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Abstract—Statistical depth functions provide from the “deepest” point a “center-outward ordering” of multidimensional data. In this

sense, depth functions can measure the “extremeness” or “outlyingness” of a data point with respect to a given data set. Hence, they

can detect outliers—observations that appear extreme relative to the rest of the observations. Of the various statistical depths, the

spatial depth is especially appealing because of its computational efficiency and mathematical tractability. In this article, we propose a

novel statistical depth, the kernelized spatial depth (KSD), which generalizes the spatial depth via positive definite kernels. By choosing

a proper kernel, the KSD can capture the local structure of a data set while the spatial depth fails. We demonstrate this by the half-

moon data and the ring-shaped data. Based on the KSD, we propose a novel outlier detection algorithm, by which an observation with

a depth value less than a threshold is declared as an outlier. The proposed algorithm is simple in structure: the threshold is the only one

parameter for a given kernel. It applies to a one-class learning setting, in which “normal” observations are given as the training data, as

well as to a missing label scenario, where the training set consists of a mixture of normal observations and outliers with unknown

labels. We give upper bounds on the false alarm probability of a depth-based detector. These upper bounds can be used to determine

the threshold. We perform extensive experiments on synthetic data and data sets from real applications. The proposed outlier detector

is compared with existing methods. The KSD outlier detector demonstrates a competitive performance.

Index Terms—Outlier detection, novelty detection, anomaly detection, statistical depth function, spatial depth, kernel method,

unsupervised learning.

Ç

1 INTRODUCTION

IN a variety of applications, e.g., network security [18], [26],
[42], [65], [71], visual surveillance [29], [66], remote sensing

[6], [10], [36], medical diagnostics [33], [20], image processing
[24], zoology and anthropology [76], and revisionary sys-
tematics [14], it is of great importance to identify observations
that are “inconsistent” with the “normal” data. The research
problem underlying these applications is commonly referred
to as outlier detection (or novelty detection or anomaly detection or
fault detection) [7].

From a machine learning perspective, outlier detection can
be categorized into a missing label problem and a one-class
learning problem, depending on the way in which the normal
samples are defined in a training data set. In a missing label
problem, the data of interest consist of a mixture of normal
samples and outliers, in which the labels are missing. The goal
is to identify outliers from the data and, in some applications,

to predict outliers from unseen data. In a one-class learning
problem, normal samples are given as the training data. An
outlier detector is built upon the normal samples to detect
samples that deviate markedly from the normal samples, i.e.,
outliers. This is closely related to the standard supervised
learning problem except that all the training samples have the
same normal label.

Outlier detection has been investigated extensively over
the last several decades by researchers from statistics, data
mining, and machine learning communities. Next, we review
the work most related to this article. For a more comprehen-
sive survey of this subject, the reader is referred to Barnett
and Lewis [7], Hawkins [28], and Markou and Singh [43], [44].

1.1 Outlier Detection as a Missing Label Problem

Because only unlabeled samples are available in a missing
label problem, prior assumptions are needed in order to
define and identify outliers. Frakt et al. [20] proposed an
anomaly detection framework for tomographic data where
an image is modeled as a superposition of background signal
and anomaly signal. Background signal is a zero mean,
wide-sense stationary, Gaussian random field with a known
covariance. Anomaly signal is assumed to be zero every-
where except over a square patch, with prior knowledge of
minimal and maximal possible size, where it is constant. As
a result, anomaly detection is equivalent to determining
whether or not an image region is identically zero, which
is formulated as a multiscale hypothesis testing problem.
Carlotto [10] presented a method to detect man-made objects
(anomalies) in images. For the scenario under consideration,
where the occurrence of man-made objects is rare compared
with that of the background clutters, it is assumed that the
pixel values of a man-made object deviate significantly from
those of the background, which is modeled by a mixture of
Gaussian distributions. Reed and Yu [51] developed an
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anomaly detection algorithm for detecting targets of an
unknown spectral distribution against a background with an
unknown spectral covariance. The background is modeled
as a Gaussian distribution with zero mean and an unknown
covariance matrix. The target is described by a Gaussian
distribution with the mean equal to the known signature of
the target and the covariance matrix identical to that of
the background. Kwon and Nasrabadi [36] introduced a
nonlinear version of Reed and Yu’s algorithm using feature
mappings induced by positive definite kernels. Kollios et al.
[35] observed that the density of a data set contains sufficient
information to design sampling techniques for clustering
and outlier detection. In particular, when outliers mainly
appear in regions of low density, a random sampling method
that is biased toward sparse regions can recognize outliers
with high probability.

All the aforementioned algorithms have one character-
istic, the key component of the method, in common: the
estimation of probability density functions. There are
several algorithms in the literature that are developed
based upon the geometric aspects of a data set rather than
upon distributional assumptions, in particular, the distance-
based algorithms [3], [4], [8], [34], [50], [68], [70]. Knorr and
Ng [34] introduced the notion of distance-based outliers, the
DBðp; dÞ-outlier. A data point x in a given data set is a
DBðp; dÞ-outlier if at least a p fraction of the data points in
the data set lies in more than d distance away from x.
The parameters p and d are to be specified by a user.
Ramaswamy et al. [50] extended the notion of distance-
based outliers by ranking each point on the basis of its
distance to its kth nearest neighbor and declaring the top n
points as outliers. Under the notions in [34] and [50],
outliers are defined based on a global view of the data set.
Breunig et al. [8] proposed the local outlier factor (LOF) that
takes into consideration the local structure of the data set.
The LOF of a data point is computed using the distances
between the point and its “close” neighbors. Hence, an LOF
describes how isolated a data point is with respect to
its surrounding neighbors. Tang et al. [70] defined the
connectivity-based outlier factor that compares favorably
with LOF at low-density regions. Along the line of Breunig
et al. [8], Sun and Chawla [68] introduced a measure for
spatial local outliers, which takes into account both spatial
autocorrelation and spatially nonuniform variance of the
data. Angiulli et al. [4] designed a distance-based method to
find outliers from a given data set and to predict if an
unseen data point is an outlier based on a carefully selected
subset of the given data. Aggarwal and Yu [3] investigated
the influence of high dimensionality on distance-based
outlier detection algorithms. It is observed that most of the
above distance-based approaches become less meaningful
for sparse high-dimensional data. Therefore, projection
methods are tested for outlier detection. Lazarevic and
Kumar [38] proposed a feature bagging approach to handle
high dimensionality. The method combines outputs of
multiple outlier detectors, each of which is built on a
randomly selected subset of features.

Outlier detection method based on the Mahalanobis
distance (MD) has been extensively studied in the statistics
literature [56], [5], [54]. MD is affine invariant. It is robust if
robust estimates of location and scatter matrix are used. A
fast algorithm provided by Rousseeuw and Van Driessen
[55] makes a robust version MD-based methods feasible for
large sample size data. As a missing label problem, outlier

detection has also been studied as byproducts of robust
statistical methods [11], [17], [19], [69]. Danuser and Stricker
[17] presented a framework for generalized least squares
fitting of multiple parametric models. For each fitted model,
the data that support other models are viewed as outliers.
Fidler et al. [19] proposed a classification algorithm, which is
not sensitive to outliers, using a projection method devel-
oped on the basis of the robust dimensionality reduction
technique described in [40]. Takeuchi and Yamanishi [69]
explored outliers and change points detection in time series
using an auto regression model. Castaño and Kunoth [11]
applied a robust regression to the wavelet representation of
one- and two-dimensional (2D) data to estimate outliers.

1.2 Outlier Detection as a One-Class Learning
Problem

When normal observations are given as a training data set,
outlier detection can be formulated as finding observations
that significantly deviate from the training data. A statisti
cally natural tool for quantifying the deviation is the
probability density of the normal observations. Roberts
and Tarassenko [53] approximated the distribution of the
training data by a Gaussian mixture model. For every
observation, an outlier score is defined as the maximum
of the likelihood that the observation is generated by each
Gaussian component. An observation is identified as an
outlier if the score is less than a threshold. Schweizer and
Moura [60] modeled normal data, background clutter in
hyperspectral images, as a three-dimensional Gauss-Markov
random field. Several methods are developed to estimate the
random field parameters. Miller and Browning [46] pro-
posed a mixture model for a set of labeled and unlabeled
samples. The mixture model includes two types of mixture
components: predefined components and nonpredefined
components. The former generate data from known classes
and assume class labels are missing at random. The latter
only generate unlabeled data, corresponding to the outliers
in the unlabeled samples. Parra et al. [47] proposed a class
of volume conserving maps (i.e., those with unit determi-
nant of the Jacobian matrix) that transforms an arbitrary
distribution into a Gaussian. Given a decision threshold,
novelty detection is based on the corresponding contour of
the estimated Gaussian density, i.e., novelty lies outside the
hypersphere defined by the contour.

Instead of estimating the probability density of the normal
observations, Schölkopf et al. [59] introduced a technique to
capture the support of the probability density, i.e., a region in
the input space where most of the normal observations reside
in. Hence, outliers lie outside the boundary of the support
region. The problem is formulated as finding the smallest
hypersphere to enclose most of the training samples in a
kernel induced feature space, which can be converted to a
quadratic program. Because of its similarity to support
vector machines (SVM) [73] from an optimization viewpoint,
the method is called a 1-class SVM. Along the line of a
1-class SVM, Campbell and Bennett [9] estimated the support
region of a density using hyperplanes in a kernel induced
feature space. The “optimal” hyperplane is defined as one
that puts all normal observations on the same side of the
hyperplane (the support region) and as close to the hyper-
plane as possible. Such a hyperplane is the solution of a linear
program. Rätsch et al. [49] developed a boosting algorithm
for one-class classification based on connections between
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boosting and SVMs. Banerjee et al. [6] applied a 1-class SVM
for anomaly detection in hyperspectral images and demon-
strated improved performance compared with the method
described in [51].

There is an abundance of prior work that applies standard
supervised learning techniques to tackle outlier detection [1],
[27], [45], [67]. These methods generate a labeled data set by
assigning one label to the given normal examples and the
other label to a set of artificially generated outliers. In [45], a
neural network-based novelty detector is trained based on
normal observations and artificial novel examples generated
by a uniform distribution. Han and Cho [27] use artificially
generated intrusive sequences to train an evolutionary neural
network for intrusion detection. Abe et al. [1] propose a
selective sampling method that chooses a small portion of
artificial outliers in each training iteration. In general, the
performance of these algorithms depends on the choice of the
distribution of the artificial examples and the employed
sampling plan. Steinwart et al. [67] provide an interesting
justification for the above heuristic by converting outlier
detection to a problem of finding level sets of data generating
density.

1.3 An Overview of the Proposed Approach

In this paper, we propose a novel outlier detection frame-

work based on the notion of statistical depths. Outlier

detection methods that are based on statistical depths have

been studied in statistics and computational geometry [48],

[58], [16]. These methods provide a center-outward ordering

of observations. Outliers are expected to appear more likely

in outer layers with small depth values than in inner layers

with large depth values. Depth-based methods are comple-

tely data-driven and avoid strong distributional assumption.

Moreover, they provide intuitive visualization of the data

set via depth contours for a low-dimensional input space.

However, most of the current depth-based methods do not

scale up with the dimensionality of the input space. For

example, finding peeling and depth contours, in practice,

require the computation of d-dimensional convex hulls [48],

[58], for which the computational complexity is of magnitude

Oð‘d=2Þ, where ‘ is the sample size, and d is the dimension of

an input space. The computational complexity for half-space

depth [72] and simplicial depth [41] is Oð‘d�1 log ‘Þ [57]; for

projection depth [78], it is Oð½ 2ðd�1Þ
d�1

� �
=d�2‘3Þ [22].

Of the various depths, the spatial depth is especially
appealing because of its computational efficiency and
mathematical tractability [61]. Its computational complexity
is of magnitude Oð‘2Þ, independent of dimension d. Spatial
depth has been applied in clustering and classification
problems [31], [23]. Because each observation from a data
set contributes equally to the value of depth function,
spatial depth takes a global view of the data set. Conse-
quently, the outliers can be called as “global” outliers.
Nevertheless, many data sets from real-world applications
exhibit more delicate structures that entail identification of
outliers relative to their neighborhood, i.e., “local” outliers.
We develop an outlier detection framework that avoids the
above limitation of spatial depth. The contributions of this
paper are given as follows:

. A new statistical depth function. We introduce a new
depth function, kernelized spatial depth (KSD), which
defines the spatial depth in a feature space induced by
a positive definite kernel. By choosing a proper kernel,
e.g., Gaussian kernel, the contours of a KSD function
conform with the structure of the data set. Conse-
quently, the KSD can provide a local perspective of the
data set.

. A simple outlier detection algorithm. The KSD of any
observation can be evaluated directly from the data
set with a computational complexity Oð‘2Þ. Observa-
tions with depth values less than certain threshold
are declared as outliers. For a given kernel, the
threshold on the depth value is the only parameter
of the algorithm. We provide upper bounds on the
false alarm probability (FAP) of the detector, i.e., the
probability of misclassifying a normal observation as
an outlier. These upper bounds can be used to
determine the threshold.

. Broad adaptability. The proposed framework applies to
a one-class learning problem and to a missing label
problem provided that an upper bound on the ratio of
normal observations to outliers is given. Our exten-
sive experimental results on artificial data and real
applications demonstrate competitive performance of
the proposed framework.

1.4 Outline of the Paper

The remainder of the paper is organized as follows: Section 2
motivates spatial depth-based outlier detection via the
connection between spatial depth and L1 median. Section 3
introduces KSD. Section 4 presents several upper bounds on
the FAP of the proposed KSD-based outlier detectors for
a one-class learning problem and a missing label problem.
Section 5 provides an algorithmic view of the approach. We
compare the proposed approach with density-based outlier
detection methods in Section 6. In Section 7, we explain the
extensive experimental studies conducted and demonstrate
the results. We conclude and discuss possible future work in
Section 8.

2 MEDIANS, SPATIAL DEPTH, AND OUTLIER

DETECTION

As Barnett and Lewis described [7], “what characterizes the
“outlier” is its impact on the observer (not only will it appear
extreme but it will seem, to some extent, surprisingly extreme).”
An intuitive way of measuring the extremeness is to examine
the relative location of an observation with respect to the rest
of the population. An observation that is far away from the
center of the distribution is more likely to be an outlier than
observations that are closer to the center. This suggests a
simple outlier detection approach based on the distance
between an observation and the center of a distribution.

2.1 Medians

Although both the sample mean and median of a data set
are natural estimates for the center of a distribution, the
median is insensitive to extreme observations, while the
mean is highly sensitive. A single contaminating point to a
data set can send the sample mean, in the worst case, to
infinity, whereas in order to have the same effect on the
median, at least 50 percent of the data points must be moved
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to infinity. Let x1; . . . ;x‘ be observations from a univariate
distribution F and xð1Þ � . . . � xð‘Þ be the sorted observa-
tions in an ascending order. The sample median is xðð‘þ1Þ=2Þ
when ‘ is odd. When ‘ is even, any number in the interval
½xð‘=2Þ;xðð‘þ2Þ=2Þ� can be defined to be the sample median. A
convenient choice is the average

xð‘=2Þþxðð‘þ2Þ=2Þ
2 . Next, we

present an equivalent definition that can be naturally
generalized to a higher dimensional setting.

Let s : IR! f�1; 0; 1g be the sign function, i.e.,

sðxÞ ¼
x
jxj ; x 6¼ 0;
0; x ¼ 0:

�
For x 2 IR, the difference between the numbers of observa-
tions on the left and right of x is

P‘
i¼1 sðxi � xÞ

��� ���. There are
an equal number of observations on both sides of the sample
median, so that the sample median is

any x 2 IR that satisfies
X‘
i¼1

sðxi � xÞ
�����

����� ¼ 0: ð1Þ

Replacing the absolute value j � j with the 2-norm (euclidean
norm) k � k, the sign function is readily generalized to
multidimensional data: the spatial sign function [77] or the
unit vector [12], which is a map S : IRn ! IRn given by

SðxÞ ¼
x
kxk ; x 6¼ 0;
0; x ¼ 0;

�
where kxk ¼

ffiffiffiffiffiffiffiffiffi
xTx
p

, and 0 is the zero vector in IRn. With the
spatial sign function, the multidimensional sample median for
multidimensional data fx1;x2; . . . ;x‘g � IRn is a straight-
forward analogy of the univariate version (1), i.e., it is

any x 2 IRn that satisfies
X‘
i¼1

Sðxi � xÞ
�����

����� ¼ 0: ð2Þ

The median defined in (2) is named as the spatial median [77]
or the L1 median [75], [74]. We refer keen readers to [64] for
a comprehensive review of a variety of multidimensional
medians. Next, we give another equivalent definition of the
spatial median that motivates the depth-based outlier
detection.

2.2 The Spatial Depth

The concept of spatial depth was formally introduced by
Serfling [61] based on the notion of spatial quantiles proposed
by Chaudhuri [13], while a similar concept, L1 depth, was
first described by Vardi and Zhang [74]. For a multivariate
cumulative distribution function (cdf) F on IRn, the spatial
depth of a point x 2 IRn with respect to the distribution F is
defined as

Dðx; F Þ ¼ 1�
Z
Sðy� xÞdF ðyÞ

���� ����:
For an unknown cdf F , the spatial depth is unknown and
can be approximated by the sample spatial depth:

Dðx;XÞ ¼ 1� 1

jX [ fxgj � 1

X
y2X

Sðy� xÞ
�����

�����; ð3Þ

where X ¼ fx1;x2; . . . ;x‘g, and jX [ fxgj denotes the
cardinality of the union X [ fxg. Note that both Dðx; F Þ
and its sample version have a range [0, 1].

Observing (2) and (3), it is easy to see that the depth value
at the spatial median is 1. In other words, the spatial median is
a set of data points that have the “deepest” depth 1. Indeed,
the spatial depth provides from the “deepest” point a
“center-outward” ordering of multidimensional data. The
depth attains the maximum value 1 at the deepest point and
decreases to zero as a point moves away from the deepest to
the infinity. Thus, it gives us a measure of the “extremeness”
or “outlyingness” of a data point, which can be used for outlier
detection. From now on, all depths refer to the sample depth.

2.3 Outlier Detection Using Spatial Depth

Fig. 1 shows a contour plot of the spatial depth Dðx;XÞ
based on 100 random observations (marked with �’s)
generated from a 2D Gaussian distribution with mean zero
and a covariance matrix whose diagonal and off-diagonal
entries are 2.5 and �1.5, respectively. On each contour, the
depth function is constant with the indicated value. The
depth values decrease outward from the “center” (i.e., the
spatial median) of the cloud. This suggests that a point with
a low depth value is more likely to be an outlier than a point
with a high depth value. For example, the point on the
upper right corner on Fig. 1 (marked with �) has a very low
depth value of 0.0539. It is isolated and far away from the
rest of the data points. This example motivates a simple
outlier detection algorithm: identify a data point as an outlier if
its depth value is less than a threshold.

In order to make this a practical method, the following
two issues need to be addressed:

1. How can we decide the threshold?
2. Can the spatial depth function capture the structure

of the data cloud?

We postpone the discussion on the first question to Section 4,
where we present a framework to determine the threshold.
The second question is related to the shape of depth contours.
The depth contours of a spatial depth function tend to be
circular [30], especially at low depth values (e.g., the outer
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Fig. 1. A contour plot of the sample spatial depth based on 100 random
observations (represented by �’s) from a 2D Gaussian distribution. The
depth values are indicated on the contours. A possible outlier is the
observation (marked with �) on the upper right corner that has a very low
depth value 0.0539.
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contour in Fig. 1). For a spherical symmetric distribution,
such contours fit nicely to the shape of the data cloud. It is
therefore reasonable to view a data point as an outlier if its
depth is low because a lower depth implies a larger distance
from the “center” of the data cloud, which is defined by
the spatial median. However, in general, the relationship
between the depth and the outlyingness in a data cloud may
not be as straightforward as is depicted in Fig. 1. For example,
two shows the contours of the spatial depth function based
on 100 random observations generated from a half-moon
shaped distribution (Fig. 2a) and a ring-shaped distribution
(Fig. 2b). From the shapes of the two distributions, it is
reasonable to view the points (marked with �’s) in the center
of both figures as outliers. However, the depth at the location
of the �’s is 0.5155 for the half-moon data and 0.9544 for the
ring data. A threshold larger than 0.5155 would classify more
than 70 percent of the half-moon observations as outliers. For
the ring data, all of the 100 observations have depth smaller
than that of the “outlier” at the center. Since MD-based
outlier detection is a very traditional approach [56], [54], [55],
we demonstrate the contours of MD in Fig. 3.1 These contours
are also constrained to be elliptical, which do not follow the
shape of the distribution unless the underlying model is
elliptically symmetric. Note that unlike the spatial depth-
based outlier detection, a larger MD value indicates a higher
likelihood of being an outlier.

The above example demonstrates that the spatial depth
function may not capture the structure of a data cloud in the
sense that a point isolated from the rest of the population
may have a large depth value. This is due to the fact that the
value of the depth function at a point depends only upon
the sum of the unit vectors, each of which represents the
direction from the point to an observation. This definition
downplays the significance of distance hence reduces the
impact of those extreme observations whose extremity is

measured in (euclidean) distance, so that it gains resistance
against these extreme observations. On the other hand, the
acquirement of the robustness of the depth function trades-
off some distance measurement, resulting in a certain loss
of the measurement of similarity of the data points. The
distance of a point from the data cloud plays an important
role in revealing the structure of the data cloud. In the
following, we propose a method to tackle this limitation of
spatial depth by incorporating into the depth function a
distance metric (or a similarity measure) induced by a
positive definite kernel function.

3 THE KERNELIZED SPATIAL DEPTH

In various applications of machine learning and pattern
analysis, carefully recoding the data can make “patterns”
standing out. Positive definite kernels provide a computa-
tionally efficient way to recode the data [62]. A positive
definite kernel, � : IRn 	 IRn ! IR, implicitly defines an
embedding map:

� : x 2 IRn 7�!�ðxÞ 2 IF;

via an inner product in the feature space IF:

�ðx;yÞ ¼ h�ðxÞ; �ðyÞi; x;y 2 IRn:

For certain stationary kernels,2 e.g., the Gaussian kernel
�ðx;yÞ ¼ expð�kx� yk2=�2Þ, �ðx;yÞ can be interpreted as a
similarity between x and y, hence, it encodes a similarity
measure.

The basic idea of the KSD is to evaluate the spatial depth
in a feature space induced by a positive definite kernel.
Noticing that

kx� yk2 ¼ hx;xi þ hy;yi � 2hx;yi ¼ xTxþ yTy� 2xTy;
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Fig. 2. Contour plots of the sample spatial depths based on 100 random observations (denoted by �’s) of (a) a half-moon shaped distribution and

(b) a ring-shaped distribution. The depth values are indicated on the contours. The observation (denoted by �) at the center of each plot represents a

possible outlier. The depth values for the � observations in (a) and (b) are 0.5155 and 0.9544, respectively.

1. Robust minimum covariance determinant (MCD) estimator of multi-
variate location and covariance are calculated using the “mcdcov” function
provided at http://www.wis.kuleuven.ac.be/stat/robust/libra.html.

2. See [21] for a thorough discussion on stationary kernels along with
other popular positive definite kernels.
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with simple algebra, one rewrites the norm in (3) as

X
y2X

Sðy� xÞ
�����

�����
2

¼

X
y;z2X

xTxþ yTz� xTy� xTzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTxþ yTy� 2xTy

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTxþ zTz� 2xTz
p :

Replacing the inner products with the values of kernel �, we
obtain the (sample) KSD function:

D�ðx;XÞ ¼ 1� 1

jX [ fxgj � 1
	

X
y;z2X

�ðx;xÞ þ �ðy; zÞ � �ðx;yÞ � �ðx; zÞ
��ðx;yÞ��ðx; zÞ

 !1=2

;

ð4Þ

where ��ðx;yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx;xÞ þ �ðy;yÞ � 2�ðx;yÞ

p
. Analogous

to the spatial sign function at 0, we define

�ðx;xÞ þ �ðy; zÞ � �ðx;yÞ � �ðx; zÞ
��ðx;yÞ��ðx; zÞ

¼ 0;

for x ¼ y or x ¼ z. Note that KSD is a spatial depth function
in IF but, in general, is no longer a depth function in IRn

because its center in IF does not necessarily have a preimage
in IRn. Even if we define a new center as the location in IRn

that maximizes the KSD, the KSD value in general does not
decrease monotonically for points moving away from the
new center.

The KSD (4) is defined for any positive definite kernels.
Here, we shall be particularly interested in stationary kernels
(e.g., the Gaussian kernel), because of their close relationship
with similarity measures. Fig. 4 shows the two contour plots
of the KSD based on 100 random observations generated
from the two distributions presented in Fig. 2, the half-moon
distribution (Fig. 4a) and the ring-shaped distribution
(Fig. 4b). The Gaussian kernel with � ¼ 3 is used to kernelize
the spatial depth. Interestingly, unlike the spatial depth, we

observe that the KSD captures the shapes of the two data sets.
Specifically, the contours of the KSD follow closely the shape
of the data clouds. Moreover, the depth values are small for
the possible outliers. The depth values at the location of the
�’s, which can be viewed as outliers, are 0.2495 for the half-
moon data and 0.2651 for the ring-shaped data. Conse-
quently, a threshold of 0.25 (or 0.27) can separate the outliers
from the rest of the half-moon data (or ring data). The
remaining question is how we determine the threshold. This
is addressed in Section 4.

4 BOUNDS ON THE FALSE ALARM PROBABILITY

The idea of selecting a threshold is rather simple, i.e., choose
a value that controls the FAP under a given significance level.
FAP is the probability that normal observations are classified
as outliers. In the following, we first derive the probabilistic
bounds on FAP formulated as a one-class learning problem.
We then extend the results to a missing label problem.

4.1 One-Class Learning Problem

Outlier detection formulated as a one-class learning
problem can be described as follows: We have observations
X ¼ fx1;x2; . . . ;x‘g � IRn from an unknown cdf, Fgood.
Based on the observations X , a given datum x is classified
as a normal observation or an outlier according to whether or
not it is generated from Fgood. Let g : IRn ! ½0; 1� be an outlier
detector, where gðxÞ ¼ 1 indicates that x is an outlier. The
FAP of an outlier detector g, PFAðgÞ, is the probability that
an observation generated from Fgood is classified by the
detector g as an outlier, i.e.,

PFAðgÞ ¼
Z

x2Ro

dFgoodðxÞ;

where Ro ¼ fx 2 IRn : gðxÞ ¼ 1g is the collection of all
observations that are classified as outliers. The FAP can be
estimated by the false alarm rate, P̂FAðgÞ, which is computed by
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Fig. 3. Contour plots of MD based on 100 random observations (denoted by �’s) of (a) a half-moon shaped distribution and (b) a ring-shaped

distribution. The MD values are indicated on the contours. The observation (denoted by �) at the center of each plot represents a possible outlier.

The MD values for the � observations in (a) and (b) are 0.6123 and 0.0741, respectively.
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P̂FAðgÞ ¼
jfx 2 X : gðxÞ ¼ 1j

jXj :

Consider a KSD-based outlier detector depicted in Fig. 5,
where t 2 ½0; 1� is a threshold, and b determines the rate
of transition of output from 1 to 0. For a given data set X
and kernel � and b 2 ½0; 1�, we define an outlier detector
g�ðx;XÞ by

g�ðx;XÞ ¼
1; if D�ðx;XÞ � t;
tþb�D�ðx;XÞ

b ; if t < D�ðx;XÞ � tþ b;
0; otherwise:

8<: ð5Þ

An observation x is classified as an outlier according to
g�ðx;XÞ ¼ 1. Denote IEF jX as the expectation calculated
under cdfF for a givenX . We have the following theorem for
the bound of the FAP.

Theorem 1. Let X ¼ fx1;x2; . . . ;x‘g � IRn be an independent
and identically distributed (i.i.d.) sample from cdf F . Let
g�ðx;XÞ be an outlier detector defined in (5). Fix � 2 ð0; 1Þ. For a
new random observation x from F , the following inequality
holds with probability at least 1� �:

IEF jX g�ðx;XÞ½ � � 1

‘

X‘
i¼1

g�ðxi;XÞ þ
2

‘b
þ 1þ 4

b

� 	 ffiffiffiffiffiffiffi
ln 2

�

2‘

s
: ð6Þ

It is worthwhile to note that there are two sources of
randomness in the above inequality: the random sample
X and the random observation x. For a specific X , the
above bound is either true or false, i.e., it is not random.
For a random sample X , the probability that the bound is
true is at least 1� �. For a one-class learning problem, we
can let F ¼ Fgood. It is not difficult to show that PFAðg�Þ �
IEF jX g�ðx;XÞ½ �, where the equality holds when b ¼ 0. This
suggests that (6) provides us an upper bound on the FAP.
A proof of Theorem 1 is given in the Appendix.

Theorem 1 suggests that we can control the FAP by

adjusting the t parameter of the detector. Although t does not

appear explicitly in (6), it affects the value of 1
‘

P‘
i¼1 g�ðxi;XÞ,

which is an upper bound on the false alarm rate (of g�ðx;XÞ
to be precise), the sample version of FAP. Note that the

detector is constructed and evaluated using the same set of

observations X . A bound as such is usually called a training

set bound [37]. Next, we derive a test set bound, where the

detector is built upon a collection of observations, called a

training data set, and evaluated on a different collection of

observations called a test set.

Theorem 2. Let X ¼ fx1;x2; . . . ;x‘traing � IRn and Y ¼
fy1;y2; . . . ;y‘testg � IRn be i.i.d. samples from a distribution
F on IRn. Let g�ðx;XÞ be an outlier detector defined in (5). Fix
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Fig. 4. Contour plots of KSD functions based on 100 random observations (marked with �’s) from (a) a half-moon distribution and (b) a ring-shaped

distribution. The depth values are marked on the contours. The depth is kernelized with the Gaussian kernel �ðx;yÞ ¼ expð�kx� yk2=�2Þ with � ¼ 3.

The observation (marked with �) at the center of each plot represents a possible outlier. The depth values for the � observations in (a) and (b) are

0.2495 and 0.2651, respectively.

Fig. 5. A depth-based outlier detector. An output value of 1 indicates an

outlier, i.e., an observation with depth smaller than t is classified as an

outlier.
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� 2 ð0; 1Þ. For a new random observation x from cdf F , the
following bound holds with probability at least 1� �:

IEF jX ½g�ðx;XÞ� �
1

‘test

X‘test
i¼1

g�ðyi;XÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
lnð1�Þ
2‘test

s
: ð7Þ

It is not difficult to validate that 1
‘test

P‘test
i¼1 g�ðyi;XÞ

monotonically decreases when b approaches 0. Hence, for a
fixed threshold t, the test set bound is the tightest at b ¼ 0
(recall that EF jX ½g�ðx;XÞ� ¼ PFAðg�Þ at b ¼ 0). In this scenar-
io, the FAP is bounded by the false alarm rate, evaluated on
the test set, plus a term that shrinks in a rate proportional to
the square root of the size of the test set. This suggests that
we can always set b ¼ 0 if we apply the above test set bound
to select an outlier detector. For a given desired FAP, we
should choose the threshold to be the maximum value of t
such that the right-hand side of (7) does not exceed the
desired FAP. A proof of Theorem 2 is given in the Appendix.

The training set bound in (6) is usually looser than the
above test set bound because of the 1=b factor. Moreover,
unlike the test set bound, we cannot set b be 0 for the obvious
reason. Hence, we have to do a search on both band t to choose
an “optimal” outlier detector, the one with the largest t that
gives an upper bound on the FAP no greater than the desired
level. As a result, the test set bound is usually preferred when
the number of observations is large so that it is possible to
have enough observations in both the training set and test set.
On the other hand, we argue that the training set bound is
more useful for small sample size, under which both bounds
will be loose. Therefore, it is more desirable to build the
outlier detector upon all available observations instead of
sacrificing a portion of the precious observations on the test
set. In this scenario, the relative, rather than the absolute,
value of the bounds can be used to select the tparameter of an
outlier detector.

4.2 Missing Label Problem

For a missing label problem, all observations are unlabeled,
or put it equivalently, they come from a mixture of Fgood and
Foutlier, i.e., F ¼ ð1� �ÞFgood þ �Foutlier for some � 2 ½0; 1�.
Consequently, the above training set and test set bounds
cannot be directly applied to select detectors because
PFAðg�Þ could be greater than IEF jX ½g�ðx;XÞ�—an upper
bound on IEF jX ½g�ðx;XÞ� does not imply an upper bound on
the FAP.

Fortunately, the results of Theorems 1 and 2 can be
extended to the missing label problem under a mild
assumption, namely, the prior probability � for outliers
does not exceed a given number r 2 ½0; 1�. In other words,
� � r means that the probability of a randomly chosen
observation being an outlier is not greater than r. Since
outliers are typically rare in almost all applications that
outliers are sought, quantifying the rareness via an upper
bound on � is actually not a restrictive but a defining
presumption.

Theorem 3. Let X ¼ fx1;x2; . . . ;x‘g � IRn be i.i.d. samples
from a mixture distribution

F ¼ ð1� �ÞFgood þ �Foutlier; � 2 ½0; 1�

on IRn. Let g�ðx;XÞ be an outlier detector defined in (5).
Suppose that � � r for some r 2 ½0; 1�. Then,

IEFgoodjX ½g�ðx;XÞ� �
1

1� r IEF jX ½g�ðx;XÞ� : ð8Þ

A proof of Theorem 3 is given in the Appendix.
Based on (8), the bounds on FAP for the one-class learning

problem can be extended to the missing label problem: the
training set bound (6) is of the form

PFAðg�Þ �
1

1� r
1

‘

X‘
i¼1

g�ðxi;XÞ þ
2

‘b
þ 1þ 2

b

� 	 ffiffiffiffiffiffiffi
ln 2

�

2‘

s24 35
and the test set bound (7) is of the form

PFAðg�Þ �
1

1� r
1

‘test

X‘test
i¼1

g�ðyi;XÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
ln 1

�

2‘test

s24 35 : ð9Þ

If r is small, 1=ð1� rÞ 
 1. This suggests that the bounds for
the missing label problem are only slightly larger than those
for the one-class learning problem for small r.

5 AN ALGORITHMIC VIEW

We summarize the above discussion in a pseudocode. The
input is a collection of observations X ¼ fx1;x2; . . . ;x‘g
2 IRn, a kernel �, and parameter t. These observations are
generated by either Fgood (in a one-class learning problem) or
ð1� �ÞFgood þ �Foutlier (in a missing label problem). Note that
the threshold t is the key parameter in determining whether
an observation is an outlier. The parameter b is needed only
when the training set bound (6) is used to select t. The
following pseudocodes determine whether an observation x
is an outlier. In terms of the number of kernel evaluations and
multiplications, the cost of computing the KSD for a given
observation is Oð‘2Þ.

Algorithm 1. Learning an outlier detector

1 FOR (every pair of xi and xj in X )

2 Kij ¼ �ðxi;xjÞ
3 END

4 given input x

5 FOR (every observation xi in X)
6 �i ¼ �ðx;xi)
7 �i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx;xÞ þKii � 2�i

p
8 IF �i ¼ 0

9 zi ¼ 0

10 ELSE

11 zi ¼ 1
�i

12 END

13 END

14 FOR (every pair of xi and xj in X )

15 eKij ¼ �ðx;xÞ þKij � �i � �j
16 END

17 D�ðx;XÞ ¼ 1� 1
jX[fxgj�1

ffiffiffiffiffiffiffiffiffiffiffiffi
zT eKz

p
18 OUTPUT (x is an outlier if D�ðx;XÞ � t)

The above pseudocode assumes that the kernel � is given.
The choice of kernel is very important in every kernel method.
For Gaussian kernel, which is used in our experimental study,
� determines the size of the neighborhood that is used to
compute the KSD for an observation. On one extremity, it can
be proven that KSD converges to the spatial depth when �
goes to1. In this case, at any point x, all observations in the

CHEN ET AL.: OUTLIER DETECTION WITH THE KERNELIZED SPATIAL DEPTH FUNCTION 295

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 28, 2009 at 12:20 from IEEE Xplore.  Restrictions apply.



data set contribute equally to the KSD value at x because each
observation contributes a unit vector representing the
direction from x to the observation. On the other extremity,
when � approaches 0, the KSD tends to the same constant
depth value, 1�

ffiffi
2
p

2 , for every point in the original feature
space.3 As this constant is independent of the observations in
the data set, i.e., D�¼0ðx;XÞ ¼ 1�

ffiffi
2
p

2 for every x 2 IRn and
every X � IRn, we can essentially view X as noninformative
in defining KSD. In other words, none of the observations in
the data set contributes to KSD when � ¼ 0. Fig. 6 demon-
strates the variation of the shape of KSD contours for the half-
moon data with � ¼ 1; 3; 9; 27; and 81. For comparison, we
also include the spatial depth contour in Fig. 6f. It is clear that
the KSD contours approaches the spatial depth contour as �
increases.

The � parameter determines the trade-off between the
global and local behaviors of KSD. A properly chosen �
should result in the contours of KSD following the geometric
shape of the underlying model. We consider a generalized
Gaussian kernel:

�ðx;yÞ ¼ exp �ðx� yÞT��1ðx� yÞ
� �

;

where � ¼ Diag½�2
1; �

2
2; . . . ; �2

n� is a diagonal matrix. We
propose to choose the componentwise scale parameter �k
in accordance with the dispersion of the data along the
kth dimension. Hence, we suggest the following methods to
estimate �:

. �1. �k ¼ meani;j¼1;...;‘jxik � xjkj, where xik and xjk
represent the kth component of the observation xi
and xj, respectively.

. �2. �k ¼ mediani;j¼1;...;‘jxik � xjkj.

. �3. �k ¼ meani¼1;...;‘jxik �meanj¼1;...;‘xjkj.

. �4. �k ¼ mediani¼1;...;‘jxik �medianj¼1;...;‘xjkj.
The �k in �1 is the well-known mean difference also called
Gini difference. It is less sensitive to outliers than the sample
standard deviation. The �k in �2 is the more robust version
of Gini difference by replacing mean by median. It is
discussed in [15]. The �k in �3 and �4 are also robust
dispersion estimates, commonly referred to as MAD (mean/
median absolution deviation). In Section 7, we provide
empirical results for all the above estimators.

6 A COMPARISON OF KSD AND DENSITY-BASED

OUTLIER DETECTION

In the above discussion of KSD, we focus our choice of kernel
on stationary kernels, in particular, the Gaussian kernel.
Stationary kernels have been widely used in kernel density

296 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 2, FEBRUARY 2009

Fig. 6. (a)-(e) Contour plots of the KSD functions with different values of � based on 100 random observations (marked with �’s) from a half-moon

distribution. (f) Contour plot of the spatial depth function. (a) KSD contour, � ¼ 1. (b) KSD contour, � ¼ 3. (c) KSD contour, � ¼ 9. (d) KSD contour,

� ¼ 27. (e) KSD contour, � ¼ 81. (f) spatial depth contour.

3. For the uninteresting case where the data set contains only one
observation, the value of KSD (and spatial depth) at that observation is by
definition always 1 and 0 everywhere else.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 28, 2009 at 12:20 from IEEE Xplore.  Restrictions apply.



estimation and the related density-based outlier detection
methods. Next, we discuss the distinctions between KSD-
and density-based outlier detection.

. A KSD function is distinct from a density function.
While a density describes a likelihood, the KSD

measures the outlyingness of a point with respect to
the whole population. A density has a range ½0;1Þ;
KSD has range [0, 1].

. A sample KSD function is different from a kernel
density estimate.

In kernel density estimation, the bandwidth para-
meter, (e.g., � in Gaussian kernel) has to decrease to
zero as the sample size increases to infinity in order to
have consistency. In a sample KSD function, each
diagonal element of � converges to the true disper-
sion of the data along the corresponding dimension,
which is in general greater than 0. Moreover, KSD can
be constructed from nonstationary kernels such as the
polynomial kernels, which cannot be used in density
estimation.

. The underlying assumption of depth-based outlier
detection approaches is different from that of density-
based methods.

Density-based outlier detection assumes that out-
liers mainly appear in low-density regions. While in
depth-based outlier detection, outliers are defined as
those observations that are distant from the majority
of the population (measured by depth values).
Observations from a high-density region may be
separated from the majority of the population, which
resides in a low-density area. For one example, Fig. 7
shows 800 observations generated by a distribution
F ¼ 0:1U½0;0:2� þ 0:9U½2;12�, where U½a;b� denotes a uni-
form distribution over the interval ½a; b�. Among the
800 observations, only around 80 are generated
by U½0;0:2�; the rest of them are from U½2;12�. However,
the density function has a value of 0.5 on
the interval [0, 0.2] and 0.09 on the interval [2, 10].

Fig. 7a shows the estimated probability density

using Guassian kernel with � ¼ 0:06. Fig. 7b shows

the KSD with � ¼ �3 (other choices of � produce

similar results). In this example, a density-based

approach would classify all the observations from

U½2;12� as outliers before it could identify any

observation from U½0;0:2� as an outlier. In contrast,

with a threshold 0.2632, KSD outlier detection would

claim all observations from U½0;0:2� as outliers together

with 24 observations that are in the right end of the

interval [2, 12].

7 EXPERIMENTAL RESULTS

We present systematic evaluations of the proposed outlier

detector. In the first experiment, we test the KSD outlier

detection on several synthetic data sets. Next, we apply the

proposed outlier detection method to a problem in taxo-

nomic research, new species discovery. Finally, on several real-

life data sets, we compare the performance of the proposed

method with that of three well-established outlier detection

algorithms, the LOF [34], the feature bagging [38], and the

active learning [1].

7.1 Synthetic Data

For the synthetic data, we consider the following four

models:

. Synthetic 1. Foutlier is uniform over the

region ½�10; 10� 	 ½�10; 10�. Fgood is a mixture

of five 2D Gaussian distributions (with equal

weights): N1 � Nð½0; 0�T ; IÞ, N2 � Nð½4; 4�T ; IÞ,
N3 � Nð½�4; 4�T ; IÞ, N4 � Nð½�4;�4�T ; IÞ, a n d

N5 � Nð½4;�4�T ; IÞ, where Nð��;�Þ denotes Gaussian

with mean �� and covariance matrix �.
. Synthetic 2. Foutlier is a 2D Gaussian distribution,

Nð½0; 6�T ; 4IÞ. Fgood is identical to that in Synthetic 1.
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Fig. 7. Kernel density estimates and KSD of 800 observations from a mixture of two uniform distributions: 0:1U½0;0:2� þ 0:9U½2;12�. Observations are

marked along the horizontal axis. (a) Kernel density estimates. (b) KSD.
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. Synthetic 3. Foutlier is identical to that of Synthetic 1.
Fgood is a mixture of three Gaussian distributions
(with equal weights):

N1 �N ½�3; 1�T ;
1:750 �1:299

�1:299 3:250


 �� 	
;

N2 �N ½4;�1�T ;
3:938 2:923

2:923 7:313


 �� 	
;

N3 �N ½�6;�4�T ;
0:293 0:117

0:117 0:158


 �� 	
:

. Synthetic 4. Foutlier is identical to that of Synthetic 2.
Fgood is identical to that of Synthetic 3.

For each synthetic data, we first simulate the one-class

learning scenario. A training set and a validation set, each

consists of 600 i.i.d. observations, are generated from Fgood.

The KSD function is constructed based on the 600 training

observations using Gaussian kernel with � ¼ �2. We

suppose that FAP should be controlled under 0.1. To

achieve this, we apply the test set bound (7) with � ¼ 0:05

to select the threshold t, i.e., t is chosen such that with

probability at least 0.95 FAP is less than 0.1. Specifically, we

search for the maximum value of t that makes the false

alarm rate, evaluated from the validation set, no greater than

0:1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð1=0:05Þ

2	600

q
¼ 0:050. All observations with KSD value

less than t are identified as outliers. We then apply the

detector to a test set of 630 i.i.d. observations, among which

600 are generated from Fgood and the remaining 30 from

Foutlier. Fig. 8 shows, for each synthetic data, 630 test

observations superimposed with the contour of the KSD at
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Fig. 8. Decision boundaries of the proposed outlier detectors in one-class learning scenario (solid curves) and missing label scenario (dotted curves)

based on 630 i.i.d. test observations in which 600 (marked with �’s) were generated from Fgood and 30 (marked with �’s) from Foutlier. Observations

outside each contour are classified as outliers. (a) Synthetic 1. (b) Synthetic 2. (c) Synthetic 3. (d) Synthetic 4.
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value t (the solid curve). The �’s and �’s represent

observations from Fgood and Foutlier, respectively. The regions

enclosed by the contour have KSD values greater than t.

Table 1 (columns 2-4) shows the false alarm rates and the

detection rates of our detector along with the threshold

values.

Next, we simulate the missing label scenario. Each of the

training and validation set contains 630 i.i.d. observations, of

which 600 are generated from Fgood and 30 from Foutlier.

Hence, the data can be viewed as being generated from a

mixture distribution F ¼ ð1� �ÞFgood þ �Foutlier, where

� ¼ 0:0476. The KSD function is built upon the training set

using Gaussian kernel with � ¼ �2. Same as the one-class

learning scenario, we assume that FAP should be kept

below 0.1. Therefore, we apply the inequality (9) with � ¼
0:05 and � � r ¼ 0:05 to select the threshold t. Specifically,

we search for the maximum value of t that makes the false

alarm rate, evaluated from the validation set, no greater than

ð1� rÞ0:1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=0:05Þ

2	630

q
¼ 0:046. We apply the detector to the

same test sets as in the one-class learning scenario. Fig. 8

shows, for each synthetic data, 630 observations and the

contour of KSD at the selected threshold (the dotted curve).

Table 1 (columns 5-7) shows the selected threshold value,

the false alarm rate, and the detection rate of our detector.
Compared with the one-class learning setting, the detec-

tion rate is lower in the missing label case across all four data
sets. This is because we need to be more conservative in
selecting the threshold under the missing label scenario (the
1� r effect in (9)), which leads to a smaller false alarm rate
and a smaller detection rate.

7.2 New Species Discovery in Taxonomic Research

Approximately, 1.4 million species are currently known to
science. However, estimates based on the rate of new species
discovery place the total number of species on planet earth at
10 to 30 times this number. Human population expansion
and habitat destruction are causing extinctions of both
known and yet to be discovered species. The accelerated
pace of species decline has fueled the current biodiversity
crisis, in which it is feared large percentage of the earth’s
species will be lost before they can be discovered and
described. The job of discovering and describing new species
falls on taxonomists. Moreover, the pace of taxonomic

research, as traditionally practiced, is very slow. In recogniz-
ing a species as new to science, taxonomists use a gestalt
recognition system that integrates multiple characters of
body shape, external body characteristics, and pigmentation
patterns. They then make careful counts and measurements
on large numbers of specimens from multiple populations
across the geographic ranges of both the new and closely
related species, and identify a set of external body characters
that uniquely diagnoses the new species as distinct from all
of its known relatives. The process is laborious and can take
years or even decades to complete, depending on the
geographic range of the species.

Here, we formulate new species discovery as an outlier
detection problem. We apply the proposed outlier detection
method to a small group of cypriniform fishes, comprising
five species of suckers of the family Catostomidae and five
species of minnows of the family Cyprinidae, in order to
demonstrate its excellent potential in new species discovery.

7.2.1 Data Set and Shape Features

The data set consists of 989 specimens from Tulane University
Museum of Natural History (TUMNH). The 989 specimens
include 128 Carpiodes carpio, 297 Carpiodes cyprinus, 172 Car-
piodes velifer, 42 Hypentelium nigricans, 36 Pantosteus discobolus,
53 Campostoma oligolepis, 39 Cyprinus carpio, 60 Hybopsis
storeriana, 76 Notropis petersoni, and 86 Luxilus zonatus. We
assign identifiers 1 to 10 to the above species. The first five
species belong to the family Catostomidae (suckers). The next
five species belong to the family Cyprinidae (minnows). Both
families are under the order Cypriniformes. Sample images of
specimens from the above 10 known species are shown in
Fig. 9.

Over the past decade, digital landmarking techniques
have been widely used to analyze body shape variation, in a
procedure called Geometric Morphometrics [39], [2], [63].
These landmarks (LMs) are biologically definable points
along the body outline, which are arguably related by
evolutionary descent. The LMs of each specimen are saved as
2D coordinates. Nonshape related variation in LM coordi-
nates can be removed using techniques such as Generalized
Procrustes Analysis [25], [32]. Fig. 10 shows 15 homologous
LMs digitized on a fish specimen using the TpsDIG software
tool developed by F. James Rohlf of SUNY Stony Brook.4

Various body shape characters can be extracted from these
LMs and expressed in a fairly simple language of lengths,
angles, areas, and ratios of these. For example, “the length of
the snout” is directly related to the slope of the line connecting
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TABLE 1
Threshold t, False Alarm Rate, and Detection Rate under One-Class Learning and Missing Label Scenarios

False alarm rate is the percentage of normal samples in the test set that are misclassified as outliers. Detection rate is the percentage of outliers in
the test set that are identified correctly.

4. http://life.bio.sunysb.edu/morph/.
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the tip of the snout (LM 1) and the naris (LM 2), which can be
computed as the angle between the vertical axis and the line
connecting LM 1 and LM 2. The “slenderness of the body” can
be defined as the ratio of the body depth (computed as the
distance between LM 4 and LM 11) to the body length
(computed as the distance between LM 13 and LM 7).

Generalized Procrustes Analysis [32] is used to remove
nonshape related variation in LM coordinates. Specifically,
the centroid of each configuration (based on the 15 LMs
associated with each specimen) is translated to the origin,
and configurations are scaled to a common unit size. We then
compute 12 features for each specimen using the 15 LMs. A
detailed description of these features is given in [14].

7.2.2 Results

In the first experiment, we held specimens from one of the
10 species as the “unknown” specimens and specimens of
the other nine species as known. The specimens from the
nine known species are then randomly divided into two
groups of roughly equal size. One group is used to build
the KSD function. The other group is used to compute the
upper bound on the FAP based on (7) for � ¼ 0:05. The
parameter t is chosen such that the upper bound on
the FAP is equal to one minus the detection rate evaluated
from the unknown specimens. We denote this critical
value of the upper bound on the FAP by e�. The detection
rate is therefore 1� e�. Loosely speaking, e� implies that
the FAP of the outlier detector is less than e� when its
detection rate is 1� e�. Therefore, a smaller value of e�

indicates that a larger percentage of the unknown speci-
mens are outliers with respect to the known species, which
in turn suggests the possibility that the unknown speci-
mens represent a new species.

The results are reported in Table 2. As one can see,
the proposed outlier detector produces comparable results
across all four choices of the kernel parameter. The KSD

outlier detector identifies most of the unknown species as
outliers, i.e., “new” with high detection rate and low false
alarm probabilities. For example, when �1 is selected, the
detection rate of Hypentelium nigricans is 0.952, and its FAP
is less than 0.048; the detection rate of Cyprinus carpio is
0.949, and its FAP is less than 0.051; Pantosteus discobolus

has a detection rate 0.917 and FAP less than 0.083; Carpiodes

velifer has a detection rate 0.802 and FAP less than 0.198;
Carpiodes cyprinus has a detection rate 0.788 and FAP less
than 0.212; Carpiodes carpio has a detection rate 0.711 and
FAP less than 0.289; and Campostoma oligolepis has a
detection rate 0.698 and FAP less than 0.302. On the other
hand, the method does not produce a good detection rate for
Hybopsis storeriana, Notropis petersoni, and Luxilus zonatus.
The detection rate for Notropis petersoni is especially low at
0.395. We also compared the KSD outlier detector with a
more traditional technique based on MD ðMdistÞ, where a
larger Mdist value indicates a higher likelihood of being an
outlier. On 7 out of the 10 species, this traditional approach
produces a detection rate lower than that of the KSD
approach (regardless of the choice of the kernel parameter).
In addition, it predicts poorly for five species, Carpiodes

carpio, Campostoma oligolepis, Hybopsis storeriana, Notropis

petersoni, and Luxilus zonatus. Hence, the proposed approach
seems to be more competitive on this data set.

7.3 Comparison with Other Approaches

We compare the performance of the proposed approach with
three existing outlier detection algorithms: the well-known
LOF method [34], the recent feature bagging method [38],
and the most recent active learning outlier detection method
[1]. The data sets we used for the comparison include two
versions of Ann-Thyroid, the Shuttle data, and the KDD-Cup
1999 intrusion detection data. Ann-Thyroid and Shuttle data
sets are available from the UCI Machine Learning Reposi-
tory. The KDD-Cup 1999 data set is available at the UCI KDD
Archive. To be consistent with the experimental setup in [38]
and [1], one of the rare classes is chosen as the outlier class in
our experiment. The outlier classes are listed in Table 3. In
[38], the smallest intrusion class, U2R, was chosen as the
outlier class. We found that the outlier class in [38] actually
contains several other types of attacks including ftp_write,
imap, multihop, nmap, phf, pod, and teardrop. The number
of outliers is 246.

Each data set is randomly divided into a training set
and a test set. Approximately, half of the observations in
Thyroid and Shuttle data sets are selected as training data.
For the KDD-Cup 1999 data set, the training set contains
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Fig. 10. Digitized 15 homologous LMs using TpsDIG Version 1.4

(� 2004 by F. James Rohlf).

Fig. 9. Sample specimens from 10 species of the family Catostomidae (suckers) and Cyprinidae (minnows).
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10,000 randomly chosen observations, and the test set has
the remaining 50,839 observations. In the one-class learning
scenario, the outliers in the training set are excluded from
the construction of the KSD function, while in the missing
label scenario, the KSD function is built on all observations
in the training set. As in [38] and [1], we use the area under
the ROC curve (AUC) as the performance metric. The
average AUC over 10 random splits are reported for the
proposed approach in Table 3 along with the standard
deviation. The AUC values of the LOF, the feature bagging,
and the active learning methods are obtained from [38] and
[1]. The standard deviations are included when they are
available.

As expected, the performance of the proposed approach
degrades when the outliers are included in the construction
of the KSD function, i.e., in the missing label scenario. Both
LOF and feature bagging were evaluated under the one-
class learning scenario, where detectors were built from
normal observations. In Table 3, it is clear that the
KSD-based outlier detection (one-class learning) using

Gaussian kernel consistently outperforms the LOF and the
feature bagging methods on all four data sets. The
performance of KSD with Gaussian kernel is comparable
with that of the active learning on all four data sets (except
for �4 on the KDD-Cup’99 data). We observed that
polynomial kernel generates the best performance on the
KDD-Cup’99 data.

The active learning outlier detection transforms outlier
detection to a binary classification problem using artificially
generated observations that play the role of potential
outliers. As pointed out by the authors in [1], the choice
of the distribution of synthetic observations is domain
dependent. In contrast, no prior knowledge on the dis-
tribution of outliers is required by the KSD outlier
detection.

8 CONCLUSIONS AND FUTURE WORK

We have proposed the KSD and an outlier detection method
using the KSD function. The KSD is a generalization of the
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TABLE 2
With Probability at Least 0.95, the FAP Is Less than e�, and the Detection Rate Is 1� e�

A smaller value of e� indicates a smaller FAP and a larger detection rate. �1, �2, �3, and �4 denote the KSD outlier detectors with four choices of
the kernel parameter. Mdist denotes an MD-based outlier detector.

TABLE 3
Performance Comparison of KSD, LOF, Feature Bagging, and Active Learning Outlier Detection Methods

The area under the ROC curve (AUC) for each method and each data set is shown. A larger AUC value (closer to 1) indicates better performance.
�1, �2, �3, and �4 denote the four parameter selection strategies proposed in Section 5 for Gaussian kernel. Poly2 and Poly3 represent polynomial
kernels with degrees 2 and 3, respectively.
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spatial depth [61], [13], [74]. It defines a depth function in a

feature space induced by a positive definite kernel. The KSD

of any observation can be evaluated using a given set of

samples. The depth value is always within the interval [0, 1]

and decreases as a data point moves away from the center,

the spatial median, of the data cloud. This motivates a simple

outlier detection algorithm that identifies an observation as

an outlier if its KSD value is smaller than a threshold. We

derived the probabilistic inequalities for the FAP of an outlier

detector. These inequalities can be applied to determine the

threshold of an outlier detector, i.e., the threshold is chosen to

control the upper bound on the FAP under a given level. We

evaluated the proposed outlier detection algorithm over

synthetic data sets and real-life data sets. In comparison with

other methods, the KSD-based outlier detection demon-

strates competitive performance on all data sets tested.
The proposed method has some limitations:

. The implementation of the KSD requires the storage
of all ‘ training observations. The required storage
space could be prohibitive for applications with large
training sets. Furthermore, the rate of the detector
can be slow for large-scale applications because the
computational complexity of evaluating the KSD for
an observation is Oð‘2Þ.

. As currently formulated, the proposed KSD function
cannot directly handle symbolic features. In some
applications, however, features are symbolic. For
example, the “protocol_type” feature in the
KDD-Cup’99 data set takes values of “udp,” “tcp,”
or “icmp.” In our experiments, a symbolic feature is
mapped to discrete numbers, e.g., “udp” ! 0, “tcp”
! 1, and “icmp” ! 2. However, this mapping
inevitably introduces a bias: two symbols are
“similar” if they are numerically close.

Continuations of this work could take several directions:

. Using selective sampling to reduce storage space and
computational cost. We tested a random sampling
method to reduce the computational complexity of
the KSD function. Fig. 11 shows the AUC values for
Ann-Thyroid 1 data set, where only a portion of
randomly selected training observations were used
to construct the KSD function. This simple method
seems to perform very well: when 10 percent of the
training observations were used to build the KSD
function, the AUC value merely decreased from
0.9725 to 0.9564. It will be promising to investigate
other selective sampling approaches.

. Kernel selection. In the current work, the Gaussian
kernel is applied in the empirical study. The proposed
algorithm for choosing � parameter for a Gaussian
kernel is simple and seems to be effective but is by
no means “optimal”. It will be interesting to explore
other alternative methods to select �. It will also be
interesting to test other types of kernels. In particular,
a kernel defined for symbolic features might provide
us a way to integrate symbolic features into a KSD
function.

APPENDIX

In order to prove the theorems, we need an inequality

attributed to McDiarmid.

Lemma 1 (McDiarmid). Let X1; X2; . . . ; Xn be independent

random variables taking values in a set XX. Suppose that

f : XXn ! IR satisfies

sup
x1;...;xn;x̂i2XX

jfðx1; . . . ;xnÞ � fðx1; . . . ; x̂i; . . . ;xnÞj � ci

for constants ci, 1 � i � n. Then, for every 	 > 0, we have

Pr½fðX1; . . . ; XnÞ � IEf � 	� � exp
�2	2Pn
i¼1 c

2
i

� 	
:

Proof of Theorem 1. We br eak IEF jX ½g�ðx;XÞ� �
1
‘

P‘
i¼1 g�ðxi;XÞ into AþBþ C:

A ¼ IEF jX ½g�ðx;XÞ� � IEF jX
1

‘

X‘
i¼1

g�ðx;XðiÞÞ
" #

;

B ¼ IEF jX
1

‘

X‘
i¼1

g�ðx;XðiÞÞ
" #

� IE½g�ðx1;Xð1ÞÞ� ;

C ¼ IE½g�ðx1;Xð1ÞÞ� �
1

‘

X‘
i¼1

g�ðxi;XÞ ;

where XðiÞ ¼ X � fxig. It is readily checked that

jD�ðx;XÞ �D�ðx;XðiÞÞj

¼
����� 1‘
�����X‘
j¼1

Sð�ðxÞ � �ðxjÞÞ
�����

� 1

‘� 1

�����X
j6¼i

Sð�ðxÞ � �ðxjÞÞ
�����
�����

� 2

‘
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Fig. 11. Plot of average AUC values on Ann-Thyroid 1 data set under
random sampling of the training set. Only a portion of randomly selected
training observations are used to construct the KSD function. The
average AUC value and the corresponding 95 percent confidence
intervals are computed over 10 random runs.
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for 1 � i � ‘, hence,

jg�ðx;XÞ � g�ðx;XðiÞÞj �
1

b
jD�ðx;XÞ

�D�ðx;XðiÞÞj �
2

‘b
; x 2 IRn :

Therefore,

A � IEF jX g�ðx;XÞ �
1

‘

X‘
i¼1

g�ðx;XðiÞÞ
�����

�����
" #

� 2

‘b
: ð10Þ

Next, we derive bounds for B. It is straightforward to
verify that

IE IEF jX
1

‘

X‘
i¼1

g�ðx;XðiÞÞ
" #( )

¼ IE½g�ðx1;Xð1ÞÞ� :

For a change of one xi to x̂i, denote X̂ ¼ fx1; . . . ;xi�1; x̂i;

xiþ1; . . . ;x‘g. For fixed x and i and any j 6¼ i, we have

jg�ðx;XðjÞÞ � g�ðx; X̂ðjÞÞj � 2
ð‘�1Þb . Therefore,

sup
x1;...;x‘;x̂i2IR

n

�����IEF jX

"
1

‘

X‘
j¼1

g�ðx;XðjÞÞ
#

� IEF jX̂

"
1

‘

X‘
j¼1

g�ðx; X̂ðjÞÞ
#����� ¼ sup

x1;...;x‘;x̂i2IR
n

1

‘

�����X
j6¼i

IEF jX ;X̂

h
g�ðx;XðjÞÞ � g�ðx; X̂ðjÞÞ

i����� � 2

‘b
:

ð11Þ

By (11), we apply the McDiarmid’s inequality to get

PrðB > 	1Þ � exp � ‘b
2	21
2

� 	
: ð12Þ

Finally, we look at C. Similar to (11), we have

sup
x1;...;x‘;x̂i2IR

n

���� 1‘X‘
j¼1

g�ðxj;XÞ �
1

‘

X‘
j¼1

g�ðxj; X̂Þ
���� �

sup
x1;...;x‘;x̂i2IR

n

1

‘

����X
j6¼i

�
g�ðxj;XðjÞÞ � g�ðxj; X̂ðjÞÞ

���� þ
1

‘
� 2

‘b
þ 1

‘
:

ð13Þ

Hence, by McDiarmid’s inequality, we obtain

PrðC > 	2Þ � exp � 2‘	22
2
b þ 1
� �2

 !
: ð14Þ

Setting �
2 ¼ expð� ‘b2	21

2 Þ ¼ expð� 2‘	22
ð2bþ1Þ2Þ, and solving for 	1

and 	2, we complete the proof by combining (10), (12), and

(14). tu
Proof of Theorem 2. Because yi 62 X and g� is bounded by 1,

a change of one yi in 1
‘test

P‘test
i¼1 g�ðyi;XÞ results in at most

a change of 1=‘test. Thus, an application of McDiarmid’s

inequality yields

hðXÞ ¼ Pr IEF jX ½g�ðy1;XÞ� �
1

‘test

X‘test
i¼1

g�ðyi;XÞ > 	

�����X
" #

� exp �2‘	2
� �

:

Therefore,

Pr IEF jX ½g�ðy1;XÞ� �
1

‘test

X‘test
i¼1

g�ðyi;XÞ > 	

" #
¼ IE hðXÞ½ � � exp �2‘	2

� �
:

Setting � ¼ exp �2‘	2ð Þ and solving for 	, we complete the

proof. tu
Proof of Theorem 3. From F ¼ ð1� �ÞFgood þ �Foutlier, we

have

IEF jX ½g�ðx;XÞ� ¼ð1� �ÞIEFgoodjX ½g�ðx;XÞ�þ
�IEFoutlierjX ½g�ðx;XÞ� :

Therefore, in view of g� � 0, we have

ð1� �ÞIEFgoodjX ½g�ðx;XÞ� � IEF jX ½g�ðx;XÞ�:

Thus, the desired proof follows from � � r. tu
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