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ABSTRACT

Motivated by the computational burden in fitting a single index model caused by high parameter
dimensionality and possibly compounded by data of massive size, we propose an optimal subsam-
pling approach based on the criterion of maximum information. We derive the optimal sampling
distributions and prove asymptotic normality of the subsampling estimator for either/both fixed or/and
growing number of the index parameters p or/and spline knots d as the subsample size r tends to
infinity with the sample size n. We construct a fast algorithm with running time O(r2(p+ d)) with r
far less than n, and study the behaviors of the proposed approach using both simulated and real data.

Keywords A-optimality · Asymptotic normality · Big data · Infinite dimension · Penalized spline · Single index model

1 Introduction

2 SIMULATION STUDY

In this section, we use simulation studies to evaluate the A-optimal subsampling approach proposed in previous
sections. The design matrix X is generated from one of the four following multivariate distributions. (1) Gaussian
distribution N(0,Σ), Σi,j = 0.3|i−j|. (2) Mixture Gaussian distribution with 1

2N(0,Σ) + 1
2N(0, 3Σ). (3) Log-

normal distribution LN(0, 1
2Σ). (4) The t distribution with 5 degree of freedom T5(0,

1
2Σ). We choose n = 50, 000,

p = 50, β = (0.1,−0.1× 1⊤
(p/2), 0.1× 1⊤

(p/2)). We consider the response yi from Poisson distribution and Negative
Binomial distribution with variance structure V (yi) = µi + 5µ2

i . We use logarithm link in the above two situations:



A PREPRINT - SEPTEMBER 10, 2023

log(µi) = x⊤
i β, i = 1, · · · , n. The subsampling probabilities are calculated from the following formulas:

π̂
(2)
i =

∥(X⊤W(β̂)X)−1xi∥|êi|∑n
i=1 ∥(X⊤W(β̂)X)−1xi∥|êi|

,

π̂
(1)
i =

∥(X⊤W(β̂)X)−
1
2xi∥|êi|∑n

i=1 ∥(X⊤W(β̂)X)−
1
2xi∥|êi|

,

π̂
(0)
i =

∥xi∥|êi|∑n
i=1 ∥xi∥|êi|

,

π̄
(2)
i =

∥(X⊤W(β̂)X)−1xi∥ĝi∑n
i=1 ∥(X⊤W(β̂)X)−1xi∥ĝi

,

π̄
(1)
i =

∥(X⊤W(β̂)X)−
1
2xi∥ĝi∑n

i=1 ∥(X⊤W(β̂)X)−
1
2xi∥ĝi

,

π̄
(0)
i =

∥xi∥ĝi∑n
i=1 ∥xi∥ĝi

, i = 1, · · · , n.

(2.1)

For Poisson regression,

W (β̂) = Diag(µ̂i), µ̂i = exp(xiβ̂),

êi = yi − µ̂i, ĝi =
√
µ̂i i = 1, · · · , n.

(2.2)

For Negative Binomial distribution,

W (β̂) = Diag(
µ̂i

1 + αµ̂i
), µ̂i = exp(xiβ̂),

êi =
yi − µ̂i

1 + αµ̂i
, ĝi =

√
µ̂i

1 + αµ̂i
i = 1, · · · , n.

(2.3)

We take subsamples of size r according to the sampling distributions calculated from the above step, and obtain the
estimate β̂

∗
r . We calculate the empirical mean square errors at different subsample sizes r for each of B = 1000

subsamples using the following formula:

MSE =
1

B

B∑
b=1

∥β̂
∗
r,b − β̂∥2,

where β̂
∗
r,b is the estimate from the bth subsample with subsample size r.

3 Full SAMPLE REAL DATA ANALYSIS: BIKE SHARING DATA

3.1 Introduction of the Real Data

This data set is available from the UCI Machine Learning Repository website. Bike sharing systems can be considered
new generation of old-fashioned bike rentals. The use of this system is not restricted to rentals and returns at the same
docking station, bikes can be returned to any docking station after usage. Predicting the hourly bike request will help
in planing, expanding and maintaining adequate number of bikes. In United States, the bike sharing system has been
proved to be very successful in major cities, including Washington, DC, New York, Chicago, Los Angles, where bikes
sharing has become a popular transportation option. Our goal in this example is to build statistical models to predict
hourly request of bikes in Washington DC area. There are totally 17,389 observations in this data set, the response
variables are the counts of casual rentals, registered rentals, and total rented bikes including both casual and registered.
We split the data into two sets, using the 2011 year data to build the models and the 2012 data to calculate the prediction
error. The predictor variables are season, workingday, daytime, weathersit, temp, hum and windspeed. The season
variables include spring indicator, summer indicator and fall indicator, winter is the reference level. Variable workingday
indicates whether a day is a working day, the reference level is weekend of holiday. Variable daytime indicates if
the time is between 7am to 22pm, with the referencing time range from 0am to 5am representing the reference level
night time. Weathersit varaible has 4 categories, the first category represents clear, few clouds, and partly cloudy; the
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second category represents mist plus cloudy, mist plus broken clouds, and mist; the third category represents light
snow, light rain; and the fourth category represents heavy rain, and snow plus frog. Since the fourth category only has
three observations, we combine the third and fourth categories. We choose the first category as the reference. Temp is
normalized temperature in Celsius. Hum is normalized humidity. Windspeed is normalized wind speed. There are 11
regression coefficients for the predictor variables including the intercept.

4 A-OPTIMAL SUBSAMPLING FOR REAL DATA ANALYSIS: BIKE SHARING DATA

We now apply our proposed subsampling methods to conduct Quasipoisson regression and Negative Binomial regression.
The subsampling probabilities are caculated as follows:

π̂
(2)
i =

∥(X⊤W(β̂)X)−1xi∥|êi|∑n
i=1 ∥(X⊤W(β̂)X)−1xi∥|êi|

,

π̂
(1)
i =

∥(X⊤W(β̂)X)−
1
2xi∥|êi|∑n

i=1 ∥(X⊤W(β̂)X)−
1
2xi∥|êi|

,

π̂
(0)
i =

∥xi∥|êi|∑n
i=1 ∥xi∥|êi|

,

π̄
(2)
i =

∥(X⊤W(β̂)X)−1xi∥ĝi∑n
i=1 ∥(X⊤W(β̂)X)−1xi∥ĝi

,

π̄
(1)
i =

∥(X⊤W(β̂)X)−
1
2xi∥ĝi∑n

i=1 ∥(X⊤W(β̂)X)−
1
2xi∥ĝi

,

π̄
(0)
i =

∥xi∥ĝi∑n
i=1 ∥xi∥ĝi

, i = 1, · · · , n.

(4.1)

For Quasioisson regression,

W (β̂) = Diag(
µ̂i

ϕ̂
), µ̂i = exp(x⊤

i β̂),

êi =
yi − µ̂i

ϕ̂
, ĝi =

√
µ̂i

ϕ̂
i = 1, · · · , n.

(4.2)

For Negative Binomial regression,

W (β̂) = Diag(
µ̂i

1 + α̂µ̂i
), µ̂i = exp(x⊤

i β̂),

êi =
yi − µ̂i

1 + α̂µ̂i
, ĝi =

√
µ̂i

1 + α̂µ̂i
i = 1, · · · , n,

(4.3)

where ϕ̂ and α̂ are the moment estimators based on full sample. We take a uniform subsample of size r0 = 200 to get
an initial estimates β̂

∗
r0 ; then plug in to the formulas to approximate the A-optimal subsampling distributions; take

subsample of size r according to the approximate distributions to get β̂
∗
r ; We calculate the empirical mean square errors

for different subsample sizes r for each of B = 1000 subsamples using the formula:

MSE =
1

B

B∑
b=1

∥β̂
∗
r,b − β̂∥2,

where β̂
∗
r,b is the estimate from the bth subsample with subsample size r.
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5 Casual Bike Rentals

5.1 Quasipoisson Regression Model for Casual Data

5.2 Negative Binomial Regression Model for Casual Data

6 A-OPTIMAL SUBSAMPLING FOR REAL DATA ANALYSIS: BLOG FEEDBACK
DATA

In this chapter, we apply the proposed subsampling method to analyze the Blog Feedback data set, available from the
UCI machine learning repository. This data was collected and processed from raw html of the blog posts. The goal is to
predict the number of comments in the upcoming 24 hours relative to the base time. The base time was chosen from the
past, and the blog posts selected were published within 72 hours before base time. The features were recorded at the
base time based on the selected blog posts.

There are 52,397 observations in the training data set, and 7,624 observations in the test data set. We use the training
data set to build the model, and the test data set to calculate the prediction errors. The 23 features are total number of
comments before base time (Tc), number of comments in the 24 hours right before the base time (Cl24), number of
comments in the time period between T1 and T2 (Ct1t2), where T1 denotes the date time 48 hours before base time,
T2 denotes the date time 24 hours before base time, number of comments in 24 hours immediately after publication
of the post but before base time (Cf24), total number of trackbacks before base time (Tt), number of trackbacks in
the last 24 hours before the base time (Tl24), number of trackbacks between T1 and T2 (Tt1t2), where T1 is the time
point 48 hours before basetime and T2 the time point 24 hours before basetime, number of trackbacks within 24 hours
immediately after publication of the post but before basetime (Tf24), the length of time between the publication of the
blog post and base time (Ltime), the length of the blog post (Lbp), indicators (0 or 1) for whether Monday to whether
Saturday of the base time (Mbt, Tbt, Wbt, THbt, Fbt, Sbt), indicators (0 or 1) for whether Monday to whether Saturday
of the blog publication date (Mpb, Tpb, Wpb, THpb, Fpb, Spb), number of parent pages(Ppage).

Poisson regression model is not appropriate for this data set because of observed overdispersion in data and inflated
number of zeros. Quasipoisson regression model has the same parameter estimates as the Poisson regression model and
does not accommodate zero-inflation, so it is not a good choice either. Zero-inflated Poisson regression model allows
inflated zeros hence is an appropriate choice.

As 64.05% of the values in the response variable are 0, we shall consider fitting the zero-inflated Poisson regression
model for this data set. The estimating equation of zero-inflated Poisson regression contains the parameter 0 ≤ ρ ≤ 1,
which accounts for the amount of positive structural zeros beyond the sampling zeros explained by the Poisson
distribution fpoi. In the literature, ρ can be modeled as a function of the predictor variables, for example, via the logistic
link. Here for simplifying the estimating process, we shall estimate ρ first. Specifically, based on the interpretation of ρ
and noting that 64.05% is the proportion of zeros in the response variable while exp(µ) is the probability of taking zero
value in the Poisson distribution, we estimate ρ by

ρ̂ = 0.6405− exp(−µ̂). (6.1)

where µ̂ is an estimator of µ. As Y follows the zero inflated model ??, we have

P (Y = 0) = ρ+ (1− ρ) exp(−µ).

On the other hand, E(Y ) = (1− ρ)µ. Thus µ = E(Y )/(1− ρ) and we get

P (Y = 0) = ρ+ (1− ρ) exp(−E(Y )/(1− ρ).

The moment equation of this is

p̂ =
1

n

n∑
i=1

1[Yi = 0] = ρ+ (1− ρ) exp(−Ȳ /(1− ρ)).

Since ȳ = 6.765, p̂ = 0.6405, we solve the equtions to get ρ̂ ≈ p̂ = 0.6405. Alternatively, we can use 6.1 to get ρ̂ by
plugging in µ̂ = 214.9628, yielding the same value.

To compare Poisson, Quasipoisson, with zero-inflated Poisson regression models, we report the full sample estimates,
standard errors, P-values for these three models in Table (7.1). Many parameters in the Quasipoisson model are
not significant, while these parameters in zero-inflated Poisson model are significant. Also, we perform proposed
subsampling method in the zero-inflated Poisson regression model.
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