1623 .1647 .1770 .1549  .1568
Fpb .1597 .1447 .1662 .1782 .1426  .1423
Spb .1664 1336 .1333  .1430 .1242 .1210
Ppage .2388 .2534 3325 2951 2876  .3433

Table 13: The simulated percentages of the 95% confidence intervals catching the full-sample MLE in the Zero-Inflated
Poisson model with the pre-subsample size ro = 2500.
r 1000 2500 5000 10000 25000 50000
Intercept  .9989 9989 .9919 9955 .9924 9917
Tc 9905 .9956 .9902 9979 9915 .9999
CI24 9998 9916 .9947 9941 9995 .9938
Ctlt2 9965 9986 .9989  .9940 .9923  .9928
Cf24 9981 9973 9977 9977 9971  .9958
Tt 9959 9942 9933 9991 .9941 .9922
T124 9901 .9936 .9951 9947 9998 9979
Ttlt2 9916 .9998 9950 9916 .9928  .9961
Tf24 9994 9976 .9949 9986 .9920 9918
Ltime .9907 9944 9922 9944 9917 .9984
Lbp 9903 .9998 9997 9936 .9934 .9948
Mbt  .9940 .9903 .9971 9932 9908  .9948
Tbt .9992 9998 .9972  .9922 9989 .9970
Wbt 9952 9916 9938  .9927 9926 .9979
THbt .9931 9918 .9905  .9914 .9947  .9930
Fbt 9983 9987 .9949 9962 .9934  .9955
Sbt  .9990 9978 9932 9949 9914  .9995
Mpb 9978 9986 9936 1.0000 .9999 9911
Tpb 9918 .9961 .9944 9987 9906 .9990
Wpb 9950 9900 .9919  .9922 9974 9951
THpb .9917 9958 .9945  .9945 9963 .9984
Fpb 9979 9986 .9932 9966 .9957 .9998
Spb 9988 .9929 9925 9994 9996  .9905
Ppage .9953 .9959 .9917  .9907 .9980  .9958
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Table 14: The ratios of the EMSE of the 7r5-subsampling estimate to that of the uniform subsampling estimate in the
Zero-Inflated Poisson model with the pre-subsample size o = 2500.
T 1000 2500 5000 10000 25000 50000
mo  0.0287 0.0360 0.0373 0.0396 0.0580 0.0823

Table 15: The averages of the sum of squared predicted errors (SSPE) in the Zero-Inflated Poisson model with the
pre-subsample size o = 2500. The full-sample SSPE is 1,407.4712.
T 1000 2500 5000 10000 25000 50000
uniform 52153313  2876.1691 2653.2441 2323.7320 1811.6740 1598.1760
7o 1599.7506 1525.9297 1524.9536 1509.2128 1500.5681 1428.4280

Figure 4: The plots of the averages of the sum of the predicted squared errors in the Zero-Inflated Poisson model
against the subsample size r with ro = 2500 for three samplings.
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Figure 5: The boxplots of log(probability) of the A-optimal distributions with Y; generated from the Negative Binomial
and the full-sample estimator 8 with n = 50,000 & p = 50.
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Figure 6: The plots of log (EMSE) of the subsampling estimate Bi under different samplings against the subsample
size r with Y; generated from the Negative Binomial and the full-sample estimate 3 with n = 50,000 & p = 50.
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Figure 7: The plots of the simulated percentages of the 95% confidence intervals catching the true coefficient 55 under
different samplings against the subsample size r with Y; generated from the Negative Binomial with pre-subsample size
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Table 16: The simulated ratios of the EMSE of the A-optimal subsampling estimator Bjﬁ to uniform subsampling
estimator, calculated with Y; generated from the Negative Binomial model and the full-sample estimator 3 for

n = 50,000 & p = 50.

T 500 1000 2500 5000 10000 25000
rin 1% 2% 5% 10% 20% 50%
GA
72 03390 03243  0.3328 0.3319 0.3310 0.3398
7t1 03315 03259 0.3281 0.3359 0.3372 0.3358
7o 0.3374  0.3265 03408 0.3374 0.3333 0.3416
72 09850 09747 0.9765 0.9699 0.9668 0.9738
1 09881 09752 09775 0.9747 0.9695 0.9845
o 09992 09739 0.9913 0.9955 0.9978 0.9757
MG
7o 0.2843  0.2863 0.2924 0.2974 0.3078 0.3132
7t1 0.2863 0.2819 0.2908 0.3030 0.3040 0.3107
7o 0.2854 0.2831 0.2922 0.3004 0.3076 0.3129
w2 09295 09020 0.9000 0.8748 0.9118 0.9040
w1 09164 0.8945 0.9006 0.8936 0.9203 0.9243
7o 09347 09163 09142 0.8970 0.9152 0.9229
LN
7o 03208 0.2963 0.2923 0.3214 0.3148 0.3229
7t1 03447 03214 0.3389 0.3364 0.3584 0.3603
7o 0.3409 0.3361 03454 0.3474 0.3590 0.3554
w2 0.8698 0.8666 0.8634 0.8762 0.9167 0.9062
71 09364 09482 09942 0.9643 0.9789 0.9733
o 09197 09289 0.9370 0.9564 0.9849 0.9673
TS
7o 03013  0.2923 0.2844 0.2955 0.2986 0.3053
71 02979 0.2933 0.2863 0.2956 0.2983 0.3027
7o 03034 0.2898 0.2924 0.2944 0.2998 0.3014
o 09115 0.8764 0.8493 0.8565 0.8599 0.8543
71 09087 0.8787 0.8516 0.8658 0.8545 0.8632
7o 09107 0.8861 0.8461 0.8546 0.8730 0.8752

Table 17: Same as Tableexcept for truncation 10%.

r 500 1000 2500 5000 10000 25000
rin 1% 2% 5% 10% 20% 50%
GA
72 03158 03146 03273 03301 0.3375 0.3390
71 03158 03184 03284 03253 0.3370 0.3366
7o 03171 03162 0.3269 03308 0.3362 0.3391
w2 09836 09777 09828 0.9807 0.9761 0.9685
7w 09797 09771 09901 0.9670 0.9732 0.9783
o 0.9693 09804 09931 09763 0.9792 0.9720
MG
72 0.2793  0.2801 0.2901 0.2987 0.3014 0.3108
71 0.2756  0.2722  0.2888 0.3009 0.3048 0.3099
7o 02793  0.2762 02959 0.2989 0.3078 0.3116
w2 09420 09153 09214 09208 0.8974 0.9136
w1 09524 09160 09236 0.9062 0.8968 0.9199
7o 09404 09213 09039 0.9301 0.9096 0.9147
LN
72 02936 02887 0.2768 0.3003 0.3024 0.3175
71 03125 03169 03067 03230 0.3348 0.3719
7o 0.3233 03062 03069 0.3233  0.3294 0.3652
w2 0.8520 0.8418 0.8104 0.8698 0.8743  0.8878
7w 0.8721 09179 08642 09182 0.9409 0.9457
o 0.9088 0.9586 0.8802 0.8937 0.9499 0.9804
T5
w2 0.2855 0.2843 0.2843 0.2881 0.2902 0.3015
71 0.2871 0.2817 0.2812 0.2910 0.2969 0.3014
7o 0.2875 0.2819 0.2842 0.2903  0.2991  0.2960
w2 0.8808 0.8615 0.8441 0.8464 0.8579 0.8484
™  0.8945 0.8723 0.8583 0.8475 0.8497 0.8476
o 0.8965 0.8792 0.8621 0.8601 0.8516 0.8470
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Table 18: Same as Table [16|except for truncation 30%.

r 500 1000 2500 5000 10000 25000
rin 1% 2% 5% 10% 20% 50%
GA
72 03163  0.3154 03307 03333 0.3416 0.3471
71 03091 03200 03286 0.3334 0.3417 0.3435
7o 03163 03199 03363 0.3349 0.3400 0.3476
oy  0.9869 09854 09928 0.9835 0.9831 0.9716
w1 09797 09859 09910 0.9656 0.9860 0.9828
o 09671 09795 09934 0.9739 0.9882 0.9734
MG
72 02735 0.2780 0.2944 03023 0.3077 0.3155
71 02715 0.2762 02930 03069 0.3116 0.3143
7o 02796  0.2809 0.2962 0.3068 0.3150 0.3187
w2 09551 09141 09206 0.9370 0.9004 0.9148
7w 09483 09256 09297 009127 0.9088 0.9279
o 09340 09295 09061 0.9305 0.9129 0.9191
LN
72 0.2909 0.2874 0.2925 0.3050 0.2907 0.3126
71 03255 03129 03126 0.3418 0.3258 0.3435
7o 03119 03235 03249 03390 03134 0.3446
o 0.8524 0.8349 0.8412 0.8808 0.8313 0.8860
71 0.8938 0.8668 09118 0.9429 0.8637 0.9391
o 0.8918 0.8835 09237 0.9518 0.9301 0.9241
T5
w2 02921 0.2842  0.2888 0.2932  0.2981  0.3083
71 0.2880 0.2847 0.2876 0.2957 0.3039  0.3047
7o 02867 02885 02919 0.2911 0.2998 0.3048
w2  0.8796 0.8935 0.8612 0.8459 0.8582  0.8555
7w 0.8767 0.8819 0.8668 0.8484 0.8623 0.8532
o 0.8964 0.8898 0.8797 0.8615 0.8484 0.8537

Table 19: Same as Table except for the Negative Binomial model.

r 500 1000 2500 5000 10000 25000
rin 1% 2% 5% 10% 20% 50%
GA
72 03814 03811 0.3822 0.3847 0.3840 0.3920
71 0.3837 03790 0.3835 0.3858 0.3867 0.4050
7o 03788 0.3841 0.3851 0.3821 0.3868 0.3954
w2 1.0045 09018 09891 09718 0.9738 0.9896
71 09895 09757 09905 0.9849 0.9701 0.9860
o 09831 09543 09872 09744 0.9925 0.9855
MG
72 03140 0.3386 0.3478 0.3578 0.3852  0.3800
71 03232 0.3385 0.3438 0.3672 0.3859 0.3866
7o 0.3300 0.3405 0.3480 0.3670 0.3803  0.3801
w2 09098 0.9207 0.8999 09189 0.9346 0.8895
w1 09286 09233 09198 09253 0.9341 0.9117
7o 09521 09209 09021 09141 0.9454 0.9161
LN
72 03759 03577 03380 0.3625 0.3892 0.3796
71 04049 03750 03696 03977 0.4197 0.4378
7o 03976 03793 03573 0.3858 0.4499 0.4148
w2 0.8391 0.8651 0.8383 0.8846 0.9278 0.9738
71 09403 09732 08511 0.9292 0.9367 0.9631
o 0.9426 09851 09166 0.9415 0.9132 0.9970
T5
w2 03473 0.3404 03480 03473  0.3576 0.3747
71 03521 0.3383  0.3498 0.3526 0.3601 0.3620
7o 03462 03426 03473 03573  0.3622 0.3672
w2 0.8952 0.8512 0.8679 0.8400 0.8387 0.8497
w1 0.8704 0.8551 0.8690 0.8528 0.8337 0.8557
o 09097 0.8591 0.8697 0.8583 0.8465 0.8518
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