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Abstract. This paper provides sufficient conditions for the asymptotic nor-
mality of quadratic forms of averages of random vectors of increasing dimension
and improves on conditions found in the literature. Such results are needed

in applications of Owen’s empirical likelihood when the number of constraints
is allowed to grow with the sample size. In this connection we fix a gap in
the proof of Theorem 4.1 of Hjort, McKeague and Van Keilegom (2009). We
also demonstrate how our results can be used to obtain the asymptotic dis-

tribution of the empirical likelihood with an increasing number of constraints
under contiguous alternatives. In addition, we discuss potential applications
of our result. One example treats testing for the equality of the marginal

distributions of a bivariate random vector. Another example treats a test for
diagonality of a covariance matrix of a normal random vector with increasing
dimension.

Key words: Martingale central limit theorem; Lindeberg condition; empirical likeli-
hood; contiguous alternatives; chi-square of fit test with increasing number of cells;
testing for equal marginals; testing for diagonality of a covariance matrix.

1. Introduction

Let rn be positive integers that tend to infinity with n. Let ξn,1, . . . , ξn,n be
independent and identically distributed rn-dimensional random vectors with mean
E[ξn,1] = 0 and dispersion matrix Vn = E[ξn,1ξ

⊤
n,1]. We assume throughout that

the largest eigenvalue of Vn is bounded,

(C1) ρn = sup
|u|=1

u⊤Vnu = O(1),

and that the euclidean norm of Vn tends to infinity,

(C2) trace(V 2
n ) → ∞.

Let |x| denote the euclidean norm of a vector x. We are interested in the asymptotic

behavior of |ξ̃n + µn|2 with µn an rn-dimensional vector satisfying

(C3)
µ⊤
n Vnµn

trace(V 2
n )

→ 0
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and ξ̃n the rn-dimensional random vector defined by

ξ̃n = n−1/2
n
∑

j=1

ξn,j .

More precisely, we are looking for conditions that imply the asymptotic normality

(1.1)
|ξ̃n + µn|2 − |µn|2 − trace(Vn)

√

2 trace(V 2
n )

=⇒ N(0, 1).

Of special interest is the case, when µn is the zero vector and Vn is idempotent
with rank qn tending to infinity. Then (1.1) simplifies to

(1.2)
|ξ̃n|2 − qn√

2qn
=⇒ N(0, 1).

In particular, if µn is the zero vector and Vn equals Irn , the rn×rn identity matrix,
then (1.2) becomes

(1.3)
|ξ̃n|2 − rn√

2rn
=⇒ N(0, 1).

Such results are needed to obtain the asymptotic behavior of the likelihood ratio
statistic in exponential families of increasing dimensions and to study the behavior
of Owen’s empirical likelihood when the data dimension is allowed to increase with
the sample size. The former was done by Portnoy (1988) who proved (1.3) under
the assumption that the sixth moments of the coordinates of ξn,1 are uniformly
bounded. The latter has been recently studied by Hjort, McKeague and Van Keile-
gom (2009) who rely on Portnoy’s result and by Chen, Peng and Chin (2009) who
rely on results and structural assumptions of Bai and Saranadasa (1996). We are
interested in verifying (1.1) under weaker moment assumptions than used by these
authors. This allows us to fix a gap in the proof of Theorem 4.1 in Hjort, McKeague
and Van Keilegom (2009), see Remark 4 below. Our results are used in Peng and
Schick (2013) where the authors generalize the results in Hjort, McKeague and Van
Keilegom (2009) to allow for infinitely many constraints that depend on nuisance
parameters.

We achieve our goal by proving two central limit theorems. The first one uses
the following growth conditions.

(1.4) Var[|ξn,1|2] = o(n trace(V 2
n )),

(1.5) Var[|V 1/2
n ξn,1|2] = o(n trace2(V 2

n )),

(1.6) E[(ξ⊤n,1ξn,2)
4] = o(n2 trace2(V 2

n )).

Theorem 1. Suppose (C1)–(C3) hold. Then (1.4)-(1.6) imply (1.1).

In the presence of (C1) and (C2), the growth conditions (1.4)–(1.6) are implied
by

(1.7) E[|ξn,1|4] = o(n trace(V 2
n )).

Thus we have the following corollary.

Corollary 1. Suppose (C1)–(C3) hold. Then (1.7) implies (1.1).
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The next theorem uses

(C4)
trace(Vn)

trace(V 2
n )

= O(1)

and the Lindeberg condition,

(L) Ln(ǫ) = E[|ξn,1|21[|ξn,1| > ǫ
√
n]] → 0, ǫ > 0,

to obtain the desired result.

Theorem 2. Suppose (C1)–(C4) hold. Then (L) implies (1.1).

The proofs of the theorems are given in Section 9. Section 8 gives technical
details needed in the proofs. A first example with simulations is given in Section 2.
There a chi-square goodness of fit test is discussed and shown to valid even if the
number of cells increases almost as fast as the sample size. In Section 3 we discuss
the results in more detail and compare our results with those in the literature.
Section 4 illustrates how our results can be used to give the asymptotic behavior
under contiguous alternatives. In Section 5 we discuss potential applications of our
results. We illustrate such an application in Section 6 by presenting a test for the
equality of the marginal distributions of a bivariate random vector. As another
application a test for the diagonality of a covariance matrix of a normal random
vector with increasing dimension is presented in Section 7.

2. A first example with simulations

Let X1, . . . , Xn be independent random variables with common distribution
function F . To test the null hypothesis that F equals a specified continuous distri-
bution function F0, we can use the test statistic

Tn,r =
r

∑

i=1

(Ni − n/r)2

n/r

with

Ni =

n
∑

j=1

1
[ i− 1

r
< F0(Xj) ≤

i

r

]

, i = 1, . . . , r,

and reject the null hypothesis if Tn,r exceeds χ1−α(r − 1), the (1 − α)-quantile of
the chi-square distribution with r− 1 degrees of freedom. This test has asymptotic
size α. This follows from the fact that under the null hypothesis the test statistic is
asymptotically chi-square with r degrees of freedom. Keep in mind that under the
null hypothesis the random variables F0(X1), . . . , F0(Xn) are uniformly distributed
on (0, 1) and that P ((i − 1)/r < U ≤ i/r) = 1/r holds for a uniform random
variable U and i = 1, . . . , r.

Can we let r grow with n and still maintain the asymptotic size of this test?
The answer is yes. More precisely, we have the following result. The test

δn,rn = 1[Tn,rn > χ1−α(rn − 1)]

has asymptotic size α as long as rn tends to infinity at a rate slower than n,
i.e., rn = o(n). The proof of this claim is based on the observation that a chi-
square random variable with m degrees of freedom is approximately normal with
mean m and variance 2m for large m. This result is a consequence of the central
limit theorem and the fact that a chi-square random variable with m degrees of
freedom has the same distribution as a sum of m independent chi-square random
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Figure 1. Q-Q plots of the simulated values of Tn,n/5 against
the chi-square distribution with (n/5 − 1) degrees of freedom for
n = 50, 100, 200, 400.
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variables with one degree of freedom. Thus our claim can be verified by showing
the asymptotic normality result

(2.1)
Tn,rn − (rn − 1)
√

2(rn − 1)
=⇒ N(0, 1).

We note that Tn,rn equals n|ξ̃n|2 if we take ξnj to be the rn-dimensional random
vector whose i-th coordinate is

√
rn1[i − 1 < rnF0(Xj) ≤ i] − 1/

√
rn. These

random vectors are independent and identically distributed with mean vector 0
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and dispersion matrix Vn = Irn − 1/rnJrn , with Jr the r × r matrix with all its
entries equal to one, and satisfy |ξnj |2 = rn − 1 almost surely. The matrix Vn is
idempotent with trace rn − 1 and E[|ξn1|4] equals (rn − 1)2. Consequently, the
assumptions of Corollary 1 are met with ρn = 1 and µn = 0 if rn → ∞ and
rn = o(n) hold, and this corollary gives the desired (2.1).

Table 1. Simulated sizes of the test δn,n/5 for selected values of
n and α

α\n 40 60 80 100 120 140 160 180 200 400
.10 .0910 .0941 .0985 .0926 .0936 .1040 .0998 .0949 .0956 .1028
.05 .0449 .0464 .0460 .0476 .0503 .0498 .0501 .0495 .0466 .0525
.01 .0090 .0109 .0098 .0102 .0096 .0100 .0108 .0096 .0098 .0114

We have run some simulations to assess this result. In the simulations F0

was taken to be the uniform distribution and rn = n/5. We generated 25,000
independent copies of Tn,n/5 for several choices of n. Figure 1 gives quantile-
quantile plots. These show that the chi-square approximation is quite good. Table
2 reports the simulated size of the test for three choices of α.

3. Discussion of the results

We begin by addressing sufficient conditions for the Lindeberg condition.

Remark 1. In view of the inequality

Ln(ǫ) ≤ E[|ξn,1|2 log(1 + |ξn,1|)]/ log(1 + ǫ
√
n)

the Lindeberg condition (L) is implied by

(L1) E[|ξn,1|2 log(1 + |ξn,1|)] = o(log n).

In view of the inequality

Ln(ǫ) ≤ E[|ξn,1|2+δ](ǫ
√
n)−δ, δ > 0,

the Lindeberg condition (L) holds whenever

(L2) E[|ξn,1|2α] = o(nα−1), for some α > 1.

In particular, if E[|ξn,1|2α] = O(rαn) holds for some α > 1, then (L2) is implied by

rn = o(n1−1/α).

Let us now specialize our results to the case when µn is the zero vector and Vn
is an idempotent matrix with rank qn tending to infinity. In this case (C1) – (C4)
hold and (1.1) simplifies to (1.2).

Corollary 2. Suppose Vn is idempotent with rank qn tending to infinity. Then
the following are true.

(a) The growth conditions Var[|ξn,1|2] = o(nqn), Var[|V 1/2
n ξn,1|2] = o(nq2n)

and E[(ξ⊤n,1ξn,2)
4] = o(n2q2n) imply (1.2).

(b) The moment condition E[|ξn,1|4] = o(nqn) implies (1.2).
(c) The Lindeberg condition (L) implies (1.2).
(d) If E[|ξn,1|2α] = O(rαn) and rn = o(n1−1/α) hold for some α > 1, then

(1.2) holds.
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For its importance we formulate the special case Vn = Irn .

Corollary 3. Suppose Vn equals Irn . Then the following are true.

(a) Var[|ξn,1|2] = o(nrn) and E[(ξ⊤n,1ξn,2)
4] = o(n2r2n) imply (1.3).

(b) The moment condition E[|ξn,1|4] = o(nrn) implies (1.3). In particular,
E[|ξn,1|4] = O(r2n) and rn = o(n) imply (1.3).

(c) The Lindeberg condition (L) implies (1.3).
(d) If E[|ξn,1|2α] = O(rαn) and rn = o(n1−1/α) hold for some α > 1, then

(1.3) holds.

Note that in the case E[|ξn,1|4] = r2n part (b) allows for larger rn than part (d).

More precisely, part (b) requires rn = o(n), while part (d) requires rn = o(n1/2).

Remark 2. Portnoy (1988, Theorem 4.1) obtains the conclusion (1.3) in the
case Vn = Irn under the growth condition rn/n → 0 and the assumption that the
coordinates ξn,1,i of ξn,1 have a uniformly bounded sixth moment,

max
1≤i≤rn

E[ξ6n,1,i] = O(1).

His last condition implies

(3.1) max
1≤i≤rn

E[ξ4n,1,i] = O(1),

and the latter implies

E[|ξn,1|4] = E[(

rn
∑

i=1

ξ2n,1,i)
2] ≤ rn

rn
∑

i=1

E[ξ4n,1,i] = O(r2n).

Thus his result is a special case of part (b) of Corollary 3.

Remark 3. Assume that ξn,1 = VnZn for some symmetric idempotent matrix
Vn with rank qn tending to infinity and some random vector Zn satisfying E[Zn] =
0, E[ZnZ

⊤
n ] = Irn ,

(3.2) ζn = max
1≤i≤rn

E[|Z4
n,i] = o(n),

and

(3.3) E[Zα1

n,iZ
α2

n,jZ
α3

n,kZ
α4

n,l] = E[Zα1

n,i]E[Zα2

n,j ]E[Zα3

n,k]E[Zα4

n,l]

for distinct indices i, j, k, l and non-negative integers α1, . . . , α4 that sum to 4.
The above conditions generalize those in Chen, Peng and Qin (2009) with our Vn
equal to their Γ⊤

n (ΓnΓ
⊤
n )

−1Γn. These authors require instead of (3.2) the stronger
E[Z4

n,1] = · · · = E[Z4
n,rn ] = β for some β. Relying on results of Bai and Saranadasa

(1996), they obtain (1.2) under the condition that qn = O(n). We shall show

(3.4) Var(|V 1/2
n ξn,1|2) = Var(|ξn,1|2) ≤ (2 + ζn)qn = o(nqn)

and

(3.5) E[(ξ⊤n,1ξn,2)
4] ≤ 3(q2n + 2qn + ζnqn) + ζn(3 + ζn)qn = o(n2q2n).

Thus we obtain (1.2) from part (a) of Corollary 2 without their restrictions.
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Note that the right-hand side in (3.3) equals zero if at least one of α1, . . . , α4

equals one and that (3.3) yields E[Z2
n,iZ

2
n,j ] = E[Z2

n,i]E[Z2
n,j ] = 1 for i 6= j. Thus

we calculate

E[|ξn,1|4] = E[(Z⊤
n VnZn)

2] =

rn
∑

i=1

rn
∑

j=1

rn
∑

k=1

rn
∑

l=1

E[Zn,iVn,i,jZn,jZn,kVn,k,lZn,l]

=
∑

i6=k

Vn,i,iVn,k,k +
∑

i6=j

2Vn,i,jVn,i,j +
∑

i

E[Z4
n,i]V

2
n,i,i

= (trace(Vn))
2 + 2 trace(Vn) +

rn
∑

i=1

(E[Z4
n,i]− 3)V 2

n,i,i,

E[(Z⊤
n ξn,2)

4] =

rn
∑

i=1

rn
∑

j=1

rn
∑

k=1

rn
∑

l=1

E[Zn,iξn,2,iZn,jξn,2,jZn,kξn,2,kZn,lξn,2,l]

≤ 3E[|ξn,2|4] + ζn

rn
∑

i=1

E[ξ4n,2,i],

rn
∑

ν=1

E[ξ4n,1,ν ] =

rn
∑

ν=1

rn
∑

i=1

rn
∑

j=1

rn
∑

k=1

rn
∑

l=1

E[Vn,ν,iZn,iVn,ν,jZn,jVn,ν,kZn,kVn,ν,lZn,l]

≤
rn
∑

ν=1

[

3
(

rn
∑

i=1

V 2
n,ν,i

)2

+ ζn

rn
∑

i=1

V 4
n,ν,i

]

≤ 3 trace(Vn) + ζn trace(Vn).

Here we used the identity

rn
∑

j=1

V 2
n,i,j =

rn
∑

j=1

Vn,i,jVn,j,i = Vn,i,i

and the inequalities

0 ≤ Vn,i,i ≤ 1 and V 2
n,i,j ≤ 1, i, j = 1, . . . , rn.

Using the identities |ξn,1|2 = |V 1/2
n ξn,1|2 and ξ⊤n,1ξn,2 = Z⊤

n ξn,2 we obtain (3.4) and

(3.5). Note also that E[|ξn,1|2] equals trace(Vn).

Remark 4. Our results are motivated by recent results on extending Owen’s
(1988, 1990, 2001) empirical likelihood approach to allow for an increasing number
of constraints, see Hjort, McKeague and Van Keilegom (2009) and Chen, Peng and
Qin (2009). The empirical likelihood for this case is given by

Rn = sup{
n
∏

j=1

nπj : 0 ≤ πj ,
n
∑

j=1

πj = 1,
n
∑

j=1

πjXn,j = 0}

where Xn,1, . . . , Xn,n are independent and identically distributed rn-dimensional
random variables with mean E[Xn,1] = 0 and invertible dispersion matrix Wn. It
is equivalent to

Rn = sup{
n
∏

j=1

nπj : 0 ≤ πj ,
n
∑

j=1

πj = 1,
n
∑

j=1

πjξn,j = 0}
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with ξn,j = W
−1/2
n Xn,j . The goal is to show that −2 logRn is approximately a

chi-square random variable with rn degrees of freedom. This is done by showing
the asymptotic normality result

(3.6)
−2 logRn − rn√

2rn
=⇒ N(0, 1).

This result is typically achieved in two steps. The first step establishes the approx-
imation

(3.7) −2 logRn − |ξ̃n|2 = op(r
1/2
n ),

and the second step obtains the asymptotic normality result (1.3).
In their Theorem 4.1, Hjort, McKeague and Van Keilegom (2009) claim (3.6)

under the assumptions that the q-th moments of the coordinates of Xn,1 are uni-
formly bounded for some q > 2, that the eigenvalues of Wn are bounded and
bounded away from zero, and that the dimension rn satisfies

(3.8) r3+6/(q−2)
n = r3q/(q−2)

n = o(n).

Their proof, however, is valid for the case q ≥ 6 only, as they rely on Portnoy’s
(1988) asymptotic normality result mentioned in Remark 2 above. With C a bound

on the largest eigenvalue of W
−1/2
n and B a bound on the q-th moments of the

coordinates of Xn,1, their assumptions imply

E[|ξn,1|q] ≤ CqE[|Xn,1|q] = Cqrq/2n E
[( 1

rn

n
∑

j=1

X2
n,1,j

)q/2]

≤ Cqrq/2−1
n

rn
∑

j=1

E[|Xn,1,j |q] = CqBrq/2n .

Thus the required asymptotic normality follows from part (d) of Corollary 3 with
α = q/2. Note that their requirement (3.8) on rn implies

rn = o(n(q−2)/(3q)) = o(n2(α−1)/6α) = o(n1−1/α)

as needed. This closes the gap in Theorem 4.1 of Hjort, McKeague and Van Keile-
gom (2009).

Remark 5. Suppose E[|ξn,1|2α] = O(rαn) holds for some α ≥ 2. Then the

moment inequality yields E[|ξn,1|4] ≤ E[|ξn,1|2α]2/α = O(r2n). In this case, part (b)
of Corollary 3 allows for larger rn than part (d).

4. Asymptotic behavior under local alternatives

Let (X ,S , Q) be a probability space and wn be a function from X into R
rn

satisfying
∫

wn dQ = 0,
∫

|wn|2 dQ <∞ and

(4.1) Λn(ǫ) =

∫

|wn|21[|wn| > ǫ
√
n] dQ→ 0, ǫ > 0.

Assume also that the matrix Wn =
∫

wnw
⊤
n dQ satisfies

λn = sup
|u|=1

u⊤Wnu = sup
|u|=1

∫

(u⊤wn)
2 dQ = O(1),

trace(W 2
n) → ∞ and trace(Wn) = O(trace(W 2

n)).
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It then follows from Theorem 2 that

| 1√
n

∑n
j=1 wn(Xj)|2 − trace(Wn)

√

2 trace(W 2
n)

=⇒ N(0, 1)

if X1, . . . , Xn are independent X -valued random variables with distribution Q.
The next theorem answers the question of what happens if we slightly perturb

the distribution Q. Let h denote a measurable function satisfying
∫

h dQ = 0 and
∫

h2 dQ <∞ and set

hn = h1[|h| < cnn
1/2/sn]−

∫

h1[|h| < cnn
1/2/sn] dQ

with 0 < cn < 1/2, 1 ≤ sn, cn → 0, s2n = o(trace(W 2
n)) and cnn

1/2/sn → ∞. Let
Qn,h denote the probability measure with density 1 + n−1/2snhn with respect to
Q. By construction, we have

(4.2)

∫

|n1/2/sn(
√

1 + n−1/2snhn − 1)− h/2|2 dQ→ 0.

If sn = 1, this implies that the product measures Qn
n,h and Qn are mutually con-

tiguous. Set

µn(h) =

∫

wnh dQ and ∆n = n−1/2sn

∫

|wn|2hn dQ.

Theorem 3. Let Xn,1, . . . , Xn,n be independent X -valued random variables
with distribution Qn,h. Then we have the asymptotic normality result

(4.3)
| 1√

n

∑n
j=1 wn(Xn,j)|2 − s2n|µn(h)|2 − trace(Wn)−∆n

√

2 trace(W 2
n)

=⇒ N(0, 1).

In the case sn = 1, this simplifies to

(4.4)
| 1√

n

∑n
j=1 wn(Xn,j)|2 − |µn(h)|2 − trace(Wn)

√

2 trace(W 2
n)

=⇒ N(0, 1).

Proof. Taking νn = µn(hn) and ξn,j = wn(Xn,j)− n−1/2snνn, we can write

∣

∣

∣

1√
n

n
∑

j=1

wn(Xn,j)
∣

∣

∣

2

= |ξ̃n + snνn|2.

The dispersion matrix of ξn,1 is given by Vn = W̃n − n−1s2nνnν
⊤
n where

W̃n =

∫

wnw
⊤
n dQn,h =Wn + n−1/2sn

∫

wnw
⊤
n hn dQ.

By construction, |n−1/2snhn| is bounded by 2cn. Thus, for k = 1, 2, we have the
inequality

(1− 2cn)
ktrace(W k

n ) ≤ trace(W̃ k
n ) ≤ (1 + 2cn)

ktrace(W k
n )

and obtain
trace(W̃n)

trace(Wn)
→ 1 and

trace(W̃ 2
n)

trace(W 2
n)

→ 1.

Since trace(W 2
n) ≤ λn trace(Wn), we also have trace(Wn) → ∞.
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The requirements on the sequences cn and sn imply n−1/2sn = o(cn) = o(1).
Using this and the above, we find

(4.5) sup
|u|=1

u⊤Vnu ≤ sup
|u|=1

u⊤W̃nu ≤ (1 + 2cn) sup
|u|=1

u⊤Wnu = O(λn) = O(1)

(4.6) |νn|2 = sup
|u|=1

(u⊤νn)
2 ≤

∫

h2n dQ sup
|u|=1

∫

(u⊤wn)
2 dQ ≤ λn

∫

h2 dQ = O(1),

(4.7) |νn − µn(h)|2 ≤ λn

∫

(hn − h)2 dQ→ 0,

(4.8) trace(Vn) = trace(W̃n)− n−1s2n|νn|2 = trace(Wn) + o(trace(Wn)).

(4.9)
trace(V 2

n ) = trace(W̃ 2
n)− 2n−1s2nν

⊤
n W̃nνn + n−2s4n|νn|4

= trace(W 2
n) + o(trace(W 2

n)).

Thus the conditions (C1)–(C4) hold with µn = snνn. For (C3) note that ν
⊤
n Vnνn is

bounded by (4.5) and (4.6). Finally, using (4.1), |n−1/2snνn| = o(1) and the bound
n−1/2sn|hn| ≤ 1, we derive the Lindeberg condition (L). Thus Theorem 2 yields

(4.10)
| 1√

n

∑n
j=1 wn(Xn,j)|2 − s2n|νn|2 − trace(Vn)

√

2 trace(V 2
n )

=⇒ N(0, 1).

The desired result (4.3) follows from this, (4.7), (4.9) and the fact that trace(Vn) =
trace(Wn) + ∆n + o(1).

In the case sn = 1, we have the bound
∫

|wn|2|n−1/2hn| dQ ≤ 2cnΛn(ǫ) + ǫ

∫

|wn||hn|1[|wn| ≤ ǫ
√
n] dQ

≤ 2cnΛn(ǫ) + ǫ
(

∫

h2n dQ

∫

|wn|2 dQ
)1/2

, ǫ > 0.

This bound and trace(Wn) = O(trace(W 2
n)) yield ∆n = o((trace(W 2

n))
1/2) and

hence (4.4). �

Remark 6. Let Xn,1, . . . , Xn,n be independent X -valued random variables
with distribution Qn,h for sn = 1. Consider the empirical likelihood

Rn = sup{
n
∏

j=1

nπj : 0 ≤ πj ,

n
∑

j=1

πj = 1,

n
∑

j=1

πjvn(Xn,j , Xn,1, . . . , Xn,n) = 0}

with vn a measurable function from X n+1 into R
rn . Suppose that

(4.11) −2 logRn −
∣

∣

∣

1√
n

n
∑

j=1

wn(Xn,j)
∣

∣

∣

2

= op(
√

trace(W 2
n))

when h = 0. By contiguity, this then also holds if h 6= 0 and we obtain

−2 logRn − |µn(h)|2 − trace(Wn)
√

2 trace(W 2
n)

=⇒ N(0, 1).

If Wn is idempotent with rank qn tending to infinity, this simplifies to

−2 logRn − |µn(h)|2 − qn√
2qn

=⇒ N(0, 1)
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and may be interpreted as −2 logRn being approximately a non-central chi-square
random variable with qn degrees of freedom and non-centrality parameter |µn(h)|.

Remark 7. In the previous remark Qn,h was chosen to have density 1 +

n−1/2hn. By (4.2) this implies that

(4.12)

∫

|n1/2(
√

dQn,h −
√

dQ)− h/2
√

dQ|2 → 0.

The results of the previous remark remain true under the more general condition
(4.12).

5. Applications

In applications, the quadratic form |ξ̃n|2 will often serve as an approximation
to a more complicated statistic Sn. More precisely, suppose that we have the
expansion

(5.1) Sn = |ξ̃n|2 + op(r
1/2
n ),

then the asymptotic normality result (1.3) implies the same asymptotic normality
result for Sn,

(5.2)
Sn − rn√

2rn
=⇒ N(0, 1).

We have already encountered this concept in Remark 4.

Of special interest is the case ξnj = W
−1/2
n wn(Zj), where Z1, . . . , Zn are k-

dimensional random vectors with common distribution Q and wn is a measurable
function from R

k into R
rn such that wn(Z1) has mean

∫

wn dQ = 0 and dispersion

matrix Wn =
∫

wnw
⊤
n dQ which satisfies

(5.3) 0 < inf
n

inf
|u|=1

u⊤Wnu ≤ sup
n

sup
|u|=1

u⊤Wnu <∞.

Suppose also that E[|wn(Z1)|4] = O(r2n) and rn = o(n). It then follows from part
(b) of Corollary 3 that (1.3) holds.

Now let ŵn denote an estimator of wn and consider the statistic

Sn = T̂⊤
n Ŵ

−1
n T̂n

with

T̂n =
1√
n

n
∑

j=1

ŵn(Zj) and Ŵn =
1

n

n
∑

j=1

ŵn(Zj)ŵ
⊤
n (Zj).

In this setting, (5.1) follows from the statements

(5.4)
∣

∣

∣

1√
n

n
∑

j=1

(ŵn(Zj)− wn(Zj))
∣

∣

∣

2

= op(1)

and

(5.5) |Ŵn −Wn|o = sup
|u|=1

|u⊤(Ŵn −Wn)u| = op(r
−1/2
n ).

These statements typically require additional restrictions on the rate of growth of
rn. Let

W̄n =
1

n

n
∑

j=1

wn(Zj)w
⊤
n (Zj).
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Then we have |W̄n −Wn|o = Op(rn/n
1/2) as E[|W̄n −Wn|20] ≤ E[|W̄n −Wn|2] ≤

E[|wn(Z1)|4]/n = O(r2n/n) and

|Ŵn − W̄n|o ≤ Dn + 2|W̄n|1/2o D1/2
n

with

Dn =
1

n

n
∑

j=1

|ŵn(Zj)− wn(Zj)|2.

Hence (5.5) is implied by r3n = o(n) and Dn = op(r
−1
n ). Let us summarize our

findings.

Proposition 1. Suppose wn is given as above and r3n = o(n), Dn = op(r
−1
n )

and (5.4) hold. Then we have the asymptotic normality result (5.2) with Sn =

T̂nŴ
−1
n T̂n.

6. Testing for equal marginals

Let us illustrate the result of the previous section by means of an example,
namely testing for the equality of the marginal distributions of a bivariate random
vector. Let the observations (X1, Y1), . . . , (Xn, Yn) be independent copies of a bi-
variate random vector (X,Y ). We want to test whether the marginal distributions
are the same. This is of importance when X denotes pre-treatment and Y post-
treatment measurement. Equality of the marginal distributions indicates that there
is no treatment effect. Assume that the marginal distribution functions F (of X)
and G (of Y ) are continuous.

Let us set H = (F + G)/2. We can estimate H by the pooled empirical
distribution function,

H(x) =
1

n

n
∑

j=1

(1[Xj ≤ x] + 1[Yj ≤ x])/2, x ∈ R.

Assume from now on that F equals G so that the null hypothesis holds. Then
we have H = F = G and E[a(X)− a(Y )] = 0 for every a ∈ L2,0(H) where

L2,0(H) = {a ∈ L2(H) :

∫

a dH = 0}.

We also impose the condition

(6.1) inf
a∈A

E[(a(X)− a(Y ))2] > 0

with A = {a ∈ L2,0(H) :
∫

a2 dH = 1} the unit sphere in L2,0(H).
Let ψ1, ψ2, . . . denote an orthonormal basis of L2,0(U), where U is the uniform

distribution on [0, 1]. Since H is continuous, the functions ψ1◦H,ψ2◦H, . . . form an
orthonormal basis of L2,0(H). We shall work with the trigonometric basis defined
by

ψk(x) =
√
2 cos(πkx), 0 ≤ x ≤ 1, k = 1, 2, . . . ,

because these functions are bounded and have bounded derivatives. Let vn =
(ψ1, . . . , ψrn)

⊤ and set

wn(x, y) = vn(H(x))− vn(H(y))

and

ŵn(x, y) = vn(H(x))− vn(H(y)), x, y ∈ R.
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It follows from (6.1) that the dispersion matrix Wn = E[wn(X1, Y1)w
⊤
n (X1, Y1)] of

wn(X1, Y1) satisfies

0 < inf
a∈A

E[(a(X)− a(Y ))2] ≤ u⊤Wnu ≤ 4, |u| = 1.

To see this use the fact that u⊤vn belongs to A for each unit vector u. Thus (5.3)
holds. Since |wn| ≤ 2|vn| ≤ 2

√
2rn, we obtain E[|wn(X,Y )|4] = O(r2n).

IfH andWn were known, we could use the test statistic |W−1/2
n Tn|2 = T⊤

n W
−1
n Tn,

where

Tn =
1√
n

n
∑

j=1

wn(Xj , Yj)).

Since H and Wn are unknown, we work instead with T̂⊤
n Ŵ

−1
n T̂n where

T̂n =
1√
n

n
∑

j=1

ŵn(Xj , Yj) and Ŵn =
1

n

n
∑

j=1

ŵn(Xj , Yj)ŵ
⊤
n (Xj , Yj)

Using |v′n|2 ≤ 2π2r3n, we have

1

n

n
∑

j=1

|vn(H(Xj))− vn(H(Xj))|2 ≤ 2π2r3n sup
t∈R

|H(t)−H(t)|2 = Op(r
3
n/n),

1

n

n
∑

j=1

|vn(H(Yj))− vn(H(Yj))|2 ≤ 2π2r3n sup
t∈R

|H(t)−H(t)|2 = Op(r
3
n/n).

This implies Dn = op(r
−1
n ) if r4n = o(n). Finally (5.4) holds as shown in Peng and

Schick (2005, pages 403–404) if r3n = o(n). Indeed it follows from there that
rn
∑

k=1

E
[( 1

n

n
∑

j=1

ŵn(Xj , Yj)− wn(Xj , Yj)
)2]

≤ 48π2r3n
(n− 1)2

+ 3
[ 8π2r3n
n(n− 1)

+
32π2r3n(n− 1)

n(n− 1)2

]

.

Thus we have proved the following result.

Corollary 4. Suppose F equals G and (6.1) holds. Then we have the asymp-
totic normality result

T̂⊤
n Ŵ

−1
n T̂n − rn√
2rn

=⇒ N(0, 1)

provided rn tends to infinity and r4n/n tends to zero.

This result shows that the test which rejects the null hypothesis if T̂⊤
n Ŵ

−1
n T̂n

exceeds the (1−α)-quantile of the chi-square distribution with rn degrees of freedom
has asymptotic size α.

We conducted a small simulation study to investigate the power of this test.
We first looked at data from a bivariate normal distribution with parameters
(0, θ, 1, σ2, ρ) where the first two coordinates refer to the means, the third and
fourth to the variances, and the fifth to the correlation coefficient. By (a) (page
12) of Peng and Schick (2004) the bivariate normal model satisfies the condition
(6.1). We simulated the power for some choices of θ, σ2 and ρ, namely θ = .0, .2, .4,
σ2 = .7, 1, 1.3 and ρ = .5, .8, for the sample sizes n = 50, 100, 150 and for the values
rn = 1, 2, 3, 4. In each case the power was estimated based on 10,000 repetitions
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Table 2. Simulated power for bivariate normal data with α = .05
for selected values of θ, σ2, ρ, n and rn = 1, . . . , 4.

ρ = .5 ρ = .8
n θ σ2 1 2 3 4 1 2 3 4

0.0 0.7 0.051 0.127 0.105 0.103 0.060 0.186 0.145 0.161
0.0 1.0 0.049 0.044 0.047 0.042 0.050 0.045 0.042 0.037
0.0 1.4 0.051 0.117 0.097 0.095 0.052 0.164 0.130 0.144
0.2 0.7 0.276 0.290 0.240 0.224 0.531 0.539 0.484 0.453

50 0.2 1.0 0.244 0.180 0.161 0.134 0.468 0.341 0.319 0.261
0.2 1.4 0.210 0.225 0.187 0.171 0.409 0.433 0.380 0.352
0.4 0.7 0.778 0.724 0.684 0.629 0.982 0.971 0.972 0.956
0.4 1.0 0.714 0.590 0.554 0.484 0.969 0.925 0.928 0.888
0.4 1.4 0.613 0.562 0.517 0.471 0.927 0.895 0.886 0.859
0.0 0.7 0.052 0.227 0.188 0.206 0.052 0.353 0.291 0.359
0.0 1.0 0.048 0.049 0.047 0.044 0.053 0.049 0.050 0.048
0.0 1.4 0.054 0.199 0.160 0.180 0.057 0.313 0.259 0.313
0.2 0.7 0.505 0.564 0.514 0.499 0.836 0.876 0.861 0.862

100 0.2 1.0 0.440 0.341 0.314 0.274 0.778 0.676 0.671 0.610
0.2 1.4 0.370 0.450 0.403 0.400 0.691 0.756 0.727 0.730
0.4 0.7 0.972 0.967 0.965 0.954 1.000 1.000 1.000 1.000
0.4 1.0 0.950 0.899 0.891 0.856 1.000 1.000 1.000 0.999
0.4 1.4 0.908 0.897 0.879 0.859 0.998 0.998 0.998 0.997
0.0 0.7 0.050 0.330 0.280 0.328 0.055 0.506 0.431 0.542
0.0 1.0 0.048 0.052 0.049 0.047 0.052 0.052 0.051 0.051
0.0 1.4 0.052 0.296 0.249 0.283 0.052 0.456 0.386 0.490
0.2 0.7 0.677 0.758 0.728 0.727 0.945 0.973 0.974 0.974

150 0.2 1.0 0.598 0.486 0.465 0.418 0.918 0.859 0.863 0.823
0.2 1.4 0.516 0.629 0.578 0.589 0.856 0.919 0.908 0.915
0.4 0.7 0.997 0.997 0.997 0.996 1.000 1.000 1.000 1.000
0.4 1.0 0.993 0.983 0.982 0.972 1.000 1.000 1.000 1.000
0.4 1.4 0.982 0.983 0.981 0.974 1.000 1.000 1.000 1.000

using a significance level of α = .05. The results are reported in Table 1 for the
above mentioned values of θ, σ2, ρ, n and rn. The rows corresponding to the value
(θ, σ2) = (0, 1) refer to the null hypothesis. We see from the table that the power
is larger for the larger value of ρ.

We also generated data from the Farlie-Gumbel-Morgenstern copula model with
marginals F and G possessing densities f and g, respectively. The density for this
model is given by

pγ,F,G(x, y) =
(

1 + γ(1− 2F (x))(1− 2G(y))
)

f(x)g(y), x, y ∈ R,

where γ is a number in the interval (−1, 1). As shown in Peng and Schick (2004),
the density pγ,F,G satisfies the condition (6.1). For our simulation we took γ = .5, .8,
F to be the logistic distribution function, F (x) = 1/(1 + exp(−x)), and G of the
form G(x) = F ((x− θ)/σ) for some selected values of θ and σ, namely θ = 0, .2, .4
and σ = .8, 1, 1.2. We again estimated the powers using 10,000 repetitions. Table 2
reports the simulated powers of the test for the above combinations of values of θ,
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Table 3. Simulated power in the FGM copula with logistic
marginals with α = .05 for selected values of θ, σ, γ, n, and rn =
1, . . . , 4.

γ = .5 γ = .8
n θ σ 1 2 3 4 1 2 3 4

0.0 0.8 0.048 0.138 0.112 0.109 0.052 0.142 0.116 0.112
0.0 1.0 0.050 0.050 0.049 0.047 0.052 0.049 0.046 0.042
0.0 1.2 0.056 0.110 0.092 0.084 0.056 0.111 0.093 0.086
0.2 0.8 0.110 0.179 0.143 0.134 0.116 0.189 0.155 0.140

50 0.2 1.0 0.094 0.078 0.070 0.062 0.101 0.075 0.070 0.063
0.2 1.2 0.080 0.127 0.106 0.100 0.086 0.134 0.112 0.102
0.4 0.8 0.274 0.309 0.253 0.225 0.305 0.330 0.268 0.244
0.4 1.0 0.231 0.169 0.137 0.118 0.257 0.185 0.153 0.131
0.4 1.2 0.206 0.219 0.177 0.161 0.215 0.227 0.182 0.164
0.0 0.8 0.051 0.252 0.212 0.218 0.055 0.257 0.214 0.217
0.0 1.0 0.050 0.051 0.048 0.046 0.050 0.049 0.047 0.046
0.0 1.2 0.050 0.178 0.149 0.154 0.053 0.183 0.153 0.151
0.2 0.8 0.166 0.350 0.296 0.290 0.186 0.361 0.307 0.298

100 0.2 1.0 0.145 0.110 0.093 0.083 0.148 0.115 0.097 0.087
0.2 1.2 0.121 0.239 0.202 0.194 0.136 0.249 0.204 0.199
0.4 0.8 0.493 0.586 0.517 0.491 0.543 0.612 0.548 0.523
0.4 1.0 0.417 0.321 0.270 0.237 0.468 0.354 0.309 0.267
0.4 1.2 0.356 0.416 0.353 0.326 0.388 0.450 0.388 0.364
0.0 0.8 0.055 0.377 0.318 0.333 0.054 0.366 0.308 0.322
0.0 1.0 0.050 0.049 0.052 0.050 0.051 0.054 0.049 0.048
0.0 1.2 0.052 0.267 0.221 0.228 0.049 0.255 0.222 0.227
0.2 0.8 0.226 0.498 0.433 0.434 0.255 0.511 0.446 0.452

150 0.2 1.0 0.187 0.151 0.121 0.112 0.211 0.157 0.139 0.123
0.2 1.2 0.163 0.351 0.294 0.289 0.181 0.364 0.310 0.310
0.4 0.8 0.661 0.778 0.718 0.702 0.722 0.814 0.758 0.740
0.4 1.0 0.577 0.463 0.407 0.354 0.635 0.524 0.460 0.412
0.4 1.2 0.497 0.598 0.527 0.508 0.545 0.631 0.569 0.543

σ and γ = .5, .8, for sample sizes n = 50, 100, 150 and nominal level of significance
.05. The rows with (θ, σ) = (0, 1) in Table 2 correspond to the null hypothesis.
From the table it appears that the power is slightly larger for the larger value of γ.

7. Testing diagonality of a covariance matrix of a normal random

vector with increasing dimension

Let {Xn1(a) : a ∈ An}, . . . , {Xn,n(a) : a ∈ An} be independent and identically
distributed centered second order processes indexed by a finite set An with rn
elements. We denote the covariance function by

Kn(a, b) = E[Xn1(a)Xn1(b)], a, b ∈ An,

and set

X̃n(a) =
1√
n

n
∑

j=1

Xnj(a), a ∈ An.
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The results in this paper now apply with ξnj = (Xnj(a1), . . . ,Xnj(arn))
⊤ for any

enumeration (a1, . . . , arn) of the elements of An. For notational considerations
it might be more convenient to avoid this enumeration and work with the given
parametrization. In the original parametrization, the analog of (1.1) with µn = 0
is

(7.1)

∑

a∈An

(X̃n(a))
2 −

∑

a∈An

Kn(a, a)
√

2
∑

a,b∈An

Kn(a, b)Kn(b, a)
=⇒ N(0, 1).

Simple sufficient conditions for this are

(7.2) max
a∈An

∑

b∈An

|Kn(a, b)| = O(1),

(7.3) kn =
∑

a,b∈An

Kn(a, b)Kn(b, a) → ∞,

(7.4) rn
∑

a∈An

E[|Xn1(a)|4] = o(nkn).

Indeed, the first condition implies (C1) as the operator norm of a symmetric matrix
is bounded by the maximal ℓ1-norm of its rows, the second condition is equivalent
to (C2), and the third condition implies (1.7). Thus (7.1) follows from Corollary 1.

Let us now illustrate this result. Suppose Zn1, . . . , Znn are independent and
identically distributed centered pn-dimensional random vectors. We are interested
in testing whether their dispersion matrix Σn is diagonal. Since the random vectors
are centered, we estimate Σn by Σ̂n = 1

n

∑n
j=1 ZnjZ

⊤
nj . An estimator of Σ under

the null hypothesis is diag(Σ̂n), the diagonal matrix formed by the diagonal entries

of Σ̂n. As test statistic we can then take

Tn = (n/2)‖Σ̂n − diag(Σ̂n)‖22.
We can express Tn as

Tn =
∑

1≤i<j≤pn

(X̃n(i, j))
2

with

X̃n(i, j) =
1√
n

n
∑

k=1

Zn,k,iZn,k,j

where Zn,k,i denotes the i-th coordinate of Znk. Here An equals {(i, j) : 1 ≤
i < j ≤ pn} and has rn = pn(pn − 1)/2 elements, while Xnk(a) = Zn,k,iZnk,j for
a = (i, j) ∈ An. Let us now derive the asymptotic behavior of Tn under the null
hypothesis. For this we assume that Σn is a diagonal matrix whose diagonal entries
fall into a compact subinterval [λ,Λ] of (0,∞) for each n. Under this assumption
we calculate

Kn((i, j), (k, l)) =

{

Σn,i,iΣn,jj , (k, l) = (i, j),

0, otherwise,

and find

max
a∈An

∑

b∈An

|Kn(a, b)| = max
1≤i<j≤pn

Σn,i,iΣn,j,j ≤ Λ2,
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kn =
∑

a,b∈An

Kn(a, b)Kn(b, a) =
∑

1≤i<j≤pn

Σ2
n,i,iΣ

2
n,j,j ≥ λ4pn(pn − 1)/2 → ∞

and
∑

1≤i<j≤pn

E[Z4
n,1,iZ

4
n,1,j ] =

∑

1≤i<j≤pn

9Σ2
n,i,iΣ

2
n,j,j = 9kn.

Thus, the sufficient conditions (7.2)–(7.4) are met if p2n = o(n). In this case we
have

Tn −∑

1≤i<j≤pn

Σn,i,iΣn,j,j
√

2
∑

1≤i<j≤pn

Σ2
n,i,i,Σ

2
n,j,j

=⇒ N(0, 1).

This result, however, is of limited practical use as the quantities Σn,i,i are unknown.
We claim that under the above assumptions

Tn −∑

1≤i<j≤pn

Σ̂n,i,iΣ̂n,j,j
√

2
∑

1≤i<j≤pn

Σ̂2
n,i,iΣ̂

2
n,j,j

=⇒ N(0, 1).

This follows if we show

Sn,1 =
∑

1≤i<j≤pn

(Σ̂n,i,iΣ̂n,j,j − Σn,i,iΣn,j,j) = op(k
1/2
n )

and

Sn,2 =
∑

1≤i<j≤pn

(Σ̂2
n,i,iΣ̂

2
n,j,j − Σ2

n,i,iΣ
2
n,j,j) = op(kn).

It is easy to verify that the summands in Sn,1 are of the form

Σn,i,iΣn,j,j(Yni + Ynj + YniYnj)

with

Yni =
1

n

n
∑

k=1

(Z2
n,k,i

Σn,i,i
− 1

)

.

The random variables Yn1, . . . , Ynpn
are independent with zero mean and variance

2/n. Using this and the identity a2 − b2 = (a− b)2 + 2b(a− b), we verify

E[|Sn,1|] ≤
∑

1≤i<j≤pn

Λ2E[|Yni + Ynj + YniYnj | = O(p2n/
√
n) = o(pn)

and

E[|S,2|] ≤
∑

1≤i<j≤pn

Λ4(E[|Yni + Ynj + YniYnj |2] + 2E[|Yni + Ynj + YniYnj |])

= O(p2n/
√
n) = o(pn).

These yield the desired results in view of kn ≥ λ2pn(pn − 1)/2.

8. An auxiliary lemma

Our proofs of the theorems will rely on the following simple lemma.

Lemma 1. Let X1, . . . , Xm be independent and identically distributed random
vectors with zero mean and dispersion matrix V and set Sk = X1 + · · · + Xk,
k = 1, . . . ,m. Then one has

E[|Sk|2] = kE[|X1|2] = k trace[V ], k = 1, . . . ,m,
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and

ǫ2P ( max
1≤k≤m

|Sk| > ǫ) ≤ E[|Sm|2] = m trace(V ), ǫ > 0.

If also E[|X1|4] is finite, then one has

Var(|Sk|2) = 2k(k − 1) trace(V 2) + kVar(|X1|2), k = 1, . . . ,m,

and

Var(

m
∑

k=1

|Sk|2) ≤ 2m4trace(V 2) + 2m3 Var(|X1|2).

Proof. The first inequality is the Kolmogorov inequality for random vectors.
Let X = X1 and Y = X2. Then

E[|X|2] = E[trace[XX⊤)] = trace(E[XX⊤]) = trace(V )

and
E[(X⊤Y )2] = E[trace(X⊤Y Y ⊤X)] = E[trace(Y Y ⊤XX⊤)]

= trace(E[Y Y ⊤XX⊤]) = trace(E[Y Y ⊤]E[XX⊤])

= trace(V 2).

Using independence we calculate

E[|Sk|2] =
k

∑

i=1

k
∑

j=1

E[X⊤
i Xj ] =

k
∑

i=1

E[|Xi|2] = kE[|X|2] = k trace(V ),

E[|Sk|4] =
k

∑

i=1

k
∑

j=1

k
∑

l=1

k
∑

p=1

E[X⊤
i XjX

⊤
l Xp]

= 4
∑

1≤i<j≤k

E[(X⊤
i Xj)

2] +

k
∑

i=1

E[|Xi|4] + 2
∑

1≤i<p≤k

E[|Xi|2]E[|Xp|2]

= 2k(k − 1)trace(V 2) + kE[|X|4] + k(k − 1)(trace(V ))2,

and hence obtain the desired form of Var(|Sk|2). It is easy to see that the covariance
of |Si|2 and |Sj |2 equals the variance of |Smin(i,j)|2. Thus we obtain

Var(

m
∑

k=1

|Sk|2) =
m
∑

k=1

Var(|Sk|2)(1 + 2(m− k))

=

m
∑

k=1

(1 + 2(m− k)k(2(k − 1)trace(V 2) + Var(|X|2))

and hence the desired bound on the variance of
∑m

k=1 |Sk|2. �

9. Proof of the theorems

To simplify notation we abbreviate ξn,j by ξj and (trace(V 2
n ))

1/2 by σn and
introduce rn-dimensional random vectors D0 = 0 and

Dj =

√
2

nσn

j
∑

i=1

ξi, j = 1, . . . , n.



CLT 19

In view of the identity

|ξ̃n + µn|2 =
1

n

n
∑

j=1

|ξj |2 +
2

n

∑

1≤i<j≤n

ξ⊤i ξj + 2µ⊤
n ξ̃n + |µn|2

we can write the left-hand side of (1.1) as Qn +Rn + Tn where

Qn =
n
∑

j=1

D⊤
j−1ξj , Rn =

1

nσn

n
∑

j=1

[|ξj |2 − E[|ξj |2]] and Tn =

√
2

σn
√
n

n
∑

j=1

µ⊤
n ξj .

We have E[T 2
n ] = 2µ⊤

n Vnµn/σ
2
n → 0. Thus the desired result follow if we show that

Rn converges to zero in probability and that Qn is asymptotically standard normal.
The latter follows from the Martingale Central Limit Theorem (see e.g. part (a) of
Theorem 2.5 of Helland (1982), or Corollary 3.1 in Hall and Heyde (1980) and the
ensuing remarks) if we verify that

(9.1) Ej−1(D
⊤
j−1ξj) = 0, j = 1, . . . , n,

(9.2)
n
∑

j=1

Ej−1((D
⊤
j−1ξj)

2) = 1 + op(1)

and, for ǫ > 0,

(9.3)

n
∑

j=1

Ej−1(|D⊤
j−1ξj |21[|D⊤

j−1ξj | > ǫ]) = op(1),

with Ej−1 the conditional expectation given ξ1, . . . , ξj−1. Of course, (9.1) is a
simple consequence of the independence of the random vectors ξ1, . . . , ξn.

Proof of Theorem 1. Assume now (1.4)–(1.6) hold. We have Rn = op(1) in
view of (1.4) and the identity

E[R2
n] =

Var(|ξ1|2)
nσ2

n

.

The left-hand side of (9.2) equals

Sn =
n
∑

j=1

D⊤
j−1VnDj−1 =

2

n2σ2
n

n−1
∑

j=1

∣

∣

∣

j
∑

i=1

V 1/2
n ξi

∣

∣

∣

2

.

Note that the random vector V
1/2
n ξ1 is centered and has dispersion matrix V 2

n . We
have trace(V 4

n ) ≤ ρ2ntrace(V
2
n ) = ρ2nσ

2
n. Thus, with the aid of Lemma 1 and (1.5),

we find

E[Sn] =

n−1
∑

j=1

2j

n2
=
n− 1

n
→ 1

and

Var(Sn) ≤
8ρ2n
σ2
n

+
8Var(|V 1/2ξ1|2)

nσ4
n

→ 0.

This shows that Sn = 1 + op(1). Finally, the expected value of the left-hand side
of (9.3) is bounded by Un/ǫ

2 with

Un =
n
∑

j=1

E[|D⊤
j−1ξj |4] =

4

n4σ4
n

n
∑

j=2

E[(

j−1
∑

i=1

ξ⊤i ξj)
4].
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Conditioning in the expectation with index j on ξj , we obtain with the aid of
Lemma 1,

Un ≤ 4

n4σ4
n

n
∑

j=2

[3(j − 1)(j − 2)E[(ξ⊤1 Vnξ1)
2] + (j − 1)E[(ξ⊤1 ξ2)

4]

≤ 4

n4σ4
n

[

3n3(Var(|V 1/2
n ξ1|2) + trace2(V 2

n )) + n2E[|ξ⊤1 ξ2|4]
]

.

It follows from (1.5) and (1.6) that Un converges to zero. This proves (9.3) and
completes the proof of Theorem 1.

Proof of Theorem 2. For an arbitrary positive ǫ, we can write Rn = Rn,1+Rn,2,
where

Rn,1 =
1

nσn

n
∑

j=1

(

|ξj |21[|ξj | ≤ ǫ
√
n]− E[|ξj |21[|ξn,j | ≤ ǫ

√
n]]

)

,

Rn,2 =
1

nσn

n
∑

j=1

(

|ξj |21[|ξj | > ǫ
√
n]− E[|ξj |2[|ξj | > ǫ

√
n]]

)

,

and calculate E[|Rn,2|] ≤ 2Ln(ǫ)/σn and

E[R2
n,1] ≤

E[|ξ1|41[|ξ1| ≤ ǫ
√
n]]

nσ2
n

≤ ǫ2E[|ξ1|2]
σ2
n

= ǫ2
trace(Vn)

trace(V 2
n )
.

This shows that Rn = op(1).
Next, we show

(9.4) D∗
n = max

1≤j≤n

√
n|Dj−1| = Op(1) and

n
∑

j=1

|Dj−1|2 = Op(1).

Indeed, with the help of Lemma 1 we obtain

P (D∗
n >

√
2K) = P ( max

1≤j≤n
|
j−1
∑

i=1

ξi| > Kσn
√
n) ≤ trace(Vn)

σ2
nK

2
=

1

K2
, K > 0,

and
n
∑

j=1

E[|Dj−1|2] =
2

n2σ2
n

n
∑

j=1

(j − 1)trace(Vn) ≤
trace(Vn)

σ2
n

.

The statements (9.4) imply (9.3), since the left-hand side of (9.3) is bounded by

n
∑

j=1

|Dj−1|2
∫

y21[|Dj−1|y > ǫ] dFn(y) ≤
∫

y21[D∗
ny > ǫ

√
n] dFn(y)

n
∑

j=1

|Dj−1|2,

where Fn is the distribution of |ξ1|.
Finally, we obtain (9.2) by verifying

(9.5) Sn =
2

n2σ2
n

n
∑

j=2

∣

∣

∣

j−1
∑

i=1

V 1/2
n ξi

∣

∣

∣

2

= 1 + op(1).

For this we write ξj = Xj + Yj with

Xj = ξj1[|ξj | ≤
√
n]− E[ξj1[|ξj | ≤

√
n]],

Yj = ξj1[|ξj | >
√
n]− E[ξj1[|ξj | >

√
n]].
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In view of the Cauchy–Schwarz inequality, the desired (9.5) follows from the state-
ments

(9.6) Sn,1 =
2

n2σ2
n

n
∑

i=1

∣

∣

∣

j−1
∑

i=1

V 1/2
n Xj

∣

∣

∣

2

= 1 + op(1)

and

(9.7) Sn,2 =
2

n2σ2
n

n
∑

j=1

∣

∣

∣

j−1
∑

i=1

V 1/2
n Yj

∣

∣

∣

2

= op(1).

The latter follows from the bound

E[Sn,2] =
2

n2σ2
n

n
∑

j=1

(j − 1)E[|V 1/2
n Y1|2] ≤

ρnLn(1)

σ2
n

.

The former follows if we show E[Sn,1] → 1 and Var(Sn,1) → 0. We calculate

E[Sn,1] =
(n− 1)

nσ2
n

|E[V 1/2
n X1|2] =

(n− 1)

n

trace(Wn)

σ2
n

with Wn = V
1/2
n E[X1X

⊤
1 ]V

1/2
n the dispersion matrix of V

1/2
n X1. We have the

identity

Wn = V 1/2
n (Vn − E[ZnZ

⊤
n ]− E[Zn]E[Zn]

⊤)V 1/2
n

with Zn = ξ1[1|ξ1| >
√
n] and obtain the inequality

trace(V 2
n )− 2ρnLn(1) ≤ trace(Wn) ≤ trace(V 2

n ).

This lets us conclude E[Sn,1] → 1. Lemma 1 and the inequalities |V 1/2
n X1|2 ≤ 4nρn

and trace(W 2
n) ≤ trace(V 4

n ) ≤ ρ2ntrace(V
2
n ) yield

Var(Sn,1) ≤
8

n4σ4
n

(n4trace(W 2
n) + n3E(|V 1/2X1|4]) ≤

8ρ2n + 32ρn
σ2
n

→ 0.

This completes the proof of Theorem 2.
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