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Abstract. Suppose we have data from a bivariate model with parametric

marginals. Efficient estimators of the parameters in the marginal models are

generally not efficient in the bivariate model. In this article, we propose a

method of improving these marginal estimators and demonstrate that the mag-

nitude of this improvement can be as large as 100 percent in some cases.

1. Introduction

Let (X,Y ) be a bivariate random vector with distribution Q. Let F denote
the distribution of X and G the distribution of Y . We assume that F and G

belong to regular parametric models, but that Q is unknown otherwise. Then
F = Fα and G = Gβ . The parameter α can typically be estimated efficiently
by the maximum likelihood estimator α̂n based on a random sample X1, . . . , Xn

from Fα. Similarly, the parameter β can be estimated efficiently by the maximum
likelihood estimator β̂n based on a random sample Y1, . . . , Yn from Gβ . If a random
sample (X1, Y1), . . . , (Xn, Yn) from Q is observed, then the marginal estimator α̂n
may no longer be efficient as there may be information about α contained in the
data Y1, . . . , Yn. A similar observation applies to β̂n.

In this paper we propose a simple method of using possible information about α
contained in Y1, . . . , Yn. More precisely, we propose to subtract from α̂n a properly
weighted stochastic term that is an asymptotically unbiased estimator of zero. The
resulting estimator has an asymptotic dispersion matrix that is at most as large
as the asymptotic dispersion matrix of α̂n. A variant of our approach has already
be used in improving nonparametric estimators in the presence of a constraint, see
e.g. Schick and Wefelmeyer (2008) for a recent overview of such methods.

We give the details for our method in Section 2. In Section 3 we discuss the
magnitude of improvement possible by this method. There it is demonstrated that
improvements of up to 100 percent are possible. Section 4 discusses exponential
marginals.

We conclude this introduction by specifying the notion of a regular parametric
model as used throughout this paper. We use regularity in the sense of Bickel et
al (1993, page 12-13) to mean continuous Hellinger-differentiability with positive
definite information matrices. Here is the formal definition.

Definition 1. A model H = {Hθ : θ ∈ Θ} parametrized by an open subset
Θ of Rk is regular if it is dominated by a measure ν, if the map θ 7→

√
hθ =
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dHθ/dν is continuously differentiable in L2(ν) (whose derivative we may write

as θ 7→ (1/2)κ̇(·, θ)
√
hθ for some κ̇(·, θ) ∈ Lk2(Hθ) with

∫
κ̇(x, θ) dHθ(x) = 0), and

if J(θ) =
∫
κ̇(x, θ)κ̇>(x, θ) dHθ(x) is positive for each θ. Then κ̇(·, θ) is called the

score function at θ and J(θ) the information matrix at θ.

2. The Method

Let (X,Y ) be a bivariate random vector with distribution Q. Let F denote the
distribution of X and G the distribution of Y . We assume that F and G belong
to parametric models, but that Q is unknown otherwise. Let F = {Fs : s ∈ Θ1}
denote the parametric model for F with Θ1 an open subset of Rk1 and G = {Gt :
t ∈ Θ2} the parametric model for G, with Θ2 an open subset of Rk2 . We assume
that the models F and G are regular. Since we assume that F belongs to F and
G belongs to G , there are α ∈ Θ1 and β ∈ Θ2 such that F = Fα and G = Gβ .

We write κ̇1(·, s) for the score function of the model F at s, denote the corre-
sponding information matrix by J1(s) =

∫
κ̇1(x, s)κ̇>1 (x, s) dFs(x) and set

ψ1(x, s) = J−1
1 (s)κ̇1(x, s), s ∈ Θ1.

We write κ̇2(·, t) for the score function of the model G at t, denote the corresponding
information matrix by J2(t) =

∫
κ̇2(y, t)κ̇>2 (y, t) dGt(y) and set

ψ2(y, t) = J−1
2 (t)κ̇2(y, t), t ∈ Θ2.

Suppose we observe n independent copiesX1, . . . , Xn ofX only. Then an efficient
estimator α̂n of α must satisfy

(1) α̂n = α+
1
n

n∑
j=1

ψ1(Xj , α) + op(n−1/2).

Similarly, if only n independent copies Y1, . . . , Yn of Y are observable, then an
efficient estimator β̂n of β must satisfy

(2) β̂n = β +
1
n

n∑
j=1

ψ2(Yj , β) + op(n−1/2).

Typically maximum likelihood estimators possess these properties. We assume from
now on that we have available estimators α̂n and β̂n that satisfy (1) and (2).

Now suppose that we observe independent copies (X1, Y1), . . . , (Xn, Yn) of the
pair (X,Y ). The above estimators use only the marginal information. Due to
dependence, information about α may also be contained in the data Y1, . . . , Yn, and
information about β may be contained in the data X1, . . . , Xn. Thus the estimators
α̂n and β̂n may no longer be efficient and better estimators may be available. In this
paper we demonstrate a simple approach of using the data Y1, . . . , Yn to improve
the estimator α̂n of α. By symmetry this also provides a method of improving the
estimator β̂n of β.

By our assumption on the models, G is dominated by a σ-finite measure µ. Write
gt for the density of Gt. Now let us look at a function W from R×Θ2 to Rm such
that, for each t in Θ2,

(3)
∫
W (y, t) dGt(y) = 0,
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(4)
∫
W (y, t)κ̇>2 (y, t) dGt(y) = 0,

(5)
∫
W (y, t)W>(y, t) dGt(y) = Im,

with Im the m×m identity matrix. Suppose also that

(6)
∫
‖W (y, βn)g1/2

βn
(y)−W (y, β)g1/2

β (y)‖2 dµ(y)→ 0

as βn → β. It then follows from Schick (2001) that

n−1/2
n∑
j=1

[W (Yj , βn)−W (Yj , β) + E[W (Y, β)κ̇>2 (Y, β)](βn − β)] = op(1)

for every sequence βn in Θ2 such that n1/2(βn − β) is bounded. This even holds if
we replace βn by a discretized version of β̂n. To simplify notation we require that
this holds without discretization. In view of (4) we then have

(7) n−1/2
n∑
j=1

W (Yj , β̂n) = n−1/2
n∑
j=1

W (Yj , β) + op(1).

For a k1 ×m matrix D, consider the estimator α̂n(D) of α defined by

α̂n(D) = α̂n −
1
n

n∑
j=1

DW (Yj , β̂n).

It has expansion

α̂n(D) = α+
1
n

n∑
j=1

[ψ1(Xj , α)−DW (Yj , β)] + op(n−1/2).

Thus n1/2(α̂n(D) − α) converges in distribution to a normal random vector with
mean zero and the same dispersion matrix Ψ(D) as ψ1(X,α) − DW (Y, β). It is
straightforward to check that this dispersion matrix is minimized by

D = D∗ = E[ψ1(X,α)W>(Y, β)],

resulting in the minimal dispersion matrix

Ψ(D∗) = J−1
1 (α)−D∗D>∗ .

Since D∗D>∗ is non-negative definite, the estimator α̂n(D∗) is asymptotically no
more dispersed than the estimator α̂n. In the case that X and Y are independent,
there is no information on α contained in the data Y1, ..., Yn and no improvement
over α̂n is possible. In this scenario, we have D∗ = 0 and Ψ(D∗) = J−1

1 (α).
The matrix D∗ is unknown and must be estimated. This can be done by

D̂∗ =
1
n

n∑
j=1

ψ1(Xj , α̂n)W>(Yj , β̂n).

This estimator is consistent if

(8)
1
n

n∑
j=1

‖ψ1(Xj , α̂n)− ψ1(Xj , α)‖2 = op(1),
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and

(9)
1
n

n∑
j=1

‖W (Yj , β̂n)−W (Yj , β)‖2 = op(1).

Thus, under assumptions (7)-(9) we find that the estimator

α̂∗n = α̂n − D̂∗
1
n

n∑
j=1

W (Yj , β̂n)

satisfies

(10) α̂∗n = α+
1
n

n∑
j=1

[ψ1(Xj , α)−D∗W (Yj , β)] + op(n−1/2).

Hence
√
n(α̂∗n − α) is asymptotically normal with zero mean vector and dispersion

matrix Ψ(D∗). Thus α̂∗n improves upon α̂n unless D∗ = 0.
We have already seen that D∗ = 0 if X and Y are independent. But D∗ = 0 can

also happen with dependent data. For example, if X and Y have normal marginals
and are jointly normal, then the maximum likelihood estimators of the means and
variances based on the marginal observations coincide with the likelihood estimators
based on the joint distribution and the marginal estimators are also efficient for the
bivariate data and thus cannot be improved.

In the next section we shall discuss the magnitude of the improvements in some
special cases. There we shall see that improvements of up to 100 percent are
possible.

Remark 1. Our method can also be used if the marginal distribution G is known.
In this case we replace W (Yj , β̂n) by W (Yj) where W needs to only satisfy∫

W dG = 0 and
∫
WW> dG = Im.

3. On the Magnitude of the Improvement

To see how large a gain can be achieved with our improvement procedure we con-
sider now a bivariate location model. Let f be a symmetric density that has finite
Fisher information I(f) for location. This means that f is absolutely continuous
and

I(f) =
∫
`2f (x)f(x) dx

is finite, where `f = −f ′/f is the score function for location. We take F to be the
location model F = {Fs : s ∈ R} generated by f in which dFs(x) = f(x− s) dx. It
is well known that this model is regular with

κ̇1(x, s) = `f (x− s), J1(s) = I(f), ψ1(x, s) = `f (x− s)/I(f).

For G we take the location model generated by a symmetric density g with finite
Fisher information I(g) for location. Then G is regular with

κ̇2(y, t) = `g(y − t), J2(t) = I(g), ψ2(y, t) = `g(y − t)/I(g).
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As the underlying joint distribution we take the bivariate probability measure Q
which has a density q of the form

(11) q(x, y) = (1 + ρu(x− α)v(y − β))f(x− α)g(y − β), x, y ∈ R,

for some (unknown) reals α and β and some ρ in [−1, 1]. Here u and v are measur-
able functions with values in [−1, 1] such that

∫
u(x)f(x) dx = 0 and

∫
v(y)g(y) dy =

0. Some of the copula models are of this form. Indeed, the Farlie-Gumbel-
Morgenstern copula model is of this type. See Hutchinson and Lai (1990) and
Nelsen (1999) for properties and applications of this copula model as well as for
additional references.

We take W (y, t) to be of the form w(y − t) for some function w. The above
distribution Q allows now for a simple calculation of D∗. Indeed, under Q, we
calculate

I(f)D∗ = ρE[u(X − α)`f (X − α)]E[v(Y − β)w(Y − β)]

= ρ

∫
u(x)`f (x)f(x) dx

∫
v(y)w(y)g(y) dy.

The required conditions (3)-(6) are implied if we take w so that

(12)
∫
w(y)g(y) dy = 0,

∫
w2(y)g(y) dy = 1,

∫
w(y)g′(y) dy = 0.

A possible choice for w is

w∗(x) = 21[−c,c](x)− 1 =

{
1, |x| ≤ c,
−1, |x| > c,

with c the third quartile of g. Indeed, then the first part of (12) follows from the
choice of c, the second part follows from the fact that |w∗| = 1, and the third part
follows as w∗ is even and g′ is odd. The asymptotic relative efficiency (ARE) of the
proposed estimator α̂∗n to the marginal estimator α̂n is the ratio of the asymptotic
variance 1/I(f)−D2

∗ of α̂∗n and the asymptotic variance 1/I(f) of α̂n:

ARE = 1− I(f)D2
∗ = 1− ρ2

I(f)

(∫
u(x)`f (x)f(x) dx

∫
v(y)w(y)g(y) dy

)2

.

As |v| is bounded by 1, we see that

ARE ≥ 1− ρ2

I(f)

(∫
u(x)`f (x)f(x) dx

)2

with equality if v = w = w∗. Note that u = sign(`f ) is an odd function in view of
the symmetry of f so that

∫
sign(`f (x))f(x) dx = 0 and that |u| = 1. Note also that

this u maximizes |
∫
u(x)`f (x)f(x) dx| subject to |u| ≤ 1 and

∫
u(x)f(x) dx = 0.

Thus we obtain

(13) ARE ≥ 1− ρ2

I(f)

(∫
|f ′(x)| dx

)2

with equality if u = sign(`f ) and v = w = w∗.

Example 1. Let us choose f and g to be the standard normal density p given by
p(x) = (1/

√
2π) exp(−x2/2). This density has finite Fisher information I(p) = 1

and score function `p(x) = x. Based on the marginal observations X1, ..., Xn,
the maximum likelihood estimator α̂n is the sample mean. The sample mean is
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efficient in the (standard) normal location model F with asymptotic variance 1.
For v = w = w∗ and u(x) = sign(x), we obtain

ARE = 1− ρ2 2
π

(∫ ∞
0

x exp(−x2/2) dx
)2

= 1− 2ρ2

π
.

Thus the efficiency gain can be as large as is 2/π or about 63.7 percent.

Example 2. Let us choose f and g to be the Cauchy density given by p(x) =
1/(π(1+x2)). This density has finite Fisher information for location I(p) = 1/2 and
score function `p(x) = 2x/(1 +x2). Based on the marginal observations X1, ..., Xn,
the maximum likelihood estimator α̂n is a solution to the score equation

n∑
i=1

Xi − α̂n
1 + (Xi − α̂n)2

= 0.

This estimator α̂n is efficient in the Cauchy-location model F with asymptotic
variance 2. The third quartile of the Cauchy density p is c = 1. For v = w = w∗ =
21[−1,1] − 1 and u(x) = sign(x), we have

ARE = 1− 2ρ2
(

2
∫ ∞

0

2x
π(1 + x2)2

dx
)2

= 1− 8ρ2

π2
.

Thus the efficiency gain can be as large as is 8/π2 or about 81 percent.

Example 3. Let us choose f and g to be the Laplace (or double exponential) den-
sity p given by p(x) = (1/2) exp(−|x|). This density has finite Fisher information
I(p) = 1 and score function `p(x) = sign(x). The maximum likelihood estimator
α̂n is the sample median of X1, . . . , Xn. It is efficient in the Laplace location model
F and has asymptotic variance 1. The third quartile of the Laplace density p is
c = log 2. For v = w = w∗ = 21[− log 2,log 2] − 1 and u(x) = sign(x), we obtain

ARE = 1− ρ2
(∫ ∞

0

e−x dx
)2

= 1− ρ2.

Thus the efficiency gain can be as large as 1 or 100 percent.

4. Exponential marginals

Let us now assume that F = G = {Fs : s > 0}, where Fs is the exponential
distribution with mean s, i.e., Fs has density fs(x) = f(x/s)/s, where

f(x) = exp(−x)1(0,∞)(x), x ∈ R.

This model is regular with score function κ̇(x, s) = (x − s)/s2 and information
J(s) = 1/s2. Thus ψ1(x, α) = x−α and ψ2(y, β) = y−β. The maximum likelihood
estimator based on a random sample from this model is the sample mean and is
efficient. Thus we take α̂n = X̄ = (X1+· · ·+Xn)/n and β̂n = Ȳn = (Y1+· · ·+Yn)/n.

Here we take W to be of the form W (y, t) = w(y/t) for some function w. The
required conditions (3)-(6) are implied if w satisfies

(14)
∫
w(y)f(y) dy = 0,

∫
w2(y)f(y) dy = 1,

∫
w(y)(y − 1)f(y) dy = 0.
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Possible choices for w are given by w = w(c,d) = (1(c,d) − p)/
√
p(1− p), where

p = exp(−c) − exp(−d) and 0 < c < 1 < d < ∞ are chosen to satisfy c exp(−c) =
d exp(−d).

We shall look at two different joint distributions Q. The first joint distribution
has distribution function H given by

(15) H(x, y) = γF (x/α)F (y/β) + (1− γ) min(F (x/α), F (y/β)), x, y ∈ R,

for some 0 < γ < 1, where F is the distribution function of f . The second joint
distribution has a density q of the form

(16) q(x, y) = (1 + ρu(x/α)v(y/β))f(x/α)f(y/β)/(αβ), x, y ∈ R,

for some ρ in [−1, 1]. Here u and v are measurable functions with values in [−1, 1]
such that

∫
u(x)f(x) dx = 0 and

∫
v(y)f(y) dy = 0.

We shall see that for the first joint distribution our method does not provide any
improvement. Indeed, H is the distribution function of (αX̃, β(1[U ≤ γ]Ỹ +1[U >

γ]X̃) where X̃, Ỹ and U are independent, X̃ and Ỹ are exponentially distributed
with mean 1, and U is uniformly distributed on (0, 1). Thus we can express

D∗ = αE[(X̃ − 1)w(1[U ≤ γ]Ỹ + 1[U > γ]X̃)]

= α(E[1[U ≤ γ](X̃ − 1)w(Ỹ )] + E[1[U > γ](X̃ − 1)w(X̃)].

In view of the independence of U, X̃, Ỹ and the last condition in (14), we find
D∗ = 0. Thus no improvement is possible.

For the second distribution we calculate

D∗ = ρE[u(X/α)(X − α)]E[v(Y/β)w(Y/β)]

= αρ

∫ ∞
0

u(x)(x− 1) exp(−x) dx
∫ ∞

0

v(y)w(y) exp(−y) dy.

The asymptotic relative efficiency of the proposed estimator α̂∗n to the marginal es-
timator α̂n is the ratio of the asymptotic variance α2−D2

∗ of α̂∗n and the asymptotic
variance α2 of α̂n, namely,

ARE = 1− D2
∗

α2
= 1− ρ2

(∫ ∞
0

u(x)(x− 1) exp(−x) dx
∫ ∞

0

v(y)w(y) exp(−y) dy
)2

.

Let us now take u = u∗ = 1(1,∞) − 1(0,1−δ) with δ = log(e− 1). Then the integral
involving u becomes δ∗ = exp(−1) + (1 − δ) exp(δ − 1) = 1 − (1 − e−1) log(e − 1),
and accordingly,

ARE = 1− ρ2δ2∗

(∫ ∞
0

v(y)w(y) exp(−y) dy
)2

.

For the choice w = w(c,d) we obtain

ARE ≥ 1− ρ2δ2∗

√
p(1− p)

max(p, 1− p)

with equality for v = (1(c,d) − p)/max(p, 1− p). If c and d are such that p = 1/2,
then ARE = 1 − ρ2δ2∗. Since δ2∗ ' 0.4327, we see that improvements of up to 56.7
percent are possible.
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