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ratio. The article concludes with a small simulation study.
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1 Introduction

We consider the homoscedastic regression model in which the response variable
Y is linked to a covariate X by the formula

Y = βX + ε. (1)

For reasons of clarity we focus on the case where X is one-dimensional and β an
unknown real number. We will assume throughout that ε and X are indepen-
dent, and that X has a finite positive variance. Our goal is to make inferences
about the slope β, treating the density f of the error ε and the distribution of
the covariate X as nuisance parameters. We shall do so by using an empirical
likelihood approach based on independent copies (X1, Y1), . . . , (Xn, Yn) of the
base observation (X,Y ).

Model (1) is the usual linear regression model with a non-zero intercept,
even though it is written without an explicit intercept parameter. Since we do
not assume that the error variable is centered, the mean E[ε] plays the role
of the intercept parameter. Working with this model and notation simplifies
the explanation of the method and the presentation of the proofs. The gener-
alization to the multivariate case is straightforward; see Remark 1 in Section
2.

The linear regression model is one of the most useful statistical models,
and many simple estimators for the slope are available, such as the ordinary
least squares estimator (OLSE) which takes on the form∑n

j=1(Xj − X̄)Yj∑n
j=1(Xj − X̄)2

(2)

rather than
∑n
j=1XjYj/

∑n
j=1X

2
j , because we do not assume that the errors

are centered. However, these estimators are usually inefficient. The construc-
tion of efficient (least dispersed) estimators is in fact quite involved. The reason
for this is the assumed independence between covariates and errors, which is
a structural assumption that has to be taken into account by the estimator to
obtain efficiency. Efficient estimators for β in model (1) were first introduced
by Bickel (1982), who used sample splitting to estimate the efficient influence
function. To establish efficiency we must assume that f has finite Fisher in-
formation for location. This means that f is absolutely continuous and the
integral Jf =

∫
`2f (y)f(y) dy is finite, where `f = −f ′/f denotes the score

function for location. It follows from Bickel (1982) that an efficient estimator
β̂ of β is characterized by the stochastic expansion

β̂ = β +
1

n

n∑
j=1

(Xj − E[X])`f (Yj − βXj)

Jf Var(X)
+ oP (n−1/2). (3)

Further efficient estimators of the slope which require estimating the influ-
ence function were proposed by Schick (1987) and Jin (1992). Koul and Susarla
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(1983) studied the case when f is also symmetric about zero. See also Schick
(1993) and Forrester et al. (2003), who achieved efficiency without sample
splitting and instead used a conditioning argument. Efficient estimation in the
corresponding (heteroscedastic) model without the independence assumption
(defined by E(ε|X) = 0) is much easier: Müller and Van Keilegom (2012), for
example, proposed weighted versions of the OLSE to efficiently estimate β in
the model with fully observed data and in a model with missing responses.
See also Schick (2013), who proposed an efficient estimator using maximum
empirical likelihood with infinitely many constraints.

Like Müller and Van Keilegom (2012), we are interested in the common
case that responses are missing at random (MAR). This means that we observe
copies of the triplet (δ,X, δY ), where δ is an indicator variable with δ = 1 if
Y is observed, and where the probability π that Y is observed depends only
on the covariate,

P (δ = 1|X,Y ) = P (δ = 1|X) = π(X),

with E[π(X)] = E[δ] > 0; we refer to the monographs by Little and Rubin
(2002) and Tsiatis (2006) for further reading. Note that the “MAR model” we
have just described covers the “full model” (in which all data are completely
observed) as a special case with π(X) = 1. To estimate β in the MAR model
we propose a complete case analysis, i.e., only the N =

∑n
j=1 δj observations

(Xi1 , Yi1), . . . , (XiN , YiN ) with observed responses will be considered.

Complete case analysis is the simplest approach to dealing with missing
data, and is frequently disregarded as naive and wasteful. In our application,
however, the contrary is true: Müller and Schick (2017) showed that general
functionals of the conditional distribution of Y given X can be estimated
efficiently (in the sense of Hájek and Le Cam) by a complete case analysis.
Since the slope β is covered as a special case, this means that an estimator
of β that is efficient in the full model is also efficient in the MAR model
if we simply omit the incomplete cases. This property is called “efficiency
transfer”. To construct efficient maximum empirical likelihood estimators for
β, it therefore suffices to consider the model with completely observed data.
We write β̂c for the complete case version of β̂ from (3). It follows from the
transfer principle for asymptotically linear statistics by Koul et al. (2012) that
β̂c satisfies

β̂c = β +
1

N

n∑
j=1

δj(Xj − E[X|δ = 1])`f (Yj − βXj)

Jf Var(X|δ = 1)
+ oP (n−1/2), (4)

and is therefore consistent for β. That β̂c is also efficient follows from Müller
and Schick (2017, Section 5.1). The efficiency property can alternatively be
deduced from arguments in Müller (2009), who gave the efficient influence
function for β in the MAR model, but with the additional assumption that
the errors have mean zero; see Lemma 5.1 in that paper.
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In this paper we use an empirical likelihood approach with an increasing
number of estimated constraints to derive various inferential procedures about
the slope. Our approach is similar to Schick (2013), but our model requires
different constraints. We obtain a suitable Wilks’ theorem (see Theorem 1)
to derive confidence sets for β and tests about a specific value of β, and a
point estimator of β via maximum empirical likelihood, i.e., by maximizing
the empirical likelihood. This estimator is shown to be semiparametrically
efficient.

Empirical likelihood was introduced by Owen (1988, 2001) for a fixed num-
ber of known linear constraints to construct confidence intervals in a nonpara-
metric setting. More recently, his results have been generalized to a fixed num-
ber of estimated constraints by Hjort, McKeague and Van Keilegom (2009),
who further studied the case of an increasing number of known constraints;
see also Chen et al. (2009). Peng and Schick (2013) generalized the approach
to the case of an increasing number of estimated constraints. The idea of max-
imum empirical likelihood goes back to Qin and Lawless (1994), who treated
the case with a fixed number of known constraints. Peng and Schick (2017)
generalized their result to the case with estimated constraints. Schick (2013)
and Peng and Schick (2016) treated examples with an increasing number of es-
timated constraints and showed efficiency of the maximum empirical likelihood
estimators.

Our empirical likelihood is similar to the one considered for the symmetric
location model in Peng and Schick (2016). We shall derive results that are
analogous to those in that paper. In Section 3 we provide the asymptotic chi-
square distribution of the empirical log-likelihood for both the full model and
the MAR model. This facilitates the construction of confidence intervals and
tests about the slope β. In Section 4 we propose a new method for estimating
β efficiently, namely a guided maximum empirical likelihood estimator, as
suggested by Peng and Schick (2017) for the general model with estimated
constraints. Efficiency of this estimator is entailed by a uniform expansion
for the local empirical likelihood (see Theorem 2), which follows from a local
asymptotic normality condition. Section 5 contains a simulation study. The
proofs are in Section 6.

2 Empirical likelihood approach

The construction of the empirical likelihood is crucial since we need to in-
corporate the independence between the covariates and the errors to obtain
efficiency. Let us explain it for the full model. The corresponding approach for
the missing data model is then straightforward: in that case we will proceed
in the same way, now with the analysis based on the N complete cases, and
with the random sample size N treated like n.



Inference about the slope in linear regression 5

Our empirical likelihood Rn(b), which we want to maximize with respect
to b ∈ R, is of the form

Rn(b) = sup
{ n∏
j=1

nπj : π ∈Pn,

n∑
j=1

πj(Xj − X̄)vn(Fb(Yj − bXj)) = 0
}
.

Here Pn is the probability simplex in dimension n,

Pn =
{
π = (π1, . . . , πn)> ∈ [0, 1]n :

n∑
j=1

πj = 1
}
,

X̄ is the sample mean of the covariates X1, . . . , Xn, Fb is the empirical distri-
bution function constructed from ‘residuals’ Y1 − bX1, . . . , Yn − bXn,

Fb(t) =
1

n

n∑
j=1

1[Yj − bXj ≤ t], t ∈ R,

which serves as a surrogate for the unknown error distribution F . The function
vn maps from [0, 1] into Rrn and will be described in (6) below. The constraint∑n
j=1 πj(Xj − X̄)vn(Fb(Yj − bXj)) = 0 in the definition of Rn(b) is therefore

a vector of rn one-dimensional constraints, where the integer rn tends to in-
finity slowly as the sample size n increases. These constraints emerge from the
independence assumption as follows. Independence of X and ε is equivalent to
E[c(X)a(ε)] = 0 for all square-integrable centered functions c and a under the
distributions of X and ε, respectively. This leads to the empirical likelihood
in Peng and Schick (2013). We do not work with these constraints. Instead we
use constraints in the subspace

{(X − E[X])a(ε) : a ∈ L2,0(F )} (5)

with L2,0(F ) = {a ∈ L2(F ) :
∫
a dF = 0}, which suffices since it contains the

efficient influence function; see (3). By our assumptions, F is continuous and
F (ε) is uniformly distributed on the interval [0, 1], F (ε) ∼ U . An orthonormal
basis of L2,0(F ) is ϕ1 ◦F,ϕ2 ◦F, . . . where the ϕk denote an orthonormal basis
of L2,0(U ). This suggests the constraints

n∑
j=1

πj{Xj − E(X)}ϕk{F (Yj − bXj)} = 0, k = 1, . . . , rn,

which, however, cannot be used since neither F nor the the mean of X are
known. So we replace them by empirical estimators. In this article we will
work with the trigonometric basis

ϕk(x) =
√

2 cos(kπx), 0 ≤ x ≤ 1, k = 1, 2, . . . ,

and take
vn = (ϕ1, . . . , ϕrn)>. (6)
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This yields our empirical likelihood Rn(b) from above.

Let us briefly discuss the complete case approach that we propose for the
MAR model. In the following a subscript “c” will, as before when we introduced
β̂c, indicate that a complete case statistic is used. For example, Fb,c is the
complete case version of Fb,

Fb,c(t) =
1

N

n∑
j=1

δj1[Yj − bXj ≤ t] =
1

N

N∑
j=1

1[Yij − bXij ≤ t], t ∈ R.

The complete case empirical likelihood is

Rn,c(b) = sup
{ N∏
j=1

Nπj : π ∈PN ,

N∑
j=1

πj(Xij − X̄c)vN (Fb,c(Yij − bXij )) = 0
}
,

with PN and vn defined above. Note that we perform a complete case analysis,
so the above formula must involve X̄c = N−1

∑n
j=1 δjXj , which is a consistent

estimator of the conditional expectation E[X|δ = 1], as given in (4); see also
Section 3 in Müller and Schick (2017) for the general case. Moments of the
covariate distribution are replaced by moments of the conditional covariate
distribution given δ = 1, when switching from the full model to the complete
case analysis.

Remark 1 If the covariate X is a p-dimensional vector we have

Yj = β>Xj + εj , j = 1, . . . , n,

and construct Fb using the ‘residuals’ Yj − b>Xj . Now we need to interpret
(5) with X being p-dimensional. The empirical likelihood Rn(b) is then

sup
{ n∏
j=1

nπj : π ∈Pn,

n∑
j=1

πj(Xj − X̄)⊗ vn(Fb(Yj − b>Xj)) = 0
}
,

where ⊗ denotes the Kronecker product. Since the Kronecker product of two
vectors with dimensions p and q is a vector of dimension pq, there are prn
random constraints in the above empirical likelihood. Working with this like-
lihood is notationally more cumbersome, but the proofs are essentially the
same. The complete case empirical likelihood Rn,c(b) changes analogously. It
equals

sup
{ N∏
j=1

Nπj : π ∈PN ,

N∑
j=1

πj(Xij − X̄c)⊗ vN (Fb,c(Yij − bXij )) = 0
}
.
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3 A Wilks’ theorem

Wilks’ original theorem states that the classical log-likelihood ratio test statis-
tic is asymptotically chi-square distributed. Our first result is a version of that
theorem for the empirical log-likelihood. It is given in Theorem 1 below and
proved in the first subsection of Section 6. As in the previous section we write
Rn(b) for the empirical likelihood and Rn,c(b) for the complete case empirical
likelihood. Further let χγ(d) denote the γ-quantile of the chi-square distribu-
tion with d degrees of freedom.

Theorem 1 Consider the full model and suppose that X also has a finite
fourth moment and that the number of basis functions rn satisfies rn → ∞
and r4n = o(n) as n→∞. Then we have

P (−2 log Rn(β) ≤ χu(rn))→ u, 0 < u < 1.

The conclusion of this theorem is equivalent to (−2 log Rn(β) − rn)/
√
rn

being asymptotically standard normal. This implies that the complete case
version (−2 log Rn,c(β) − rN )/

√
rN is also asymptotically standard normal.

This is a consequence of the transfer principle for complete case statistics;
see Remark 2.4 in the article by Koul et al. (2012). More precisely, these
authors showed that if the limiting distribution of a statistic is L(Q), then the
limiting distribution of its complete case version is L(Q̃), where Q is the joint
distribution of (X,Y ), belonging to some model, and where Q̃ the distribution
of (X,Y ) given δ = 1. One only needs to assume that Q̃ belongs to the same
model as Q, i.e., it satisfies the same assumptions. Here we assume that the
responses are missing at random, i.e., δ and Y are conditionally independent
given X. Therefore we only need to require that the conditional covariate
distribution given δ = 1 and the unconditional covariate distribution belong
to the same model. Here the limiting distribution is not affected as it does not
depend on Q.

Although the result for the MAR model is more general than the result
for the full model (which is covered as a special case), we can now, thanks to
the transfer principle, formulate it as a corollary, i.e., we only need to take the
modified assumptions for the conditional covariate distribution into account,
and prove Theorem 1 for the full model.

Corollary 1 Consider the MAR model and suppose that the distribution of X
given δ = 1 has a finite fourth moment and a positive variance. Let the number
of basis functions rN satisfy 1/rN = oP (1) and r4N = oP (N) as n→∞. Then
we have

P (−2 log Rn,c(β) ≤ χu(rN ))→ u, 0 < u < 1.

Note that the conditions on the number of basis functions rn and rN in
the full model and the MAR model are equivalent since n and N increase
proportionally,

N

n
=

1

n

n∑
i=1

δi → E[δ] almost surely,
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with E[δ] > 0 by assumption.

The distribution of X given δ = 1 has density π/E[δ] with respect to
the distribution of X. Thus the variance of the former distribution is positive
unless X is constant almost surely on the event {π(X) > 0}.

Remark 2 The above result shows that

{b ∈ R : −2 log Rn,c(b) < χ1−α(rN )}

is a 1− α confidence region for β and that

1[−2 log Rn,c(β0) ≥ χ1−α(rN )]

is a test of asymptotic size α for testing the null hypothesis H0 : β = β0.
Note that both the confidence region and the test about the slope also apply
to the special case of a full model with N = n and Rn in place of Rn,c. The
asymptotic confidence interval for the slope, for example, is

{b ∈ R : −2 log Rn(b) < χ1−α(rn)}.

4 Efficient estimation

Our next result gives a strengthened version of the uniform local asymptotic
normality (ULAN) condition for the local empirical likelihood ratio

Ln(t) = log

(
Rn(β + n−1/2t)

Rn(β)

)
, t ∈ R,

in the full model. The usual ULAN condition is established for fixed compact
intervals for the local parameter t. Here we allow the intervals to grow with
the sample size.

Theorem 2 Suppose X has a finite fourth moment, f has finite Fisher in-
formation for location, and rn satisfies (log n)/rn = O(1) and r5n log n = o(n).
Then for every sequence Cn satisfying Cn ≥ 1 and C2

n = O(log n), the uniform
expansion

sup
|t|≤Cn

|Ln(t)− tΓn + Jf Var(X)t2/2|
(1 + |t|)2

= oP (1) (7)

holds with

Γn =
1√
n

n∑
j=1

(Xj − E[Xj ])`f (Xj − βXj),

which is asymptotically normal with mean zero and variance Jf Var(X).
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The proof of Theorem 2 is quite elaborate and carried out in Section 6.
Expansion (7) is critical to obtain the asymptotic distribution of the maximum
empirical likelihood estimator. We shall follow Peng and Schick (2017) and
work with a guided maximum empirical likelihood estimator (GMELE). This
requires a preliminary n1/2-consistent estimator β̃n of β. One possibility is the
OLSE, see (2), which requires the additional assumption that the error has a
finite second moment. Another possibility which avoids this assumption is the
solution β̃n to the equation

1

n

n∑
j=1

(Xj − X̄)ψ(Yj − bXj) = 0,

where ψ is a bounded function with a positive and bounded first derivative ψ′

and a bounded second derivative as, for example, the arctangent. Then

β̃n = β − 1

n

n∑
j=1

(Xj − µ)(ψ(εj)− E[ψ(ε)])

Var(X)E[ψ′(ε)]
+ oP (n−1/2)

and n1/2(β̃n − β) is asymptotically normal with mean zero and variance

Var(ψ(ε))

(E[ψ′(ε)])2 Var(X)
.

The GMELE associated with a n1/2-consistent preliminary estimator β̃n is
defined by

β̂n = arg max
n1/2|b−β̃n|≤Cn

Rn(b), (8)

where Cn is proportional to (log n)1/2. By the results in Peng and Schick (2017)
the expansion (7) implies

n1/2(β̂n − β) = Γn/(Jf Var(X)) + oP (n−1/2).

Thus, under the assumptions of Theorem 2, the GMELE β̂n satisfies (3) and
is therefore efficient. The complete case estimator

β̂n,c = arg max
N1/2|b−β̃n,c|≤CN

Rn,c(b)

is then efficient in the MAR model, provided the conditional distribution of
X given δ = 1 has a finite fourth moment and a positive variance. Let us
summarize our finding in the following theorem.

Theorem 3 Suppose that the error density f has finite Fisher information
for location and that rn satisfies (log n)/rn = O(1) and r5n log n = o(n).

(a) Assume that the variance of X is positive and that E[X4] is finite. Then
the GMELE β̂n satisfies expansion (3) and is therefore efficient in the full
model.
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(b) Consider the MAR model and assume that the conditional variance Var[X|δ =
1] is positive and that E[X4|δ = 1] is finite. Then the complete case ver-
sion β̂n,c of the GMELE satisfies expansion (4) and is efficient in the MAR
model.

The choice of rn (and rN ) is addressed in Remark 4 in Section 5.

Remark 3 A referee suggested the following. “An alternative (but asymptoti-
cally equivalent) procedure to compute the maximum empirical likelihood es-
timator can be based on the set of the generalized set of estimating equations
gj(b) = (Xj − X̄)vn(Fb(Yj − bXj)) (with rn > 1) and the following program:

β̂EEn = arg min
n1/2|b−β̃n|≤Cn

1

n

n∑
j=1

gj(b)
>
( 1

n

n∑
j=1

gj(βn)gj(βn)>
)−1 1

n

n∑
j=1

gj(b),

where βn is a preliminary estimator defined as

βn = arg min
n1/2|b−β̃n|≤Cn

1

n

n∑
j=1

gj(b)
>Ŵ

1

n

n∑
j=1

gj(b),

for any positive semi-definite matrix Ŵ (and similarly for the complete case
analysis). This estimator is computationally simpler than the maximum em-
pirical likelihood estimator, especially if the dimension of β is larger than
one.”

An even simpler estimator which avoids the preliminary step is the esti-
mator βn with Ŵ = (τ̂2nIrn)−1, where Irn is the rn × rn identity matrix and
τ̂2n = 1

n

∑n
j=1(Xj − X̄)2. This estimator reduces to

β̂Sn = arg min
n1/2|b−β̃n|≤Cn

∥∥∥ 1√
n

n∑
j=1

gj(b)
∥∥∥2/τ̂2n = arg min

n1/2|b−β̃n|≤Cn

∥∥∥ 1√
n

n∑
j=1

gj(b)
∥∥∥2.

Using arguments from the proof of Theorem 2, both estimators, β̂EEn and β̂Sn ,
can be shown to be efficient. In simulations the GMELE outperformed the
alternative estimators β̂EEn and β̂Sn ; see Table 1 in Section 5.

5 Simulations

Here we report the results of a small simulation study carried out to investigate
the finite sample behavior of the GMELE (8) and the test from Remark 2. The
simulations were carried out with the help of the R package. The R function
optimize was used to locate the maximizers.
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5.1 Comparing GMELE with the competing estimators from Remark 3

For this study we used the full model with β = 1 and sample size n = 100.
We worked with two error distributions and two covariate distributions. As er-
ror distributions we picked the mixture normal distribution 0.25N (−10, 1) +
0.5N (0, 1) + 0.25N (10, 1) and the skew normal distribution with location
parameter zero, scale parameter 1 and skewness parameter 4. As covariate
distributions we chose the standard normal distribution and the uniform dis-
tribution on (−1, 3). Table 1 reports simulated mean squared errors of the
estimators, β̂Sn , β̂EEn and the GMELE, based on 2000 repetitions, and for the
choices rn = 1, . . . , 10. We used the ordinary least squares estimator (OLSE)
as preliminary estimator for the GMELE and β̂Sn , to specify the location of
the search interval. As preliminary estimator for β̂EEn we used β̂Sn . We chose
2cn
√

log(n)/n as the length of the interval, with cn = 1 for skew normal errors
and cn = 10 for the mixture normal errors. As can be seen from Table 1, the
GMELE clearly outperforms the two competing approaches.

Table 1 Comparing the GMELE β̂n (M) with β̂S
n (S) and β̂EE

n (EE) from Remark 3

rn 1 2 3 4 5 6 7 8 9 10

mixture normal error, normal covariate

S .625 3.79 1.53 .494 .345 .333 .314 .315 .295 .314
EE .625 4.09 2.22 .855 .629 .712 .742 .749 .801 .820
M .123 0.16 0.33 .373 .148 .144 .132 .131 .163 .158

mixture normal error, uniform covariate

S .454 4.57 1.26 .339 .221 .212 .199 .197 .208 .217
EE .454 4.83 1.90 .629 .393 .380 .395 .466 .535 .621
M .094 0.11 0.19 .212 .067 .071 .089 .086 .077 .076

skew normal error, normal covariate

S .028 .020 .015 .013 .012 .012 .012 .012 .012 .012
EE .028 .020 .015 .013 .012 .012 .012 .012 .012 .013
M .009 .009 .007 .008 .008 .008 .008 .008 .009 .009

skew normal error, uniform covariate

S .027 .019 .013 .011 .009 .009 .009 .008 .009 .009
EE .027 .019 .014 .011 .009 .009 .009 .009 .009 .009
M .008 .006 .005 .005 .005 .005 .005 .005 .005 .006

The table entries are the simulated MSE’s for the three estimators in the full model
for sample size n = 100 based on 2000 repetitions.

5.2 Performance with missing data

Here we report on the performance of the GMELE and the OLSE with missing
data. We again used the model Y = βX + ε with β = 1 and chose

π(X) = P (δ = 1|X) = 1/(1 + d exp(X))
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with d = 0, d = 0.1 and d = 0.5 to produce different missingness rates. Note
that d = 0 corresponds to the full model.

Table 2 Simulated MSE’s for OLSE and GMELE with missing data

n MR OLSE 1 2 3 4 5 6 7 8 9 10

mixture normal error, normal covariate

70 0% .745 .246 .416 .631 .815 .402 .395 .341 .382 .345 .396
12% .969 .355 .583 .877 1.07 .588 .599 .555 .614 .544 .547
36% 1.43 .712 1.15 1.58 1.82 1.34 1.31 1.23 1.31 1.24 1.27

140 0% .368 .073 .086 .136 .149 .047 .048 .044 .040 .038 .032
12% .461 .105 .142 .240 .260 .098 .077 .087 .094 .090 .081
36% .722 .188 .251 .447 .554 .245 .266 .299 .305 .274 .297

mixture normal error, uniform covariate

70 0% .563 .176 .257 .390 .447 .209 .194 .232 .238 .214 .216
27% .876 .386 .601 .846 .961 .588 .587 .578 .623 .582 .565
56% 1.80 1.25 1.89 2.21 2.63 1.94 2.01 1.89 2.01 2.01 1.94

140 0% .267 .051 .056 .091 .086 .020 .021 .019 .024 .018 .020
27% .435 .100 .116 .210 .204 .058 .042 .067 .076 .083 .075
56% .853 .329 .447 .696 .800 .439 .420 .425 .436 .441 .468

skew normal error, normal covariate

70 0% .146 .141 .141 .119 .127 .129 .138 .143 .153 .149 .158
12% .185 .181 .178 .159 .168 .169 .179 .182 .198 .202 .211
36% .281 .281 .286 .269 .280 .285 .301 .313 .328 .330 .332

140 0% .070 .070 .061 .050 .050 .049 .050 .053 .055 .057 .056
12% .088 .087 .078 .062 .062 .062 .063 .066 .069 .071 .074
36% .142 .138 .127 .112 .117 .118 .119 .123 .127 .125 .130

skew normal error, uniform covariate

70 0% .114 .112 .101 .084 .086 .086 .087 .096 .101 .107 .110
27% .172 .167 .160 .139 .150 .152 .159 .159 .178 .187 .202
56% .361 .354 .395 .381 .413 .404 .430 .449 .448 .469 .485

140 0% .053 .052 .042 .034 .033 .030 .032 .033 .033 .033 .034
27% .082 .081 .070 .059 .056 .054 .056 .057 .058 .060 .062
56% .166 .162 .155 .142 .138 .142 .154 .154 .159 .159 .176

The table entries are simulated mean squared errors for mixture normal errors, and
10 times the simulated mean squared errors for skew normal errors.

We used the same error and covariate distributions as before and worked
with the search interval β̃N,c ± cN

√
log(N)/N based on the complete case

version of the OLSE. We chose cN = 1 for the skew normal errors and cN = 10
for the mixture normal errors. The reported results are based on samples of
size n = 70 and 140, rn = 1, . . . , 10 basis functions and 2000 repetitions.

Table 2 reports simulated mean squared errors of the OLSE and GMELE
for rn = 1, . . . , 10. The mean squared errors are multiplied by 10 for skew
normal errors. We also list the average missingness rates (MR).

The GMELE performs in most cases much better (smaller MSE’s) than
the OLSE, except in some of the small samples. The results for the scenario
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with uniform covariates are better than the corresponding figures for standard
normal covariates. The mean squared errors for the skew normal errors are
even better than those for mixture normal errors.

5.3 Behavior for errors without finite Fisher information

A different scenario is considered in Table 3, namely when the errors are from
an exponential distribution. Since the exponential distribution has no finite
Fisher information for location it does not fit into our theory, but it still
demonstrates superior performance of the GMELE over the OLSE.

Table 3 Simulated MSE’s for exponential error

normal covariate

n MR OLSE 1 2 3 4 5

70 0% .0157 .0085 .0092 .0073 .0075 .0086
12% .0198 .0118 .0125 .0115 .0120 .0123
36% .0306 .0242 .0235 .0232 .0216 .0209

140 0% .0075 .0021 .0020 .0017 .0018 .0020
12% .0090 .0030 .0026 .0029 .0026 .0028
36% .0140 .0058 .0056 .0064 .0054 .0063

uniform covariate

70 0% .0109 .0041 .0041 .0045 .0041 .0044
27% .0169 .0098 .0102 .0103 .0100 .0110
56% .0359 .0304 .0333 .0351 .0339 .0351

140 0% .0054 .0009 .0010 .0009 .0011 .0011
27% .0086 .0023 .0026 .0021 .0023 .0025
56% .0179 .0100 .0096 .0088 .0088 .0097

The table entries are the MSE’s for rn = 1, . . . , 5 constraints when the errors are
from an exponential distribution (no finite Fisher information).

Remark 4 The choice of the number of basis vectors rn (and rN ) does affect
the performance of the GMELE. This suggests using a data-driven choice. One
possibility is the approach of Peng and Schick (2005, Section 5.1), who used
bootstrap to select rn in a related setting, with convincing results. The idea is
to compute the bootstrap mean squared errors of the estimator (the GMELE
in our case) for different values of rn, say for rn = 1, . . . , 10. Then select the
rn with the minimum bootstrap mean squared error.

5.4 Comparison of two tests

We performed a small study comparing the empirical likelihood test about
the slope from Remark 2 and the corresponding bootstrap test, which uses
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resampling instead of the χ2 approximation to obtain critical values. The null
hypothesis is β = β0 = 1 and the nominal level is .05. As in Table 1 we
consider only the full model and the sample size n = 100. Table 4 reports the
simulated significance level and power of the two tests, using rn = 1, 2, . . . , 5
basis functions. The covariates X and the errors ε were generated from the
same distributions as before. The bootstrap resample size was taken to be the
same as the sample size (i.e. n = 100), while we used more repetitions than
before: in order to stabilize the results obtained by the bootstrap method we
worked with 10, 000 repetitions. Our simulations indicate that the results based
on the χ2 approximation (denoted by χ2) are much more reliable than the
results of the bootstrap approach (denoted by B). For rn ≥ 3 the bootstrapped
significance levels are far away from the nominal level 5%: they are between
11% and 60%, i.e. the test is far too liberal, which is in contrast to the χ2

approach. The significance levels for rn = 1, 2 are reasonable for both tests. In
terms of power the bootstrap test is better than the χ2 test in the upper table
with normal covariates; for uniform covariates it is the other way round.

Table 4 Simulated significance level and power of the empirical likelihood test about the
slope using χ2 and bootstrap quantiles

1 2 3 4 5 1 2 3 4 5

normal covariate
mixture normal error skew normal error

β = 1.0 χ2 .05 .06 .07 .09 .10 .05 .06 .07 .09 .10
B .03 .07 .16 .28 .42 .01 .04 .11 .20 .33

β = 1.2 χ2 .11 .11 .11 .13 .21 .52 .55 .64 .67 .72
B .19 .33 .51 .69 .86 .54 .74 .89 .95 .98

uniform covariate
mixture normal error skew normal error

β = 1.0 χ2 .05 .06 .07 .09 .10 .06 .07 .08 .09 .11
B .02 .06 .14 .25 .39 .08 .15 .28 .44 .60

β = 1.2 χ2 .11 .10 .11 .13 .21 .54 .56 .65 .67 .71
B .05 .10 .19 .31 .54 .33 .26 .48 .62 .75

The table shows simulated significance level and power figures of the empirical
likelihood test with null hypothesis β = 1 at the nominal level α = 0.05. We consider
the full model; the sample size is n = 100. The test uses approximative χ2 quantiles
(χ2) and bootstrap quantiles (B).

6 Proofs

This section contains the proofs of Theorem 1 (given in the first subsection)
and of Theorem 2. The proof of the uniform expansion that is provided in
Theorem 2 is split into three parts. In Subsection 6.2 we give six conditions
and show that they are sufficient for the expansion. That the conditions are
indeed satisfied is shown separately in Subsections 6.3 and 6.4. Subsection 6.5
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contains an auxiliary result. As explained in the introduction, we only need to
prove the results for the full model, i.e., the case when π(X) equals one.

6.1 Proof of Theorem 1

Let µ denote the mean and τ denote the standard deviation of X. We should
point out that Rn(b) does not change if we replace (Xj− X̄) by (Xj− X̄)/τ =
Vj − V̄ , where

Vj =
Xj − µ
τ

and V̄ =
1

n

n∑
j=1

Vj .

Thus, for the purpose of our proofs, we may assume that Rn(b) is given by

Rn(b) = sup
{ n∏
j=1

nπj : π ∈Pn,

n∑
j=1

πj(Vj − V̄ )vn(Fb(Yj − bXj)) = 0
}
.

In what follows we shall repeatedly use the bounds

|vn(y)|2 ≤ 2rn, |v′n(y)|2 ≤ 2π2r3n, and |v′′n(y)|2 ≤ 2π4r5n

for all real y.

Let us set Zj = Vjvn(F (εj)) and Ẑj = (Vj − V̄ )vn(Fβ(εj)), j = 1, . . . , n.
With Z = Z1, we find the identities E[Z] = 0 and E[ZZ>] = Irn , where Irn
is the rn× rn identity matrix, and the bound E[|Z|4] ≤ (2rn)2E[V 4] = O(r2n).
As shown in Peng and Schick (2013), these results yield

Z̃n =
1√
n

n∑
j=1

Zj = OP (r1/2n ) (9)

and

sup
|u|=1

∣∣∣ 1
n

n∑
j=1

(u>Zj)
2 − 1

∣∣∣ ≤ ∣∣∣ 1
n

n∑
j=1

ZjZ
>
j − Irn

∣∣∣ = OP (rnn
−1/2). (10)

From Corollary 7.6 in Peng and Schick (2013) and r4n = o(n), the desired result
follows if we verify

1√
n

n∑
j=1

(Ẑj − Zj) = oP (1) and
1

n

n∑
j=1

|Ẑj − Zj |2 = oP (r3n/n).

Let

∆j = vn(Fβ(εj))− vn(F (εj)), j = 1, . . . , n.
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In view of the identity Ẑj − Zj = Vj∆j − V̄ ∆j − V̄ vn(F (εj)), the bound
|vn|2 ≤ 2rn, and the fact n1/2V̄ = OP (1), it is easy to see the desired results
follow from the following rates:

S1 =
1√
n

n∑
j=1

Vj∆j = OP (r3/2n n−1/2),

S2 =
1

n

n∑
j=1

∆j = oP (r3/2n n−1/2),

S3 =
1

n

n∑
j=1

vn(F (εj)) = OP (r1/2n n−1/2),

S4 =
1

n

n∑
j=1

V 2
j |∆j |2 = OP (r3nn

−1).

Note that ∆1, . . . ,∆n are functions of the errors ε1, . . . , εn only and satisfy

Mn = max
1≤j≤n

|∆j |2 ≤ 2π2r3n sup
t∈R
|Fβ(t)− F (t)|2 = OP (r3n/n).

Conditioning on the errors thus yields

E[|S1|2|ε1, . . . , εn] = E[S4|ε1, . . . , εn] ≤Mn.

This establishes the rates for S1 and S4. The other rates follow from |S2|2 ≤
Mn and nE[|S3|2] = E[|vn(F (ε))|2] = rn.

6.2 Proof of Theorem 2

For t in R, we let F̂nt = Fβ+n−1/2t and note that F̂nt is the empirical distri-
bution function of the random variables

εjt = εj − n−1/2tXj , j = 1, . . . , n.

These random variables are independent with common distribution function
Fnt given by

Fnt(y) = E[F̂nt(y)] = E[F (y + n−1/2tX)], y ∈ R.

To simplify notation we introduce

R̂jt = F̂nt(εjt), Rjt = Fnt(εjt), Rj = F (εj),

and

Ẑjt = (Vj − V̄ )vn(R̂jt), Zjt = Vjvn(Rjt), Zj = Vjvn(Rj).
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Since we are working with the form of the empirical likelihood given in the
previous section, we have

Rn(β + n−1/2t) = sup
{ n∏
j=1

nπj : π ∈Pn,

n∑
j=1

πjẐjt = 0
}
, t ∈ R.

Fix a sequence Cn such that Cn ≥ 1 and Cn = O((log n)1/2). The desired
result follows if we verify the uniform expansion

sup
|t|≤Cn

| − 2 log Rn(β + n−1/2t)− |Z̃n|2 + 2tΓn − t2τ2Jf |
(1 + |t|)2

= oP (1) (11)

with Z̃n as in (9). To verify (11) we introduce

νn = E[X`f (ε)V vn(F (ε))].

We shall establish (11) by verifying the following six conditions.

sup
|t|≤Cn

sup
|u|=1

∣∣∣ 1
n

n∑
j=1

(u>Ẑjt)
2 − 1

∣∣∣ = oP (1/rn), (12)

sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

(Ẑjt − Zjt)
∣∣∣ = oP (r−1/2n ), (13)

sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

(Zjt − Zj − E[Zjt − Zj ])
∣∣∣ = oP (r−1/2n ), (14)

sup
|t|≤Cn

|n1/2E[Z1t − Z1] + tνn| = o(r−1/2n ), (15)

|νn|2 → τ2Jf , (16)

ν>n Z̃n − Γn =
1√
n

n∑
j=1

[ν>n Zj − (Xj − µ)`f (εj)] = oP (1). (17)

These six conditions are proved in the next two subsections. We first establish
their sufficiency.

Lemma 1 The conditions (12)–(17) imply (11).

To prove this lemma, we use the following result which is a special case of
Lemma 5.2 in Peng and Schick (2013). This version was used in Schick (2013).
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Lemma 2 Let x1, . . . , xn be m-dimensional vectors. Set

x̄ =
1

n

n∑
j=1

xj , x∗ = max
1≤j≤n

|xj |, ν4 =
1

n

n∑
j=1

|xj |4, S =
1

n

n∑
j=1

xjx
>
j ,

and let λ denote the smallest and Λ the largest eigenvalue of the matrix S.
Then the inequality λ > 5|x̄|x∗ implies∣∣∣− 2 log(R)− nx̄>S−1x̄

∣∣∣ ≤ n|x̄|3(Λν4)1/2

(λ− |x̄|x∗)3
+

4nΛ2|x̄|4ν4
λ2(λ− |x̄|x∗)4

with

R = sup
{ n∏
j=1

nπj : π ∈Pn,

n∑
j=1

πjxj = 0
}
.

Proof of Lemma 1 We introduce

T(t) =
1

n

n∑
j=1

Ẑjt and S(t) =
1

n

n∑
j=1

ẐjtẐ
>
jt,

and let λn(t) and Λn(t) denote the smallest and largest eigenvalues of S(t),

λn(t) = inf
|u|=1

u>S(t)u = inf
|u|=1

1

n

n∑
j=1

(u>Ẑjt)
2

and

Λn(t) = sup
|u|=1

u>S(t)u = sup
|u|=1

1

n

n∑
j=1

(u>Ẑjt)
2.

By (12), we have

sup
|t|≤Cn

|λn(t)− 1| = oP (1) and sup
|t|≤Cn

|Λn(t)− 1| = oP (1).

The conditions (13)–(15) imply

sup
|t|≤Cn

|n1/2T(t)− Z̃n + tνn| = oP (r−1/2n ). (18)

This, (9) and (16) yield

sup
|t|≤Cn

n|T(t)|2 = OP (rn). (19)

Next, we find

sup
|t|≤Cn

max
1≤j≤n

|Ẑjt| ≤ (2rn)1/2 max
1≤j≤n

|Vj − V̄ | = oP (r1/2n n1/4)

and

sup
|t|≤Cn

1

n

n∑
j=1

|Ẑjt|4 ≤ (2rn)2
1

n

n∑
j=1

|Vj − V̄ |4 = OP (r2n).
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Thus we derive

sup
|t|≤Cn

∣∣∣− 2 log Rn(β + n−1/2t)− nT(t)>(S(t))−1T(t)
∣∣∣ = oP (1), (20)

since by Lemma 2 the left-hand side is of order OP (r
5/2
n n−1/2 + r4n/n). For a

positive definite matrix A and a compatible vector x, we have

|x>A−1x− x>x| ≤ x>A−1x sup
|u|=1

|1− u>Au| ≤ |x|
2

λ
sup
|u|=1

|1− u>Au|

with λ the smallest eigenvalue of A. Using this, (12) and (19) we derive

sup
|t|≤Cn

n|T(t)>(S(t))−1T(t)− T(t)>T(t)| = oP (1). (21)

With the help of (9), (16) and (18) we verify

sup
|t|≤Cn

∣∣∣n|T(t)|2 − |Z̃n|2 + 2tν>n Z̃n − t2|νn|2
∣∣∣ = oP (1). (22)

The results (20)–(22) yield the expansion

sup
|t|≤Cn

∣∣∣− 2 log Rn(β + n−1/2t)− |Z̃n|2 + 2tν>n Z̃n − t2|νn|2
∣∣∣ = oP (1).

From (16) and (17) we derive the expansion

sup
|t|≤Cn

|2t(ν>n Z̃n − Γn)− t2(|νn|2 − τ2Jf )|
(1 + |t|)2

= oP (1).

The desired result (11) follows from the last two expansions. ut

6.3 Proofs of (14)-(17)

We begin by mentioning properties of f and F that are crucial to the proofs.
Since f has finite Fisher information for location, we have∫

|f(y + t)− f(y + s)| dy ≤ B1|t− s|, (23)

|F (t)− F (s)| ≤ B1|t− s|, (24)

|F (t+ s)− F (t)− sf(t)| ≤ B2|s|3/2, (25)∫
|F (y + s)− F (y)− sf(y)| dy ≤ B1s

2 (26)

for all real s and t, and some constants B1 and B2, see, e.g., Peng and Schick
(2016).
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Next, we look at the process

Hn(t) =
1√
n

n∑
j=1

(hnt(Xj , Yj)− E[hnt(X,Y )]), t ∈ R,

where hnt are measurable functions from R2 to Rmn such that hn0 = 0. We
are interested in the cases mn = 1 and mn = rn. A version of the following
lemma was used in Peng and Schick (2016).

Lemma 3 Suppose that the map t 7→ hnt(x, y) is continuous for all x and y
in R and

E[|hnt(X,Y )− hns(X,Y )|2] ≤ Kn|t− s|2, s, t ∈ R, (27)

for positive constants Kn. Then we have the rate

sup
|t|≤Cn

|Hn(t)| = OP (CnK
1/2
n ).

Proof of (14) The desired result follows from Lemma 3 applied with

hnt(X,Y ) = V [vn(Fnt(ε− n−1/2tX))− vn(F (ε))], t ∈ R,

and Kn = 2π2r3nB
2
1E[V 2(X1 −X)2]/n. Indeed, we have hn0 = 0 and (27) in

view of (24). Note also that rnC
2
nKn → 0. ut

Proof of (15) Since V and ε are independent and V has mean zero, we obtain
the identity

n1/2E[Z1t − Z1] + tνn = n1/2E[V1vn(Fnt(ε1t))] + tνn = n1/2(∆1(t) +∆2(t))

with

∆1(t) = E
[
V

∫
[vn(Fnt(y))− vn(F (y))][f(y + n−1/2tX)− f(y)] dy

]
and

∆2(t) = E
[
V

∫
vn(F (y))[f(y + n−1/2tX)− f(y)− n−1/2tXf ′(y)] dy

]
.

It follows from (23) and (24) that

|∆1(t)| ≤ (2π2r3n)1/2B1E[|X|]B1E[|V X|]t2/n.

Integration by parts shows that

∆2(t) = −E
[
V

∫
(v′n(F (y))f(y)[F (y + n−1/2tX)− F (y)− n−1/2tXf(y)] dy

]
.

It follows from (24) that f is bounded by B1. This and (26) yield the bound

|∆2(t)| ≤ (2π2r3n)1/2B2
1E[|V X2|]t2/n.
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From these bounds we conclude

sup
|t|≤Cn

∣∣∣n1/2E[Z1t − Z1] + tνn

∣∣∣ = O(r3/2n (log n)n−1/2) = o(r−1/2n )

which is the desired (15). ut

Proof of (16) and (17) Note that νn can be written as

νn = E[X`f (ε)V vn(F (ε))] = τE[V `f (ε)V vn(F (ε))].

The functions V ϕ1(F (ε)), V ϕ2(F (ε)), . . . form an orthonormal basis of the
space V = {V a(ε) : a ∈ L2,0(F )}. Thus νn is the vector consisting of the first
rn Fourier coefficients of (X − µ)`f (ε) = τV `f (ε) with respect to this basis.
Because (X − µ)`f (ε) is a member of V , Parseval’s theorem yields

|νn|2 → E[((X − µ)`f (ε))2] = τ2Jf

and
E[(ν>n V vn(F (ε))− (X − µ)`f (ε))2]→ 0.

The former is (16) and the latter implies (17). ut

6.4 Proofs of (12) and (13)

We begin by deriving properties of R̂jt and Rjt which we need in the proofs

of (12) and (13). For this we introduce the leave-one-out version R̃jt of R̂jt
defined by

R̃jt =
1

n− 1

∑
i:i 6=j

1[εit ≤ εjt] =
n

n− 1
R̂jt −

1

n− 1
1[εjt ≤ εjt]

which satisfies

|R̂jt − R̃jt| ≤
2

n− 1
. (28)

We abbreviate R̃j0 by R̃j . In the ensuing arguments we rely on the following
properties of these quantities, where B1 and B2 are the constants appearing
in (24) and (25).

max
1≤j≤n

sup
|t|≤Cn

|R̃jt −Rjt − R̃j +Rj | = OP (n−5/8(Cn log n)1/2), (29)

max
1≤j≤n

|R̃j −Rj | = OP (n−1/2), (30)

sup
|t|≤Cn

|Rjt −Rj | ≤ B1Cnn
−1/2(|Xj |+ E[|X|]), (31)

sup
|t|≤Cn

|Rjt −Rj + n−1/2t(Xj − µ)f(εj)|

≤ B2C
3/2
n n−3/4

√
2(|Xj |3/2 + E[|X|3/2]).

(32)
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The second statement follows from properties of the empirical distribution
function and the last two statements from (24) and (25), respectively. To prove
(29) we use Lemma 4 from Subsection 6.5. Let ζj(t) = R̃jt−Rjt−R̃j+Rj and
m = n−1. These random variables are identically distributed, and (n−1)ζn(t)
equals Ñ(n−1/2t,Xn, εn) from the beginning of Subsection 6.5, with the role
of Yi played by εi. Lemma 4 gives

P ( max
1≤j≤n

sup
|t|≤Cn

|ζj(t)| > 4KC1/2
n (n− 1)−5/8(log(n− 1))1/2)

≤ nP ( sup
|t|≤Cn

|ζn(t)| > 4KC1/2
n m−5/8(logm)1/2)

≤ nP (|Xn| > m1/4) + nE[1[|Xn| ≤ m1/4]pm(εn, Cn,K)]

≤ 2E[|X|41[|X| > m1/4] + Cn2 exp(−K log(m))

for m > 2 and K > 6B1(1 + E[|X|]) and some constant C. The desired (29)
is now immediate.

Note that statements (28) – (31) yield the bounds

sup
|t|≤Cn

|R̂jt−Rj | ≤ B1Cnn
−1/2(|Xj |+E[|X|]) +n−1/2ξn, j = 1, . . . , n, (33)

which we need for the next proof. Here ξn is a positive random variable which
satisfies ξn = OP (1).

Proof of (12) Given (10) and the properties of rn, it suffices to verify

sup
|u|=1

sup
|t|≤Cn

∣∣∣ 1
n

n∑
j=1

(u>Ẑjt)
2 − 1

n

n∑
j=1

(u>Zj)
2
∣∣∣ = oP (1/rn). (34)

Using the Cauchy-Schwarz inequality we bound the left-hand side of (34) by
2(DnΛn)1/2 +Dn with

Λn = sup
|u|=1

1

n

n∑
j=1

(u>Zj)
2 and Dn = sup

|t|≤Cn

1

n

n∑
j=1

|Ẑjt − Zj |2.

Given (10), it therefore suffices to prove Dn = oP (1/r2n). This follows from
(33), the inequality

Dn ≤ sup
|t|≤Cn

1

n

n∑
j=1

(2V̄ 2|vn(R̂jt)|2 + 2V 2
j |vn(R̂jt)− vn(Rj)|2)

≤ 4rnV̄
2 + 4π2r3n

1

n

n∑
j=1

V 2
j sup
|t|≤Cn

|R̂jt −Rj |2 = OP (r3nC
2
n/n),

and the rate r5n log n = o(n). ut
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Proof of (13) In view of the rate V̄ = OP (n−1/2) and the identity

Ẑjt − Zjt = Vj(vn(R̂jt)− vn(Rjt))− V̄ (vn(R̂jt)− vn(Rj))− V̄ vn(Rj),

the desired (13) is implied by the following three statements:

1√
n

n∑
j=1

vn(Rj) = OP (r1/2n ), (35)

sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

(vn(R̂jt)− vn(Rj))
∣∣∣ = OP (Cnr

3/2
n ), (36)

sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

Vj [vn(R̂jt)− vn(Rjt)]
∣∣∣ = oP (r−1/2n ). (37)

We obtain (35) from E[vn(F (ε))] = 0 and E[|vn(F (ε)|2] = rn. Also, (36)
follows from (33) and the fact that its left-hand side is bounded by

(2π2r3n)1/2
1√
n

n∑
j=1

sup
|t|≤Cn

|R̂jt −Rj |.

Using (28) we find

sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

Vj [vn(R̂jt)− vn(R̃jt)]
∣∣∣ = OP (r3/2n n−1/2).

Taylor expansions, the bound |v′′′n |2 ≤ 2π6r7n and equations (28), (31) and (33)
show that

sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

Vj [vn(R̃jt)−vn(Rj)−v′n(Rj)(R̃jt−Rj)−
1

2
v′′n(Rj)(R̃jt−Rj)2]

∣∣∣
and

sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

Vj [vn(Rjt)−vn(Rj)−v′n(Rj)(Rjt−Rj)−
1

2
v′′n(Rj)(Rjt−Rj)2]

∣∣∣
are of order r

7/2
n C3

nn
−1. Using the identity

(a+ b+ c)2 − a2 − b2 + 2db = c2 + 2(a+ d)b+ 2(a+ b)c

with a = Rjt−Rj , b = R̃j−Rj , c = R̃jt−Rjt− R̃j +Rj and d = n−1/2t(Xj−
µ)f(εj) = n−1/2tτVjf(εj) and then the properties (29)–(32), we derive the
bounds

sup
|t|≤Cn

|(R̃jt −Rj)2− (Rjt −Rj)2− (R̃j −Rj)2 + 2n−1/2tτVjf(εj)(R̃j −Rj)|

≤ ζn(1 + |Xj |)3/2, j = 1, . . . , n,
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with ζn = OP (n−9/8C
3/2
n (log n)1/2). If follows from the above that the left-

hand side of (37) is bounded by |T1|/2 + Cnτ |T2|+ T3 + T4, where

T1 =
1√
n

n∑
j=1

Vjv
′′
n(Rj)(R̃j −Rj)2,

T2 =
1

n

n∑
j=1

V 2
j v
′′
n(Rj)f(εj)(R̃j −Rj),

T3 = sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

Vjv
′
n(Rj)(R̃jt −Rjt)

∣∣∣,
and

T4 = OP (r3/2n n−1/2 + r7/2n C3
nn
−1 + r5/2n n−5/8C3/2

n (log n)1/2) = oP (r−1/2n ).

We calculate

E[|T1|2|ε1, . . . , εn] =
1

n

n∑
j=1

|v′′n(Rj)|2(R̃j −Rj)4 = OP (r5nn
−2).

Thus |T1| = oP (r
−1/2
n ). Next, we write T2 as the vector U-statistic

T2 =
1

n(n− 1)

∑
i6=j

V 2
j v
′′
n(F (εj))f(εj)(1[εi ≤ εj ]− F (εj))

and obtain

E[|T2|2] ≤ E[|k(ε)|2]

n
+

2E[V 4
2 |v′′n(F (ε2)|2f2(ε2)(1[ε1 ≤ ε2]− F (ε2))2]

n(n− 1)

with k(x) = E[v′′n(F (ε))f(ε)(1[x ≤ ε]−F (ε))]. Using the representation f(y) =∫∞
y
`f (z)f(z) dz and then Fubini’s theorem, we calculate

k(x) =

∫ ∞
−∞

v′′n(F (y))f(y)(1[x ≤ y]− F (y))f(y) dy

=

∫ ∞
x

(v′n(F (z))− v′n(F (x))`f (z)f(z) dz

−
∫ ∞
−∞

[v′n(F (z))F (z)− vn(F (z))])`f (z)f(z) dz.

Thus |k| is bounded by a constant times r
3/2
n and we see that E[|T2|2] =

O(r3n/n+ r5n/n
2). This proves Cn|T2| = OP (r

−1/2
n ).

We bound T3 by the sum T31 + T32 + T33 where

T31 = sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

Wjv
′
n(Rj)(R̃jt −Rjt)

∣∣∣,
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T32 = sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

Vj1[|Vj | > n1/4]v′n(Rj)(R̃jt −Rjt)
∣∣∣,

T33 = sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

E[V 1[|V | > n1/4]]v′n(Rj)(R̃jt −Rjt)
∣∣∣,

and Wj = Vj1[|Vj | ≤ n1/4] − E[V 1[|V | ≤ n1/4]. Since V has a finite fourth
moment, we obtain the rates max1≤j≤n |Vj | = oP (n1/4) and E[|V |1[|V | >
n1/4]] ≤ n−3/4E[V 41[|V | > n1/4]] = o(n−3/4). Thus we find P (T32 > 0) ≤
P (max1≤j≤n |Vj | > n1/4) → 0 and T33 = oP (n−3/4r

3/2
n ), using (29) and (30).

This shows T32 + T33 = oP (r
−1/2
n ).

To deal with T31 we express it as

T31 = sup
|t|≤Cn

n1/2
∣∣∣ 1

n(n− 1)

∑
i 6=j

Wjv
′
n(F (εj))

(
1[εit ≤ εjt]− Fnt(εjt)

)∣∣∣.
Let us set

knt(z) = E[Wvn(F (z + n−1/2tX))], z ∈ R.

Using (24) we obtain the bound

E[|knt(εjt)− kns(εjs)|2] ≤ 2π2r3nB
2
1E[W 2(Xj −X)2]|t− s|2/n

and derive with the help of Lemma 3

sup
|t|≤Cn

∣∣∣ 1√
n

n∑
j=1

(knt(εjt)− E[knt(εjt)])
∣∣∣ = OP (r3/2n Cnn

−1/2).

We therefore obtain the rate T31 = oP (r
−1/2
n ), if we verify

sup
|t|≤Cn

|U(t)| = OP (r3/2n n−1 log n), (38)

where U(t) is the vector U-statistic equaling

1

n(n− 1)

∑
i 6=j

[
Wjv

′
n(F (εj))

(
1[εit ≤ εjt]− Fnt(εjt)

)
+ knt(εit)− E[knt(εit)]

]
.

It is easy to verify that U(t) is degenerate. Let tk = −Cn + 2kCn/n, k =
0, . . . , n. Then we have

sup
|t|≤Cn

|U(t)| ≤ max
1≤k≤n

(
|U(tk)|+ sup

tk−1≤t≤tk
|U(t)− U(tk)|

)
. (39)

For t ∈ [tk−1, tk], we find

|U(t)− U(tk)| ≤ (2π2r3n)1/2
(

2n1/4(N+
k +N−k ) + 2B1Cnn

−3/2S
)

(40)
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with

S =
1

n

n∑
j=1

(
|Wj |(|Xj |+ E[|X|]) + E[|W |]|Xj |+ 2E[|WX|] + E[|W |]E[|X|]

)
,

N+
k =

1

n(n− 1)

∑
i6=j

1[tk−1Dij < εi − εj ≤ tkDij ]1[Dij ≥ 0],

N−k =
1

n(n− 1)

∑
i 6=j

1[tkDij < εi − εj ≤ tk−1Dij ]1[Dij < 0],

and Dij = n−1/2(Xi−Xj). We write Ul(t) for the l-th component of the vector
U(t). Then we have

P ( max
1≤k≤n

|U(tk)| > η) ≤
n∑
k=1

rn∑
l=1

P (|Ul(tk)| > ηr−1/2n ), η > 0.

Since Ul(t) is a degenerate U-statistic whose kernel is bounded by bl = 2n1/4(
√

2πl+√
2) ≤ 27n1/4l and has second moment bounded by 2(πl)2, we derive from part

(c) of Proposition 2.3 of Arcones and Giné (1993) that

sup
|t|≤C

P ((n− 1)|Ul(t)| > η) ≤ c1 exp
(
− c2η√

2πl + b
2/3
l η1/3n−1/3

)
for universal constants c1 and c2. Using the above we obtain

P ( max
1≤k≤n

|U(tk)| > K3r
3/2
n log n

n− 1
)

≤
n∑
k=1

rn∑
l=1

P ((n− 1)|Ul(tk)| > K3rn log n)

≤ nrnc1 exp
( −c2K3 log(n)√

2π + 9K(log n)1/3n−1/6

)
, K > 0.

This shows that

max
1≤k≤n

|U(tk)| = OP (r3/2n n−1 log n). (41)

To deal with N+
k we introduce the degenerate U-statistic

Ñ+
k =

1

n(n− 1)

∑
i 6=j

1[Dij ≥ 0]ξk(i, j)

with

ξk(i, j) =1[tk−1Dij < εi − εj ≤ tkDij ]− F (εj + tkDij) + F (εj + tk−1Dij)

− F (εi − tk−1Dij) + F (εi − tkDij) + F2(tkDij)− F2(tk−1Dij)
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and F2 the distribution function of ε1 − ε2. It is easy to see that

|N+
k − Ñ

+
k | ≤ 6B1Cnn

−3/2 1

n(n− 1)

∑
i 6=j

|Xi −Xj |.

The kernel of the U-statistic Ñ+
k is bounded by 8 and has second moment

bounded by Dnn
−3/2 with Dn = 2B1CnE[|X1 − X2|]. Thus, by part (c) of

Proposition 2.3 in Arcones and Giné (1993), we obtain that the corresponding
degenerate U-statistic Ñ+

k satisfies

n∑
k=1

P (|Ñ+
k | >

K3(log n)3/2n−1/2

n− 1
) ≤ nc1 exp

(
− c2K

3(log n)3/2

D
1/2
n n−1/4 + 4K(log n)1/2

)
.

The above shows that

max
1≤k≤n

N+
k = OP (n−3/2(log n)3/2). (42)

Similarly one obtains

max
1≤k≤n

N−k = OP (n−3/2(log n)3/2). (43)

The desired (38) follows from (39)-(43) and S = OP (1). This concludes the
proof of (13). ut

6.5 Auxiliary Results

Let X and Y be independent random variables. Let (X1, Y1), . . . , (Xm, Ym) be
independent copies of (X,Y ). For reals t, x and y, set

N(t, x, y) =

m∑
i=1

(1[Yi − tXi ≤ y − tx]− 1[Yi ≤ y]),

and
Ñ(t, x, y) = N(t, x, y)− E[N(t, x, y)].

Lemma 4 Suppose X has finite expectation and the distribution function F
of Y is Lipschitz: |F (y)−F (x)| ≤ Λ|y−x| for all x, y and some finite constant
Λ. Then the inequality

P
(

sup
|t|≤δ
|Ñ(t, x, y)| > 4η

)
≤ (8M + 4) exp

( −η2

2mΛδE[|X − x|] + 2η/3

)
holds for η > 0, δ > 0, real x and y and every integer M ≥ mΛδE[|X − x|]/η.
In particular, for C ≥ 1 and K ≥ 6Λ(1 + E[|X|]), we have

pm(y, C,K) = sup
|x|≤m1/4

P
(

sup
|t|≤C/m1/2

|Ñ(t, x, y)| > 4KC1/2m3/8(logm)1/2
)

≤
(

12 +
8m3/8C1/2)

6(logm)1/2

)
exp(−K log(m)), y ∈ R.
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Proof Fix x and y and set ν = E[|X − x|]. Abbreviate N(t, x, y) by N(t) and
Ñ(t, x, y) by Ñ(t), set

N+(t) =

m∑
i=1

(1[Yj − t(Xj − x) ≤ y]− 1[Yj ≤ y])1[Xj − x ≥ 0]

N−(t) =

m∑
i=1

(1[Yj − t(Xj − x) ≤ y]− 1[Yj ≤ y])1[Xj − x < 0]

and let Ñ+(t) = N+(t)−E[N+(t)] and Ñ−(t) = N−(t)−E[N−(t)]. Since F is
Lipschitz, we obtain

|E[N+(t1)]− E[N+(t2)]| ≤ mΛ|t1 − t2|ν.
For s ≤ t ≤ u, we have

N+(s)− E[N+(u)] ≤ N+(t)− E[N+(t)] ≤ N+(u)− E[N+(s)]

and thus

Ñ+(s)−mΛ|u− s|ν ≤ Ñ+(t) ≤ Ñ+(u) +mΛ|u− s|ν.
It is now easy to see that

sup
|t|≤δ
|Ñ+(t)| ≤ max

k=−M,...,M
|N+(kδ/M)|+mΛδν/M

for every integer M . From this we obtain the bound

P ( sup
|t|≤δ
|Ñ+(t)| ≥ 2η) ≤

M∑
k=−M

P (|Ñ+(kδ/M) > η) + P (mΛδν/M > η).

The Bernstein inequality and the fact that the variance of

(1[Y − t(X − x) ≤ y]− 1[Y ≤ y])1[X ≥ x]

is bounded by Λ|t|ν yield

P (|Ñ+(kδ/M)| > η) ≤ 2 exp
(
− η2

2mΛδν + 2η/3

)
.

Thus we have

P ( sup
|t|≤δ
|Ñ+(t)| > 2η) ≤ 2(2M + 1) exp

(
− η2

2mΛδν + 2η/3

)
for M ≥ mΛδν/η. Similarly, one verifies for such M ,

P ( sup
|t|≤δ
|Ñ−(t)| > 2η) ≤ 2(2M + 1) exp

(
− η2

2mΛδν + 2η/3

)
.

Since Ñ(t) = Ñ+(t) + Ñ−(t), we obtain the first result. The second result
follows from the first one by taking δ = Cm−1/2, η = KC1/2m3/8(logm)1/2

and observing the inequality (logm)1/2m−3/8 ≤ 1. ut
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