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Abstract: In this article, we construct empirical likelihood (EL)-weighted
estimators of linear functionals of a probability measure in the presence
of side information. Motivated by nuisance parameters in semiparamet-
ric models with possibly infinite dimension, we consider the use of esti-
mated constraint functions and allow the number of constraints to grow
with the sample size. We study the asymptotic properties and efficiency
gains. The results are used to construct improved estimators of parameters
in structural equations models. The EL-weighted estimators of parameters
are shown to have reduced variances in a SEM in the presence of side
information of stochastic independence of the random error and random
covariate. Some simulation results on efficiency gain are reported.
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1. Introduction

Structure equation models (SEM) is a popular multivariate technique for analyz-
ing data in behavioral, medical and social sciences. It is an analysis of moment
structures in which the variance-covariance matrix Σ = Var(Z) of a random
vector Z ∈ Rp is specified by a parametric matrix function, Σ = Σ(ϑ), ϑ ∈ Θ
for some subset Θ of Rq. Given independent and identically distributed (i.i.d.)
observations Z1, . . . ,Zn of Z, one focuses on estimating the parameter vector
ϑ. A moment-type estimator of ϑ is based on the criterion of minimum discrep-
ancy function (MDF), see e.g. Shapiro (2007). For a p × p matrix M, denote
by vecs(M) the p(p + 1)/2-dimensional vector formed by stacking its columns
of the upper triangular matrix. Let Ξ be a subset of Rp(p+1)/2 consisting of
vecs(M) over all p×p semi-positive definite matrices M. A function F on Ξ×Ξ
is called a discrepancy function if it satisfies: (i) F (t, ξ) ≥ 0 for all t, ξ ∈ Ξ, (ii)
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F (t, ξ) = 0 if and only if t = ξ, (iii) F (t, ξ) is twice continuously differentiable,
and (iv) For any fixed s ∈ Ξ, F (t, ξ) → ∞ as t → s and ξ → ∞. We shall abuse
notation to write F (A,B) = F (vecs(A), vecs(B)) for matrices A,B.

Often Σ is estimated by the unstructured sample variance-covariance matrix,

Sn =
1

n

n∑
i=1

(Zi − Z̄)(Zi − Z̄)⊤, (1.1)

where Z̄ = 1
n

∑n
i=1 Zi is the sample version of µ = E(Z). Let sn = vecs(Sn)

and σ = vecs(Σ). The MDF estimator of ϑ is any value ϑn in Θ that satisfies

F (sn, σ(ϑn)) = inf
ϑ∈Θ

F (sn,σ(ϑ)). (1.2)

One commonly used discrepancy function is the maximum-likelihood (ML) dis-
crepancy function of two matrix-valued variables given by

FML(S,Σ) = log |Σ| − log |S|+ trace(SΣ−1)− p, (1.3)

where S,Σ are positive definite matrices. Another is the generalized least squares
(GLS) discrepancy function given by

FGLS(S,Σ) = trace((S− Σ)W−1(S− Σ)W−1), (1.4)

where W is a symmetric matrix, for instance, W = Sn and W = Ip. Suppose
that there is available some information about SEM that can be expressed by a
vector equation of expectation,

E(g(Z)) = 0, (1.5)

where g is some measurable function taking values in Rm. While the moment
estimator Sn completely ignores the information, the empirical likelihood (EL)-
weighted estimator S̃n utilizes the information to provide an improved estimator,

S̃n =
1

n

n∑
i=1

(Zi − Z̄)(Zi − Z̄)⊤

1 + g(Zi)⊤ζ̃
, (1.6)

where ζ̃ is a solution to the equation

n∑
i=1

g(Zi)

1 + g(Zi)⊤ζ̃
= 0. (1.7)

Accordingly, an improved MDF estimator ϑ̃n of ϑ is any value in Θ that satisfies

F (s̃n, σ(ϑ̃n)) = inf
ϑ∈Θ

F (s̃n, σ(ϑ)), (1.8)

where s̃n = vecs(S̃n).
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In many semiparamatric models, g(z) involves in nuisance parmeters which
must be estimated, leading to a plug-in estimator ĝ(z). Using it, we work with

Ŝn =
1

n

n∑
i=1

(Zi − Z̄)(Zi − Z̄)⊤

1 + ĝ⊤(Zi)ζ̂
, (1.9)

where ζ̂ is the solution to Eqt (1.7) by replacing g(Zi) = ĝ(Zi). As a result, an
imporved MDF estimator ϑ̂n of ϑ is any value in Θ that satisfies

F (ŝn, σ(ϑ̂n)) = inf
ϑ∈Θ

F (ŝn, σ(ϑ)), (1.10)

where ŝn = vecs(Ŝn).
The improved MDF estimator ϑ̃n is more efficient than the usual MDF es-

timator ϑn. The efficiency criteria used are that of a least dispersed regular
estimator or that of a locally asymptotic minimax estimator, and are based on
the convolution theorems and on the lower bounds of the local asymptotic risk
in LAN and LAMN families, see the monograph by Bickel, et al. (1993).

The side information contained in (1.5) is carried by the EL-weights (n(1 +
g(Zi)

⊤ζ̃))−1 based on the principle of the maximum empirical likelihood. There
is an extensive amount of literature on the empirical likelihood. It was intro-
duced by Owen [23, 24] to construct confidence intervals in a nonparametric
setting. Soon it was used to construct point estimators. Qin and Lawless [30]
studied maximum empirical likelihood estimators (MELE). Bravo [3] studied
a class of M-estimators based on generalized empirical likelihood with side in-
formation and showed that the resulting class of estimators is efficient in the
sense that it achieves the same asymptotic lower bound as that of the efficient
GMM estimator with the same side information. Parente and Smith (2011 [25])
investigated generalized empirical likelihood estimators for irregular constraints.

Estmators of the preceding EL-weighted form were investigated in Zhang
[38, 39] in M-estimation and quantile processes in the presence of auxiliary in-
formation. Hellerstein and Imbens [12] exploited such estimators for the least
squares estimators in a linear regression model. Yuan et al. [37] explored such
estimators in U-statistics. Tang and Leng [36] utilized the form to construct
improved estimators of parameters in quantile regression. Asymptotic proper-
ties of the EL-weighted estimators were obtained for a finite number of known
constraints.

Motivated by nuisance parameters in semiparametric models and the infinite
dimension of such models, Peng and Schick [29] considered the use of estimated
constraint functions and studied a growing number of constraints in MELE.
Wang and Peng (2022) used the EL-weighted approach to construct efficient
estimators of linear functionals of a probability measure in the presence of side
information for two cases, viz, known marginal distributions and equal but un-
knowned marginals, each of which is equivalent to infinitely many constraints.

MELE enjoy high efficiency and is particularly convenient to incorporate side
information. Just like any other optimization problems, however, it is not trivial
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to numerically find MELE especially for a large number of constraints. Peng and
Schick [29] employed one-step estimators to construct MELE. The EL-weighing
approach reduces the number of constraints and are thus computationally easier
than general MELE.

The rest of the article is organized as follows. In Section 2, we shall construct
the EL-weighted estimator of the linear functional of a probability measure in
the presence of side information which is expressed by an finite or infinite num-
ber of known or estimated constraints, and present the asymptotic properties.
In Section 3, we give examples of side information and study the asymptotic
properties of the improved estimators in SEM. The form of SEM can be ex-
tended to great extent in a variety of ways. We shall focus on the extensions
that have been described in Bollen (1989) as well as in the LISREL software
manual (Joreskog and Sorbom, 1996). The components present in a general
SEM are a path analysis, the conceptual synthesis of latent variable and mea-
surement models, and general estimation procedures. In SEM, only information
up to the second moments is used, while other forms of information such higher
order moments, independence or symmetry of the random errors are ignored,
which can be used by the EL-weighting method to improve efficiency. In Section
4, we report simulation results. Technical details are collected in Section 5.

2. The main results and side information

In this section, we give the main results and discuss side information.

2.1. The main results

Suppose that Z1, . . . , Zn are i.i.d. random variables with a common distribution
Q taking values in a measurable space Z. We are interested in efficient estimation
of the linear functional θ =

∫
ψ dQ of Q for some square-integrable function ψ

from Z to Rr when side information is available through

(C) u is a measurable function from Z to Rm such that
∫
u dQ = 0 and the

variance-covariance matrix W =
∫
uu⊤ dQ is nonsingular.

To utilize the information contained (C), consider the the empirical likelihood,

Rn = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πju(Zj) = 0
}
,

where Pn = {π ∈ [0, 1]n :
∑n

j=1 πj = 1} is the unit probability simplex.
Following Owen, one uses Lagrange multipliers to get the maximizers,

π̃j =
1

n

1

1 + u(Zj)⊤ζ̃
, j = 1, . . . , n, (2.1)
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where ζ̃ is the solution to the equation

1

n

n∑
j=1

u(Zj)

1 + u(Zj)⊤ζ̃
= 0. (2.2)

These π̃j ’s incorporte the side information, and a natural estimator of θ =∫
ψ dQ is the EL-weighted estimator,

θ̃ =

n∑
j=1

π̃jψ(Zj) =
1

n

n∑
j=1

ψ(Zj)

1 + u(Zj)⊤ζ̃
. (2.3)

For ψt(z) = 1[z ≤ t] for fixed t ∈ Rp, one obtains the distribution function
θ = P (Z ≤ t). For ψ(z) = z1 · · · zp, θ = E(Z1 · · ·Zp) is the mixed moment.

Write ∥a∥ for the euclidean norm of a and a⊗b for the Kronecker product of a
and b. For x = (x1, . . . , xp),y = (y1, . . . , yp), write x ≤ y for x1 ≤ y1, . . . , xp ≤
xp. Let L

m
2 (Q) =

{
f = (f1, . . . , fm)⊤ :

∫
∥f∥2 dQm <∞

}
, and let Lm

2,0(Q) ={
f ∈ Lm

2 (Q) :
∫
f dQm = 0

}
. For f ∈ Lm

2 (Q), write [f ] for the closed linear span
of the components f1, . . . , fm in L2(Q). Let Z be an i.i.d. copy of Z1. Let ϕ0 be
the projection of ψ onto the closed linear span [u] of u, so that ϕ0 = Π(ψ|[u]) =
E(ψ(Z)⊗ u⊤(Z))W−1u. Let Σ0 = Var(ψ(Z))−Var(ϕ0(Z)). We now give the
first result with the proof delayed.

Theorem 1. Assume (C) with m fixed. Then θ̃ given in (2.3) satisfies the
stochastic expansion,

θ̃ = ψ̄ − ϕ̄0 + op(n
−1/2), (2.4)

Thus if Σ0 = Var(ψ(Z))−Var(ϕ0(Z)) is nonsingular then
√
n(θ̃−θ) is asymp-

totically normal with mean zero and asymptotic covariance matrix Σ0, that is,

√
n(θ̃ − θ)=⇒N (0,Σ0).

Theorem 1 exhibits that the EL-weighted estimator θ̃ has a smaller asymp-
totic variance than that of the sample mean ψ̄, and the amount of reduction is
Var(ϕ0(Z)). It is, in fact, the MELE of θ.

Remark 1. Haberman (1984) studied minimum Kullback-Leibler divergence
-type estimators for the linear functionals of a probability measure, and more
general problems involving a fixed number of side information. The EL-weighted
estimator θ̃ in Theorem 1 is asymptotically equivalent to Haberman’s estimator,
see his page 976. This shows that Haberman’s estimator is semiparametrically
efficient.

In semiparametric models, the constraint function u contains nuisance pa-
rameters and must be estimated. Let û = (û1, . . . , ûm)⊤ be an estimate of u.
With it we now work with the EL-weights

π̂j =
1

n

1

1 + û(Zj)⊤ζ̂
, j = 1, . . . , n, (2.5)
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where ζ̂ is the solution to the equation (2.2) with u = û. In the same fashion,
a natural estimate θ̂ of θ is given by

θ̂ =

n∑
j=1

π̂jψ(Zj) =
1

n

n∑
j=1

ψ(Zj)

1 + û(Zj)⊤ζ̂
. (2.6)

Set Ŵ = n−1
∑n

j=1 ûû
⊤(Zj). Let |W|o denote the spectral norm (largest eigen-

value) of a matrix W. We have

Theorem 2. Assume (C) with m fixed. Let û be an estimator of u such that

max
1≤j≤n

∥û(Zj)∥ = op(n
1/2), (2.7)

|Ŵ −W|o = op(1), (2.8)

1

n

n∑
j=1

(
ψ(Zj)⊗ û(Zj)− E

(
ψ(Zj)⊗ û(Zj)

))
= op(1), (2.9)

and that there exists some measurable function v that satisfies (C) such that

1

n

n∑
j=1

E
(
∥û(Zj)− v(Zj)∥2

)
= o(1), (2.10)

1

n

n∑
j=1

û(Zj) =
1

n

n∑
j=1

v(Zj) + op(n
−1/2). (2.11)

Then θ̂ given in (2.6) satisfies the stochastic expansion,

θ̂ = ψ̄ − ϕ̄+ op(n
−1/2), (2.12)

where ϕ = Π(ψ|[v]). Thus if Σ = Var(ψ(Z))−Var(ϕ(Z)) is nonsingular then
√
n(θ̂ − θ)=⇒N (0,Σ).

We now allow the number of constraints to depend on n, m = mn, and grow
to infinity with increasing n. To stress the dependence, let us write

un = (u1, . . . , umn)
⊤, ûn = (û1, . . . , ûmn)

⊤,

and θ̃n = θ̃, θ̂n = θ̂ for the corresponding estimators of θ, that is,

θ̃n =
1

n

n∑
j=1

ψ(Zj)

1 + un(Zj)⊤ζ̃n
and θ̂n =

1

n

n∑
j=1

ψ(Zj)

1 + ûn(Zj)⊤ζ̂n
, (2.13)

where ζ̃n and ζ̂n solves Eqt (2.2) with u = un and u = ûn, respectively. Denote
by [u∞] the closed linear span of u∞ = (u1, u2, . . . ). Set

Wn = Var(un(Z)), W̄n =
1

n

n∑
j=1

unu
⊤
n (Zj), Ŵn =

1

n

n∑
j=1

ûnû
⊤
n (Zj).
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Peng and Schick [26] introduced that a sequence Wn of mn ×mn dispersion
matrices is regular if

0 < inf
n

inf
∥u∥=1

u⊤Wnu ≤ sup
n

sup
∥u∥=1

u⊤Wnu <∞.

Note that if W = Wn is independent of n then the regularity of W simplifies
to its nonsingularity. We have

Theorem 3. Suppose that un = (u1, . . . , umn
)⊤ satisfies (C) for each m = mn

such that
max
1≤j≤n

∥un(Zj)∥ = op(m
−3/2
n n1/2), (2.14)

that the sequence of mn ×mn dispersion matrices Wn is regular and satisfies

|W̄n −Wn|o = op(m
−1
n ), (2.15)

1

n

n∑
j=1

(
ψ(Zj)⊗ un(Zj)− E

(
ψ(Zj)⊗ un(Zj)

))
= op(m

−1/2
n ). (2.16)

Then θ̃n satisfies, as mn grows to infinity with n, the stochastic expansion,

θ̃n = ψ̄ − φ̄0 + op(n
−1/2), (2.17)

where φ0 = Π(ψ|[u∞]). Thus if Σ0 = Var(ψ(Z))−Var(φ0(Z)) is nonsingular,

√
n(θ̃n − θ)=⇒N (0, Σ0).

Theorem 4. Suppose that un = (u1, . . . , umn
)⊤ satisfies (C) for each m = mn.

Let ûn be an estimator of un such that

max
1≤j≤n

∥ûn(Zj)∥ = op(m
−3/2
n n1/2), (2.18)

|Ŵn −Wn|o = op(m
−1
n ) (2.19)

for which the mn ×mn dispersion matrices Wn is regular,

1

n

n∑
j=1

(
ψ(Zj)⊗ ûn(Zj)− E

(
ψ(Zj)⊗ ûn(Zj)

))
= op(m

−1/2
n ), (2.20)

and that there exists some measurable function vn from Z into Rmn such that

(C) is met for everym = mn, the dispersion matrix Un = W
−1/2
n

∫
vnv

⊤
n dQW

−⊤/2
n

satisfies |Un|o = O(1), and

1

n

n∑
j=1

E
(
∥ûn(Zj)− vn(Zj)∥2

)
= o(m−1

n ), and (2.21)

1

n

n∑
j=1

ûn(Zj) =
1

n

n∑
j=1

vn(Zj) + op(m
−1/2
n n−1/2). (2.22)
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Then θ̂ satisfies, as mn tends to infinity, the stochastic expansion,

θ̂n = ψ̄ − φ̄+ op(n
−1/2), (2.23)

where φ = Π(ψ|[v∞]). Thus if Σ = Var(ψ(Z))−Var(φ(Z)) is nonsingular,

√
n(θ̂n − θ)=⇒N (0, Σ).

2.2. Side information

In Section 3, we shall discuss side information in SEM. Wang and Peng (2023)
constructed the EL-weighted estimators of linear functionals of a bivariate prob-
ability measure with known marginal distributions and with equal but unknow
marginal distributions, and proved that the estimators are semiparametrically
efficient for both cases. Such side information including stochastic independene,
distributional symmetry, etc. is equivalent to infinitely many constraints. Known
marginal means or medians are examples of side information expressed via
finitely many constraints.

Another type of side information which is often available is as follows. Con-
sider estimating the density g(y) of a random variable Y based on a random
sample Y1, . . . , Yn on Y . One popular estimator is the kernel estimator,

g̃(y) =
1

n

n∑
j=1

Kh(Yi − y), y ∈ R,

where K(t) is a kernel and Kh(t) = K(t/h)/h with h > 0 a bandwidth. Often
there is available a random sample X1, . . . ,Xn on X which contain information
about Y . To use the information, one can conduct a regression of Y on X,

Yi = h(Xi;β) + εi, i = 1, 2, . . . , n,

where h is a link function, β is a regression parameter vector, and εi’s are random
errors with zero mean. In this case, the estimated constraints are ûn(Xi, Yi) =

Yi − ĥn(Xi; β̂n), where ĥn is an estimator of h (if it is uknown), and β̂n is an
estimator of β. The EL-weighted estimator of g(y) is then given by

ĝ(y) =
1

n

n∑
j=1

Kh(Yj − y)

1 + û(Xj , Yj)ζ̂
, y ∈ R,

where ζ̂ is similarly calculated. It can be shown that ĝ(y) improves the efficiency
of g̃(y) for each y, but we shall not pursue this in this article.

More generally, one can construct the EL-weighted estimator for the condi-
tional expected value of T given Y = y, i.e., g(y) = E(T|Y = y), when there
is available a random sample X1,X2, . . . ,Xn on X which contains information
about T. This estimator can be shown to improve the efficiency of the kernel
estimator of g(y) under suitable conditions.
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3. That asyptotic properties of EL-weighted MDF estimators

In this section, we give two examples of side information and discuss the reduc-
tion in the asymptotic coviariance matrix of the improved MDF estimator ϑ̂n

given in (1.10) compared with the sample MDF estimator ϑn.

3.1. Examples and side information

We introduce the SEM and discuss side information.

Example 1. Consider the combined model of latent variable and measurement
error,

η = Bη + Γξ + ζ, Y − µy = Λyη + ϵ, X− µx = Λxξ + δ, (3.1)

where B, Γ, Λx, Λy, µx and µy are compatible parameter matrices and vectors,
X and Y are random vectors having finite fourth moments, η and ξ are latent
endogenous and exogenous random vectors, respectively, and ζ, ϵ and δ are
disturbances (random errors) that satisfy

E(ζ) = 0, E(ϵ) = 0, E(δ) = 0, Cov(ϵ,η) = 0, Cov(δ, ξ) = 0,

Cov(ξ, ζ) = 0, Cov(ϵ, ζ) = 0, Cov(δ, ζ) = 0, Cov(ϵ, δ) = 0.
(3.2)

Let Φ = E(ξξ⊤), Ψ = E(ζζ⊤), Θϵ = E(ϵϵ⊤) and Θδ = E(δδ⊤). The parameter
vector then is ϑ = vecs(µx,µy,B,Γ,Λx,Λy,Φ,Ψ,Θϵ,Θδ), denoted by q the
dimenion. Let Σyy(ϑ) be the structured variance-covariance of Y, and let A =
Id −B. Based on the relationships in (3.1) – (3.2), one derives

Σyy(ϑ) = ΛyA
−1(ΓΦΓ⊤ +Ψ)A−⊤Λ⊤

y +Θϵ,

assuming that A is invertible. Similarly, one derives the structured covariance
matrix Σyx(ϑ) of Y and X and the variance-covariance Σxx(ϑ) of X,

Σyx(ϑ) = ΛyA
−1ΓΦΛ⊤

x = Σxy(ϑ)
⊤, Σxx(ϑ) = ΛxΦΛ

⊤
x +Θδ.

The structured variance-covariance Σ(ϑ) of Z = (Y⊤,X⊤)⊤ then is

Σ(ϑ) =

(
Σyy(ϑ) Σyx(ϑ)
Σxy(ϑ) Σxx(ϑ)

)
.

These formulas can be found in literature, but we would mention that they are
implied by the structural relationships in (3.1) – (3.2). While the unstructured
sample variance-covariance matrix estimator Sn in (1.1) of the unstructured
variance-covariance Σ of Z ignores the information contained in (3.2), the EL-

weighted estimator Ŝn of Σ in (1.9) utilizes the information, and results in an
improved estimator ϑ̂ determined by (1.10).
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ε2ε1

y1 y2

x1 x2

1

λ1

λ2 λ3

Fig 1. The path diagram for SEM (3.4)

Example 2. In the combined model in Example 1, consider Λy = Id, Λx = Ic,
Var(δ) = 0 and Var(ϵ) = 0. This is a SEM, and (3.1) – (3.2) simplify to

Y = BY + ΓX+ ζ, E(ζ) = 0, Cov(X, ζ) = 0. (3.3)

Identification is crucial for the consistency and asymptotic normality of the
MDF estimators. Necessary and sufficient conditions can be found in the liter-
ature, e.g., Bollen (1989), Brito and Pearl (2002) and Drton, et al. (2011). In
particular, the Null B Rule and the Recursive Rules are sufficient conditions for
the identifiability of the parameters. The former states that if B = 0 then the
parameters can be identified, while the latter says that if B can be written as
a lower triangular matrix with zero diagonal and the covariance matrix Ψ of
the error ζ is diagonal then the parameters are identifiable. An example for the
latter case is the model given by

Y = BY + ΛX+ ϵ, (3.4)

where B,Λ are 2 × 2 matrices, with B having all entries equal to 0 except for
the (2, 1) entry equal to β, and Λ having the (1, 1) entry equal to 0 and the
(1, 2), (2, 1) and (2, 2) entries equal to λi, i = 1, 2, 3, respectively. The path
diagram is shown in Fig. 2.

Side information. SEM make use of the information up to the second mo-
ments, whereas other information is completely ignored. For example, random
errors are modeled as uncorrelated with covariates. It is common that the ran-
dom error ϵ is modeled as independent of the random covariate X. The infor-
mation contained in the independence can be utilized by the vector constraint
function,

g(Z) = Φm(F (ε))⊗Φm(G(X)), (3.5)

where Φm(t) =
√
2(cos(πt), . . . , cos(mπt))⊤ is a vector of the first m terms of

the trigonometric basis, and F and G are the respective distribution functions
(DF) of the linear combination ε = a⊤ϵ of ϵ and X. Here a is a known constant
vector and ⊗ denotes the Kronecker product. See Example 1 of Peng and Schick
(2013, [29]) for more details. As F,G are unknown, we estimate them by the

empirical DF (EDF) Fn, Gn. We replace ϵ with ϵ̂ = Y − B̂Y − Γ̂X, where B̂
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and Γ̂ are the MDF estimators of B and Γ. Substitution of them in (3.5) yields
the estimated constraint function,

ĝ(Z) = Φm(Fn(ε̂))⊗Φm(Gn(X)), (3.6)

This is a semiparametric model with (infinite dimensional) nuisance parameters
F,G, and the plug-in estimators of Fn, Gn lead to the estimated constraints.

Another example of side information is that the marginal medians (or means)
m01 and m02 of X are known. Such marginal information is often possible such
as from the past data. In this case, the constraint function is

g(Zj) = (1[X1j ≤ m01]− 0.5, 1[X2j ≤ m02]− 0.5)⊤, j = 1, . . . , n. (3.7)

3.2. The asymptotic properties

We need some results from Shapiro (2007). Let ϑ0 be the true value of parameter
ϑ and ξ0 = σ(ϑ0). By the Taylor expansion it is not difficult to show that a
discrepancy function F satisfies

2H0 :=
∂2F (ξ0, ξ0)

∂t∂t⊤
=
∂2F (ξ0, ξ0)

∂ξ∂ξ⊤
= −∂

2F (ξ0, ξ0)

∂t∂ξ⊤
, (3.8)

and H0 is positive definite, see also Shapiro (2007). In particular, for both FML

and FGLS (in the case of W = S⋉), one has

H0 = Σ−1
0 ⊗ Σ−1

0 , (3.9)

where Σ0 = Σ(ϑ0). Formally, set ∆(ϑ) = ∂σ(ϑ)/∂ϑ⊤ with ∆0 = ∆(ϑ0) and

w(z) = vecs
(
(z− µ0)(z− µ0)

⊤ − Σ0

)
, z ∈ Rp,

v(z) = g(z) + E(ġ(Z))Ψ(z), Ψ(z) = (∆⊤
0 H0∆0)

−1∆⊤
0 H0w(z).

(3.10)

Summarizing Shapiro’s (2007) results, we have

Lemma 1. Let Z,Z1, . . . ,Zn be i.i.d. random vectors with finite and nonsin-
gular covariance matrix Var(w(Z)). Assume that ϑ0 is an interior point of Θ
which is compact and can be approximated at ϑ0 by Rq. Suppose that F is a
discrepancy function. Suppose that σ(ϑ) is twice continuously differentiable with
gradient ∆(ϑ) of full rank q in a neighborhood of ϑ0. Suppose that the model is
locally identifiable, i.e., σ(ϑ) = σ(ϑ0) implies ϑ = ϑ0 for ϑ in a neighborhood
of ϑ0. Then √

n(ϑ̃− ϑ0)=⇒N (0,V0), (3.11)

where V0 = (∆⊤
0 H0∆0)

−1∆⊤
0 H0 Var(w(Z))H0∆0(∆

⊤
0 H0∆0)

−1.

Remark 2. Lemma 1 implies ϑ̃−ϑ0 = Op(n
−1/2). Consequently, each residual

satisfies ϵ̂i−ϵi = Op(n
−1/2) for Zi of bounded second moment. We shall impose

a stronger assumption of E∥ϵ̂i − ϵi∥2 = O(n−1) uniformly in i.
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Proof of Lemma 1. We shall present the proof based on Theorem 5.5 of
Shapiro (2007). To this end, we first verify the conditions of his Proposition 4.2
to show ϑ̃ is a consistent estimator of ϑ0. Note that sn = vecs(Sn) is clearly a
(strongly) consistent estimator of σ0 = σ(ϑ0) since Sn is a (strongly) consis-
tent estimator Σ0 = Σ(ϑ0). The local identifiability of σ(ϑ) at ϑ0 implies the
uniqueness of the optimal solution (i.e. ϑ0), hence his (4.4) is proved since Θ is
compact, see the last paragraph of his page 238. This establishes the consistency
by his Proposition 4.2. It thus follows from his Theorem 5.5, (5.11) and (5.33)
that ϑ̃ satisfies

ϑ̃ = ϑ0 + (∆⊤
0 H0∆0)

−1∆⊤
0 H0(tn − σ0) + op(n

−1/2), (3.12)

where tn = vecs(Tn) with Tn = n−1
∑n

j=1(Zj − µ0)(Zj − µ0)
⊤. Since Z has

finite fourth moment, it follows from the central limit theorem,

√
n(tn − σ0)=⇒N (0,Var(w(Z))). (3.13)

The preceding two displays yield the desired (3.24) and end the proof. □
Révész (1976) investigated the approximation of the empirical distribution

function in two dimension. Unlike in the case of one dimension in which the
Kolmogorov-Smirnov statistic is asymptotically distribution free, the test in two
dimension is not asymptotically distribution free, as shown in his Theorem 3,
which is quoted in Lemma 2 below. Let Y = (Y1, Y2)

⊤ be a random vector, and
let T be a transformation of Y on R2 such that TY is uniformly distributed.
Consider the transformation given by T(y1, y2) = (H(y1), G(y2|y1))⊤, where

H(y1) = P (Y1 ≤ y1), G(y2|y1) = P (Y2 ≤ y2|Y1 = y1). (3.14)

Lemma 2. Let Y1 = (Y11, Y12), Y2 = (Y21, Y22), . . . be a sequence of i.i.d. rv’s
having a common DF F (y) = F (y1, y2). Suppose that F (y1, y2) is absolutely
continuous and satisfies∣∣∣∂G(y2|H−1(y1))

∂y1

∣∣∣ ≤ L,
∣∣∣∂2G(y2|H−1(y1))

∂y21

∣∣∣ ≤ L, y = (y1, y2) ∈ R2, (3.15)

for some constant L > 0. Then we can define a sequence {B̄n} of Brownian
Measures (B.M.) and a Kiefer Measure (K.M.) K̄ such that

sup
y∈R2

|βn(y)− B̄n(TDy)| = O(n−
1
19 ), a.s.

sup
y∈R2

|n 1
2 βn(y)− K̄(TDy;n)| = O(n

1
2

2
5 ), a.s.

(3.16)

where βn(y) = n
1
2 (Fn(y)−F (y)) with Fn(y) the EDF and Dy = [0, y1]× [0, y2].

Remark 3. We shall assume supy |B̄n(TDy)| = O(1) a.s. for the DF F .

Here B̄ and K̄ are the stochastically equivalent versions of the “measures” B
andK, and Révész (1976) remarked that “All the results here will be formulated
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and proved in the two-dimensional case only; it appears, however, that the
generalization to higher dimensions is possible via the methods of this paper”.
To generalize the theorem to the d-dimensional case, we keep the definition of
the Wiener Process W (x) = W (x1, ..., xd) to be a separable Gaussian process
from Révész’s paper, and define

B.M. : B(Qz) =W (Qz)− λ(Qz)W (1, ..., 1)

K.M. : K(Qz; y) =W (Qz, y)− λ(Qz)W (1, ..., 1, y)

where λ(·) is a Lebesgue measure on Z d. The d-dimensional transformation is
defined by Rosenblatt (1952): Let X = (X1, ..., Xd) be a random vector with
DF F (x1, ..., xd). Let z = (z1, ..., zd) = Tx = T (x1, ..., xd), where T is the
transformation given by

z1 = P (X1 ≤ x1) = F1(x1),

z2 = P (X2 ≤ x2|X1 = x1) = F2(x2|x1),
...

zd = P (Xd ≤ xd|Xd−1 ≤ xd−1, ..., X1 = x1) = Fd(xd|xd−1, ..., x1).

We generalize the conditions to the d-dimensional case (S).

(S1) F (x) is absolutely continuous on x ∈ Rd.
(S2) For all x = (x1, ..., xd) ∈ Rd, there exists a constant L > 0,∣∣∣∂2F2(x2|F−1

1 (x1))

∂x21

∣∣∣ ≤ L,
∣∣∣∂F2(x2|F−1

1 (x1))

∂x1

∣∣∣ ≤ L,

(S3) ∣∣∣∂2F3(x3|F−1
2 (x2|F−1

1 (x1)), F
−1
1 (x1))

∂xi∂xj

∣∣∣ ≤ L, i, j = 1, 2,∣∣∣∂F3(x3|F−1
2 (x2|F−1

1 (x1)), F
−1
1 (x1))

∂xi

∣∣∣ ≤ L, i = 1, 2,

...

(Sd) For d > 2,∣∣∣∂2Fd(xd|F−1
d−1(xd|F

−1
d−2(xd−2|...), ..., F−1

1 (x1))

∂xi∂xj

∣∣∣ ≤ L, i, j = 1, ..., d,

∣∣∣∂Fd(xd|F−1
d−1(xd|F

−1
d−2(xd−2|...), ..., F−1

1 (x1))

∂xi

∣∣∣ ≤ L, i = 1, ..., d.

Theorem 5. Let X1 = (X11, ..., X1d), X2 = (X21, ..., X2d), ... be a sequence of
i.i.d. rv’s having a common distribution function F (x). Assume (S). Then we
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can define a sequence {B̄n} of Brownian Measures (B.M.) and a Kiefer Measure
(K.M.) K̄ such that almost surely,

sup
x∈Rd

|βn(x)− B̄n(TDx)| = O(n−
1
19 ),

sup
x∈Rd

|n 1
2 βn(x)− K̄(TDx;n)| = O(n

1
2

2
5 ),

(3.17)

where βn(x) = n
1
2 (Fn(x)−F (x)) with Fn(x) the EDF based on the sample X1,

..., Xn, and Dx = [0, x1]× ...× [0, xd].

We need a property of U-statistics. Let ξ1, . . . , ξn be i.i.d. rv taking values in
a measurable space S. Let h be a measurable function from S2 to Rm which is
symmetric, i.e., h(x,y) = h(y,x),x,y ∈ S. A multivariate U-statistic (of order
2) with kernel h is defined as

Un(h) =

(
n

2

)−1 ∑
1≤i<j≤n

h(ξi, ξj).

Assume that h is square-integrable. Let µ(h) = E(h(ξ1, ξ2)). Recall that a
kernel k is degenerate if E(k(ξ1, ξ2)|ξ2) = 0 a.s. Let h̄(x) = E(h(x, ξ2)), and

h∗(x,y) = h(x,y)− h̄(x)− h̄(y) + µ(h).

Then h∗ is a degenerate kernel. Let h̃ = h− µ(h). Then

h(x,y) = µ(h) + h̃(x) + h̃(y) + h∗(x,y).

One thus obtains the Hoeffding decomposition for a multivariate U-statistic,

Un(h) = µ(h)+
2

n

n∑
j=1

h̃(ξj)+Un(h
∗) =: µ(h)+Ûn(h)+Un(h

∗), a.s. (3.18)

Let k be a degenerate kernel with E(∥k(ξ1, ξ2)∥2) < ∞. For i < j, k < l, one
has E(k(ξi, ξj)k(ξk, ξl)

⊤) = E(k(ξ1, ξ2)
⊗2) if i = l, j = l, and is equal to zero

otherwise. Thus

E(Un(k)
⊗2) =

(
n

2

)−1

E(k(ξ1, ξ2)
⊗2). (3.19)

It is easy to see E(h∗(ξ1, ξ2)
⊗2) ⪯ E(h(ξ1, ξ2)

⊗2). Thus we prove

Lemma 3. Suppose that h is a kernel with E(∥h(ξ1, ξ2)∥2) <∞. Then

Un(h)− µ(h)− Ûn(h) = Op(n
−1

√
E(∥h(ξ1, ξ2)∥2)).

We need a Lipschitz-type property.
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(L) Let ϑ̃
(i)

be the estimator based on the observations with Zi left out.
Assume that there is a constant L0 such that

max
i

∥ϑ̃− ϑ̃
(i)
∥ ≤ L0/n. (3.20)

Let ϑ̃
(ij)

be the estimator based on the observations with Zi,Zj left out. Ap-
plying (L) repeatedly, one has for some constabt L′

0,

max
ij

∥ϑ̃− ϑ̃
(ij)

∥ ≤ L′
0/n. (3.21)

Let vn(z1) = Φmn
(F (ε1))⊗Φmn

(G(x1)) + 2(h1,A(z1) + h1,B(z1)), where

h1,A(z1) = E(Φ̇mn
(F (ε2))⊗Φmn

(G(X2))(1[ε1 ≤ ε2]− F (ε2)|Z1 = z1),

h1,B(z1) = E(Φmn
(F (ε2))⊗ Φ̇mn

(G(X2))(1[x1 ≤ X2]−G(X2))).

Theorem 6. Suppose that the assumptions in Lemma 1 hold. Assume (L), (S)
and the assumptions in Remark 2 and Remark 3. Suppse that ε has a bounded
density. Suppose that Wn2 = E(Φmn

(G(X))⊗2) is regular and that
∫
vv⊤ dQ

is nonsingular. If both mn and n tend to infinity such that m12
n /n = o(1), then

ŝn satisfies the stochastic expansion,

ŝn = sn − cVar(v(Z))−1v̄ + op(n
−1/2), (3.22)

where c = E
(
w(Z)⊗ v⊤(Z)

)
. Thus, with D = Var(w(Z))− cVar(v(Z))−1c⊤,

√
n(ŝn − σ(ϑ0))=⇒N (0, D), (3.23)

As a consequence, ϑ̂ given in (1.10) satisfies

√
n(ϑ̂− ϑ0)=⇒N (0,V), (3.24)

where V = (∆⊤
0 H0∆0)

−1∆⊤
0 H0DH0∆0(∆

⊤
0 H0∆0)

−1.

Proof of Theorem 6. We apply Theorem 4 with ψ(z) = vecs((z−µ)⊗2). Write
m = mn. As ûn(Zj) = ĝ(Zj) = Φm(Fn(ε̂))⊗Φm(Gn(X)) and m7/n = o(1),

max
1≤j≤n

∥un(Zj)∥+ max
1≤j≤n

∥ûn(Zj)∥ ≤ 4m2 = o(m−3/2n1/2).

This shows (2.18). Since Wn = E(un(Z)un(Z)
⊤) = Im ⊗ Wn2 and W̄n =

1
n

∑n
j=1un(Zj)un(Zj)

⊤, it follows that Wn is regular by the regularity of Wn2,

and that |W̄n −Wn|o = Op(m
2n−1/2) as

E|W̄n −Wn|2o ≤ E∥W̄n −Wn∥2 = trace(E(W̄n −Wn)
⊗2)

≤ n−1E∥un(Z)∥4 ≤ m4n−1.

One verifies that there exists some constant c0 > 0 such that for all t.

∥Φm(t)∥ ≤ c0m
1/2, ∥Φ̇m(t)∥ ≤ c0m

3/2, ∥Φ̈m(t)∥ ≤ c0m
5/2. (3.25)
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By the MVT, one thus has |Ŵn − W̄|o = Op(m
5n−1/2). Taken together one

proves |Ŵn −Wn|o = op(m
−1) as m12/n = o(1), yielding (2.19). Moreover, it

is not difficult to verify that Un = W
−1/2
n

∫
vnv

⊤
n dQW

−⊤/2
n = O(1).

Write the left-hand-side average of (2.20) as Jn +Kn − E(Jn +Kn), where

Jn =
1

n

n∑
j=1

ψ(Zj)⊗ (ûn(Zj)− un(Zj)),

Kn =
1

n

n∑
j=1

ψ(Zj)⊗ (un(Zj)− E(un(Zj)).

Note first that

E(∥Kn∥2) ≤ n−1E(|ψ(Z)∥2∥un(Z)∥2) = O(m4n−1). (3.26)

We shall show next
E(∥Jn∥2) = O(m4n−1). (3.27)

Taken together we prove (2.20) as m5/n = o(1). To show (3.27), using the
inequality ∥A⊗B∥ ≤ ∥A∥ ∥B∥ and by (3.25), we get

∥ûn(Zj)− un(Zj)∥ ≤ ∥Φm(Fn(ε̂j))−Φm(F (εj))∥ · ∥Φm(Gn(Xj))∥
+ ∥Φm(F (εj)∥ · ∥Φm(Gn(Xj))−Φm(G(Xj))∥

≤ c0m
2(|Fn(ε̂j)− F (εj)|+ |Gn(Xj)−G(Xj)|).

Let Dn = supt |Fn(t) − F (t)| = Op(n
−1/2) (Kolmogorov-Simirnov’s statistic).

As F has a bounded density (by cf ), we have

|Fn(ε̂j)− F (εj)| ≤ Dn + |F (ε̂j)− F (εj)| ≤ Dn + cf |ε̂j − εj |, (3.28)

By (3.33) below and Remark 2, we thus obtain

1

n

n∑
j=1

∥û(Zj)− u(Zj)∥2 = O(m4/n). (3.29)

Therefore (3.27) follows from

E(∥Jn∥2) ≤ E(∥ψ(Z)∥2) 1
n

n∑
j=1

E(∥û(Zj)− u(Zj)∥2) = O(m4/n). (3.30)

We shall now show (2.21)–(2.22). Note

Φm(Fn(ε̂j)) = Φm(F (εj)) + Φ̇m(F (εj))(Fn(ε̂j)− F (εj)) +R1j

Φm(Gn(Xj)) = Φm(G(Xj)) + Φ̇m(G(Xj))(Gn(Xj)−G(Xj)) +R2j ,
(3.31)

where, by (3.28) and the assumption in Remark 2, we have

max
1≤j≤n

∥R1j∥ = Op(m
5/2/n). (3.32)
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By (3.16) and the assumption in Remark 3, we have

max
1≤j≤n

|Gn(Xj)−G(Xj)| = Op(n
−1/2). (3.33)

Similarly by Remark 3,

max
j

∥R2j∥ = Op(m
5/2/n). (3.34)

By (3.31),

1

n

n∑
j=1

ûn(Zj) =
1

n

n∑
j=1

un(Zj) +A+B+R, (3.35)

where

A =
1

n

n∑
j=1

Φ̇m(F (εj))⊗Φm(G(Xj))(Fn(ε̂j)− F (εj)),

B =
1

n

n∑
j=1

Φm(F (εj))⊗ Φ̇m(G(Xj))(Gn(Xj)−G(Xj)),

R =
1

n

n∑
j=1

R1j ⊗Φm(Gn(Xj)) +
1

n

n∑
j=1

Φm(Fn(ε̂j)⊗R2j .

By (3.32) and (3.34) and the first equality in (3.25), ∥R∥ = O(m3/n).
Let b(Zi,Zj) = Φm(F (εj)) ⊗ Φ̇m(G(Xj))(1[Xi ≤ Xj ] − G(Xj)). It then

follows E(κ(Zi,Zj)) = 0 for all i, j from the independence of ε and X, and B is
approximately a multivariate U-statistic, i.e., B = Un(hB) + O(m2/n), where
hB(z1, z2) =

1
2 (b(zi, zj) + b(zj , zi)). Let h1(z1) = E(h(z1,Z2)). Then

h1,B(z1) = E(Φm(F (ε2))⊗ Φ̇m(G(X2))(1[x1 ≤ X2]−G(X2))).

By Lemma 3,

B =
1

n

n∑
j=1

2h1,B(Zj) +Op(m
2/n). (3.36)

Write Fn(ε̂j)−F (εj) = (Fn(ε̂j)−Fn(εj))+(Fn(εj)−F (εj)), givingA = A1+A2.

Likewise, h1,A(z1) = E(Φ̇m(F (ε2))⊗Φm(G(X2))(1[ε1 ≤ ε2]−F (ε2)|Z1 = z1),

A2 =
1

n

n∑
j=1

2h1,A(Zj) +Op(m
2/n). (3.37)

Using (3.20), one calculates E(∥A1∥2) = O(m4/n2). Hence

A1 =
1

n

n∑
j=1

Φ̇m(F (εj))⊗Φm(G(Xj))(Fn(ε̂j)− Fn(εj)) = Op(m
2/n). (3.38)
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This and (3.37) prove

A =
1

n

n∑
j=1

2h1,A(Zj) +Op(m
2/n). (3.39)

Taken together we show that (2.22) holds with v = un + 2(h1,A + h1,B) as
m7

n/n = o(1). This also proves (2.21). □

4. Simulation results

We used the R package sem to carry out the simulations based on the SEM
(3.4) with β = 1. The details of the package can be found in Fox (2006)[? ]. In
LISREL notation and using Fig. 2, the SEM can be written as

y1 = λ1x2 + ϵ1, y2 = y1 + λ3x1 + λ2x2 + ϵ2. (4.1)

The parameters to be estimated are the coefficients λ1, λ2, λ3, and the variances
v1 = Var(ϵ1), v2 = Var(ϵ2) of the measurement-errors.

For n = 30, 50, 100 and based on 50 repetitions, we calculated the averages
and medians of the usual and the EL-weighted MDF estimators λn,k and λ̃k of
λk, the usual MDF and the EL-weighted estimators of variances ṽ1, ṽ2 v1, v2,
and the ratios r1 = v̄2/v̄1 and r2 = med(ṽ2)/med(ṽ1). The discrepancy function
used is the ML (GLS) given in (1.3)((1.4))???. A value of ratio less than one
indicated the variance reduction of the EL-weighted estimator over the usual
estimator. The results are reported on Tables 1–2.

For Table 1, the side information is the independence of X and ϵ utilized via
the constraint functions given in (3.6) for m = 1, 3, 5, where ε was generated
from the normal mixture 0.9∗N(0, I2)+0.1∗N(0, 5I2), and X from the bivariate
exponential biexp(1, 3).

For Table 2, the side information is known marginal medians of X, where
X was generated from the bivariate exponential with scale parameters (γ1, γ2).
One can see that the efficiency gain is substantial (around 40%). The ratios
were stable with a slightly decreasing trend with increasing n, and the values of
larger scale parameter had larger efficiency gains.

5. Proofs

In this section, we first give two useful general theorems. As applications, we
prove the theorems presented in Section 2.

Let x1, ...,xn be m-dimensional vectors. Set

x̄ =
1

n

n∑
j=1

xj , x∗ = max
1≤j≤n

∥xj∥, S =
1

n

n∑
j=1

xjx
⊤
j ,

x(ν) = sup
∥u∥=1

∥∥∥ 1
n

n∑
j=1

(u⊤xj)
ν
∥∥∥, ν = 3, 4,
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Table 1
Simulated efficiency gain of the EL-weighted estimators in the SEM (3.4) using the side
information in (3.6) of independence of ε and X for a few values of n and number m of
bases. r1(r2) are the ratios of the averages (medians) of the variances of the EL-weighted

estimators to the usual ones. ε ∼ 0.9 ∗N(0, I2) + 0.1 ∗N(0, 5I2),X ∼ biexp(1, 3).

n = 30
m λ b̄1 b̄2 m(b1) m(b2) v̄1 v̄2 r1 m(v1) m(v2) r2

1
λ1 0.2181 -0.2218 0.2876 -0.2437 2.4766 2.1962 0.8868 1.8529 1.3835 0.7467
λ2 -0.0783 -0.0544 -0.1018 -0.0586 2.1048 1.9226 0.9134 1.6773 1.3444 0.8015
λ3 0.0333 -0.1002 -0.0855 -0.1314 0.5620 0.5660 1.0071 0.3729 0.3550 0.9520

3
λ1 -0.0893 -0.0688 0.0027 -0.0607 2.3394 1.7818 0.7616 1.5748 1.0300 0.6541
λ2 0.1005 -0.1172 -0.3671 -0.3255 2.3664 1.8948 0.8007 1.8519 1.3011 0.7026
λ3 0.1303 -0.0938 0.0153 -0.0941 0.6303 0.5588 0.8866 0.5221 0.4538 0.8692

5
λ1 0.3742 -0.0233 0.2705 0.0381 1.7745 1.5109 0.8515 1.0320 0.8891 0.8615
λ2 -0.1992 -0.1774 -0.1107 -0.1846 2.2048 1.5480 0.7021 1.0474 0.7961 0.7601
λ3 -0.0555 -0.1333 -0.0797 -0.0429 0.4901 0.3838 0.7831 0.2615 0.2143 0.8195

n = 50
m λ b̄1 b̄2 m(b1) m(b2) v̄1 v̄2 r1 m(v1) m(v2) r2

1
λ1 0.0579 -0.0702 0.0963 -0.0546 1.4331 1.2840 0.8960 1.2614 0.9242 0.7327
λ2 -0.1007 -0.1425 -0.1802 -0.1571 1.3882 1.2730 0.9170 1.1588 1.0470 0.9035
λ3 -0.2388 -0.1862 -0.1546 -0.1966 0.3278 0.3130 0.9549 0.2709 0.2552 0.9420

3
λ1 -0.0217 -0.0245 0.0697 -0.0398 1.2074 0.9621 0.7968 1.0255 0.7716 0.7524
λ2 0.1368 -0.1279 0.1578 -0.1023 1.3264 1.0642 0.8023 1.0684 0.9074 0.8493
λ3 0.0039 -0.0187 -0.0181 -0.0118 0.2586 0.2127 0.8225 0.2367 0.1823 0.7702

5
λ1 0.1038 -0.0706 0.0412 -0.0716 1.1384 0.9720 0.8538 1.0185 0.8304 0.8153
λ2 0.2014 -0.2178 0.1338 -0.1635 1.3568 1.1220 0.8269 1.1851 0.9699 0.8184
λ3 -0.0049 -0.0213 0.0461 -0.0224 0.3525 0.3362 0.9538 0.2649 0.2500 0.9438

n = 100
m λ b̄1 b̄2 m(b1) m(b2) v̄1 v̄2 r1 m(v1) m(v2) r2

1
λ1 -0.0780 -0.0863 -0.0389 -0.0345 0.5978 0.5240 0.8765 0.5418 0.4167 0.7691
λ2 0.0550 -0.0943 0.0390 -0.0564 0.6421 0.5687 0.8857 0.6456 0.4629 0.7170
λ3 0.0102 -0.0581 0.0033 -0.0133 0.1508 0.1472 0.9761 0.1365 0.1281 0.9385

3
λ1 0.1536 -0.0925 0.2299 -0.1106 0.5943 0.4759 0.8008 0.5237 0.4228 0.8073
λ2 -0.0769 -0.0637 -0.1581 -0.1517 0.6522 0.6210 0.9522 0.5397 0.5038 0.9335
λ3 0.0029 -0.0779 -0.0991 -0.0129 0.1621 0.1642 1.0130 0.1420 0.1410 0.9930

5
λ1 0.0736 -0.0769 0.1407 -0.1056 0.5228 0.4403 0.8422 0.4625 0.3472 0.7507
λ2 -0.0601 -0.0712 -0.1616 -0.1752 0.5515 0.4704 0.8529 0.4872 0.3448 0.7077
λ3 -0.0090 -0.0242 -0.0339 -0.0770 0.1590 0.1465 0.9214 0.1299 0.1138 0.8761



S. Wang and H. Peng/Improving Efficiency in SEM 20

Table 2
Same as Table 1 except for the side Information of known marginal medians of X with X

generated from the bivariate exponential with scale parameters (γ1, γ2).

n = 30,m = 1
(γ1, γ2) λ b̄1 b̄2 m(b1) m(b2) v̄1 v̄2 r1 m(v1) m(v2) r2

(2, 2)
λ1 -0.0720 -0.0942 -0.1217 -0.1600 0.1731 0.1531 0.8845 0.1478 0.1333 0.9019
λ2 0.0413 0.0298 -0.0104 0.0495 0.1934 0.1657 0.8568 0.1796 0.1425 0.7934
λ3 0.0453 0.0365 0.0885 0.0687 0.2067 0.1808 0.8747 0.1841 0.1640 0.8908

(2, 3)
λ1 0.0424 0.0087 -0.0198 -0.0177 0.3424 0.2126 0.6209 0.3016 0.1918 0.6359
λ2 -0.0937 -0.0527 -0.1107 -0.0952 0.4198 0.2852 0.6794 0.3813 0.2478 0.6499
λ3 -0.0600 -0.1512 -0.1224 -0.1159 0.2004 0.1819 0.9077 0.1626 0.1518 0.9336

(2, 4)
λ1 0.0209 0.0535 -0.0327 -0.1286 0.7113 0.2411 0.3390 0.6064 0.2367 0.3903
λ2 0.0860 0.1354 0.1475 0.1280 0.6681 0.3136 0.4694 0.5949 0.3068 0.5157
λ3 0.0825 0.0080 0.0064 -0.1096 0.1741 0.1917 1.1011 0.1312 0.1411 1.0755

n = 50
(γ1, γ2) λ b̄1 b̄2 m(b1) m(b2) v̄1 v̄2 r1 m(v1) m(v2) r2

(2, 2)
λ1 0.0196 0.0318 0.0746 0.0918 0.0874 0.0721 0.8249 0.0797 0.0678 0.8507
λ2 -0.0547 -0.0467 -0.0646 -0.0760 0.1021 0.0876 0.8580 0.0953 0.0830 0.8709
λ3 -0.0847 -0.0766 -0.0894 -0.1072 0.0997 0.0876 0.8786 0.0877 0.0811 0.9247

(2, 3)
λ1 0.0059 0.0069 0.0058 0.0237 0.2121 0.1190 0.5611 0.1757 0.1072 0.6101
λ2 -0.0544 -0.0326 -0.0447 -0.0061 0.2422 0.1489 0.6148 0.2288 0.1299 0.5677
λ3 0.0422 0.0342 0.0937 0.0515 0.1068 0.1026 0.9607 0.0954 0.0827 0.8669

(2, 4)
λ1 0.1288 0.1121 -0.0007 0.0403 0.3427 0.1501 0.4380 0.3068 0.1376 0.4485
λ2 0.1900 0.1183 0.0930 0.1413 0.3781 0.1822 0.4819 0.3453 0.1700 0.4923
λ3 -0.0182 0.0027 -0.0527 0.0671 0.0978 0.0994 1.0164 0.0895 0.0867 0.9687

n = 100
(γ1, γ2) λ b̄1 b̄2 m(b1) m(b2) v̄1 v̄2 r1 m(v1) m(v2) r2

(2, 2)
λ1 0.0353 0.0346 0.0460 0.0478 0.0369 0.0326 0.8837 0.0360 0.0326 0.9050
λ2 -0.0511 -0.0585 -0.0298 -0.0316 0.0428 0.0378 0.8836 0.0423 0.0358 0.8456
λ3 -0.0482 -0.0453 -0.0882 -0.0691 0.0431 0.0390 0.9045 0.0407 0.0361 0.8877

(2, 3)
λ1 -0.0809 -0.0784 -0.1066 -0.0858 0.0985 0.0677 0.6878 0.0941 0.0642 0.6819
λ2 0.0191 0.0262 0.0175 0.0007 0.1037 0.0608 0.5865 0.1009 0.0673 0.6673
λ3 -0.0104 -0.0128 -0.0179 -0.0125 0.0444 0.0436 0.9820 0.0395 0.0391 0.9899

(2, 4)
λ1 -0.0641 -0.0655 -0.0194 -0.0238 0.1732 0.1011 0.5838 0.1688 0.0973 0.5763
λ2 0.0173 0.0186 -0.0162 0.0175 0.1747 0.1025 0.5868 0.1716 0.0848 0.4942
λ3 -0.0484 -0.0464 -0.0168 -0.0152 0.0413 0.0409 0.9903 0.0385 0.0371 0.9636
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and let λ and Λ denote the smallest and largest eigen value of the matrix S,

λ = inf
∥u∥=1

u⊤Su and Λ = sup
∥u∥=1

u⊤Su.

With these we associate the empirical likelihood

R = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjxj = 0
}
.

Peng and Schick [26] carefully examined the above maximization as a numeric
problem and detailed some very useful properties. We quote their Lemma 5.2
below for our application.

Lemma 4. The inequality λ > 5∥x̄∥x∗ implies that there is a unique ζ in Rm

satisfying the below (5.1) to (5.7).

1 + ζ⊤xj > 0, j = 1, . . . , n, (5.1)
n∑

j=1

xj

1 + ζ⊤xj

= 0, (5.2)

∥ζ∥ ≤ ∥x̄∥
λ− ∥x̄∥x∗

, (5.3)

∥ζ∥x∗ ≤ ∥x̄∥x∗
λ− ∥x̄∥x∗

<
1

4
, (5.4)

1

n

n∑
j=1

(ζ⊤xj)
2 = ζ⊤Sζ ≤ Λ∥ζ∥2 ≤ Λ∥x̄∥2

(λ− ∥x̄∥x∗)2
, (5.5)

∥∥∥ 1
n

n∑
j=1

ri

1 + ζ⊤xj

− rj + rjx
⊤
j ζ

∥∥∥ ≤
∥∥∥ 1
n

n∑
j=1

rj(ζ
⊤xj)

2
∥∥∥+

4

3

1

n

n∑
j=1

∥rj∥ |ζ⊤xj |3,

(5.6)
for vectors r1, . . . , rn of the same dimension, and

∥ζ − S−1x̄∥2 ≤ 2
( 1

λ
+

Λ

9λ2

)
∥ζ∥4x(4). (5.7)

Now use the fact that ∥x∥ = sup∥v∥=1 v
⊤x, the Cauchy-Schwartz inequality,

(5.3), (5.4) and (5.5) to bound the square of the first term of the right-hand side
of (5.6) by

1

n

n∑
j=1

(ζ⊤xj)
4 sup
∥v∥=1

v⊤
( 1

n

n∑
j=1

rjr
⊤
j

)
v ≤ ∥ζ∥4x(4)

∣∣∣ 1
n

n∑
j=1

rjr
⊤
j

∣∣∣
o

and the square of the second term by

16

9
x2∗∥ζ∥2

1

n

n∑
j=1

∥rj∥2
1

n

n∑
j=1

(ζ⊤xj)
4 ≤ 16d

9
(x∗∥ζ∥)2∥ζ∥4x(4)

∣∣∣ 1
n

n∑
j=1

rjr
⊤
j

∣∣∣
o
,
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where d is the dimension of rj . Combining the above we obtain

∥∥∥ 1
n

n∑
j=1

ri

1 + ζ⊤xj

−rj+rjx
⊤
j ζ

∥∥∥2≤∥ζ∥4x(4)
∣∣∣ 1
n

n∑
j=1

rjr
⊤
j

∣∣∣
o

[
1+

16d

9
(x∗∥ζ∥)2

]
. (5.8)

We now apply the above results to random vectors. Let Tn1, . . . ,Tnn be
mn-dimensional random vectors. With these random vectors we associate the
empirical likelihood

Rn = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjTnj = 0
}
.

To study the asymptotic behavior of Rn we introduce

T ∗
n = max

1≤j≤n
∥Tnj∥, T̄n = n−1

n∑
j=1

Tnj , T (ν)
n = sup

∥u∥=1

∥∥∥ 1
n

n∑
j=1

(u⊤Tnj)
ν
∥∥∥,

and the matrix

Sn =
1

n

n∑
j=1

TnjT
⊤
nj ,

and let λn and Λn denote the smallest and largest eigen values of Sn,

λn = inf
∥u∥=1

u⊤Snu and Λn = sup
∥u∥=1

u⊤Snu.

We impose the following conditions on Tnj .

(A1) T ∗
n = op(m

−3/2
n n1/2).

(A2) ∥T̄n∥ = Op(m
1/2
n n−1/2).

(A3) There is a sequence of regular mn×mn dispersion matrices Wn such that

|Sn −Wn|o = op(m
−1
n ).

We impose the following conditions on ψ and Tnj .

(B1) n−1
∑n

j=1

(
ψ(Zj)⊗T⊤

nj − E
(
ψ(Zj)⊗T⊤

nj

))
= op(m

−1/2
n ).

(B2) There exists some measurable function χ from Z intoRd such that
∫
χ dQ =

0,
∫
∥χ∥2 dQ <∞ and

1

n

n∑
i=1

(
AnW

−1
n Tni − χ(Zi)

)
= op(n

−1/2),

where An =: n−1
∑n

j=1E
(
ψ(Zj)⊗T⊤

nj

)
.

Let us first consider the case that mn tends to infinity with the sample size. We
have the following result.
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Theorem 7. Suppose (A1)-(A3) and (B1)-(B2) hold. Then there exists unique
ζn which satisfies

1 + ζ⊤nTnj > 0,
1

n

n∑
j=1

Tnj

1 + ζ⊤nTnj

= 0, (5.9)

such that as mn tends to infinity,

θn =:
1

n

n∑
j=1

ψ(Zj)

1 + ζ⊤nTnj

= ψ̄ − χ̄+ op(n
−1/2), (5.10)

where χ̄ = n−1
∑n

j=1 χ(Zj) with χ given in (B2).

Proof. It follows from (A1) and (A2) that T ∗
n∥T̄n∥ = op(1), and from (A3) that

there are positive numbers a < b such that P (a ≤ λn ≤ Λn ≤ b) → 1. Thus all
three conditions imply that the probability of the event {λn > 5T ∗

n∥T̄n∥} tends
to one. Consequently, by Lemma 4, there exists an mn-dimensional random
vector ζ which is uniquely determined on this event by the properties (5.1)–
(5.8) including (5.9). To prove (5.10), we apply (5.8) with rj = ψ(Zj). Note
first that

T (4)
n ≤ Λn(T

∗
n)

2. (5.11)

This, (5.3) and (A1)-(A2) imply that the right side of (5.8) is bounded by(
1 +

d

9

) ∥T̄n∥4

(λn − ∥T̄n∥T ∗
n)

4
Λn(T

∗
n)

2
∣∣ 1
n

n∑
j=1

ψ(Zj)ψ(Zj)
⊤∣∣

o
= op(m

−1
n n−1),

where the equality holds since the spectral norm of the average is bounded due
to the square-integrability of ψ. Thus from (5.8) it follows

θn =
1

n

n∑
j=1

ψ(Zj)−
1

n

n∑
j=1

ψ(Zj)⊗T⊤
njζn + op(n

−1/2). (5.12)

In view of (B2) the desired (5.10) now follows from (5.13)-(5.15) below.

1

n

n∑
j=1

(
ψ(Zj)⊗T⊤

nj − E
(
ψ(Zj)⊗T⊤

nj

))
ζn = op(n

−1/2), (5.13)

1

n

n∑
j=1

E
(
ψ(Zj)⊗T⊤

nj

)(
ζn − S−1

n T̄n

)
= op(n

−1/2), (5.14)

1

n

n∑
j=1

E
(
ψ(Zj)⊗T⊤

nj

)(
S−1
n −W−1

n

)
T̄n = op(n

−1/2). (5.15)

Note first that (B1), (A2) and (5.3) imply (5.13). Next we show

An =
1

n

n∑
j=1

E
(
ψ(Zj)⊗T⊤

nj

)
= O(m1/2

n ).
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Indeed, by Cauchy inequality,

∥An∥2 ≤ 1

n

n∑
j=1

∥E
(
ψ(Zj)⊗T⊤

nj

)
∥2 ≤ E

(
∥ψ(Z1)∥2

) 1
n

n∑
j=1

E(∥Tnj∥2
)

= E
(
∥ψ(Z1)∥2

)
trace (E(Sn)) .

But by (A3), the above trace is bounded by

∥trace (E(Sn −Wn)) ∥+ trace (E(Wn)) ≤ mnE (|Sn −Wn|o) + Λnmn,

Thus ∥An∥2 = O(mn). This, the regularity of Wn in (A3), (5.7), (5.11) and
(A1) imply that the square of the right side of (5.14) is bounded by

O(mn)Op(∥ζn∥4T (4)
n ) = O(mn)Op(∥T̄n∥4(T ∗

n)
2)

= O(mn)op(m
2
nn

−2m−3
n n) = op(m

−1
n n−1),

hence (5.14) is proved. Again the rate of An and (A2)-(A3) imply (5.15). This
completes the proof. □

Examining the proof of Theorem 7 one can see the following holds.

Theorem 8. Suppose (A1)-(A3) and (B1)-(B2) are met for fixed mn = m.
Then the results in Theorem 7 hold as n tends to infinity.

Proof of Theorem 1. We verify the conditions of Theorem 8 with Tnj =
u(Zj). Since u is square-integrable, conditions (A1) – (A3) are satisfied with
Wn = W = E(uu⊤(Z)). The square-integrability of ψ implies that (B1) – (B2)
are met with An = A = E(ψ(Z)⊗ u(Z)⊤) and χ = AW−1u, by the weak law
of large numbers. We now apply the result of Theorem 8 to complete the proof.
□

Proof of Theorem 2. We shall apply Theorem 8 to prove the result with
Tnj = û(Zj). Clearly conditions (A1), (A3) and (B1) follows from (2.7) – (2.9)
respectively, whereas (A2) is implied by (2.11) in view of the fact that the
right-hand-side average of (2.11) is Op(n

−1/2). By Cauchy inequality,

∥∥ 1
n

n∑
j=1

E
(
ψ(Zj)⊗(û(Zj)−v(Zj))

)∥∥2 ≤ E(∥ψ(Z1)∥2)
1

n

n∑
j=1

E
(
∥û(Zj)−v(Zj)∥2

)
,

which is o(1) by (2.10). Hence the An in (B2) is given by

An =
1

n

n∑
j=1

E
(
ψ(Zj)⊗ û(Zj)

)
= E(ψ(Z1)v(Z1)) + o(1).

Thus by (2.11), (B2) holds with χ = E(ψ(Z1)v(Z1))W
−1v. We now apply

Theorem 8 to complete the proof. □
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Proof of Theorem 3. We apply Theorem 7 with Tnj = un(Zj) to prove
the result, i.e. verify its conditions (A1)-(A3) and (B1)-(B2). Obviously (2.14),
(2.15) and (2.16) correspond to (A1), (A3) and (B1) respectively. It follows from
the regularity of Wn that trace(Wn) ≤ Bmn for some constant B. Thus from
nE[∥T̄n∥2] = trace(Wn) = O(mn) it yields (A2). We are now left to prove (B2).
Noticing An = E(ψ(Z)⊗u⊤

n (Z)) and Wn = E(unun(Z)
⊤), and AnW

−1
n un is

the projection of ψ(Z) onto the closed linear span [un], so that AnW
−1
n un(Z)

is the conditional expectation of ψ(Z) given un(Z), i.e.,

AnW
−1
n un(Z) = E(ψ(Z)|un(Z)).

Since E(ψ(Z)|un(Z)), n ≥ 1 forms a martingale with respect to the sigma
algebras, σ(un(Z)), n ≥ 1, generated by un(Z), it follows from Lévy’s martingale
convergence theorem (see e.g. page 510, Shiryaev [34]) that

E(ψ(Z)|σ(un(Z))) → E(ψ(Z)|σ(u∞(Z))), a.s. n→ ∞.

By the property of conditional expectation (see e.g. Proposition 1, page 430,
Bickel, et al. [1]), the last conditional expectation is the projection of ψ(Z) onto
the closed linear span [u∞(Z)], i.e., E(ψ(Z)|σ(u∞(Z))) = Π(ψ(Z)|[u∞(Z)]),
hence

φ(Z) = Π(ψ(Z)|[u∞(Z)]) = E(ψ(Z)|u∞(Z)).

Thus that (B2) is satisfied with χ = φ follows from

nE
(
∥ 1
n

n∑
i=1

(
AnW

−1
n un(Zi)−φ(Zi)

)
∥2
)
= E

(
∥AnW

−1
n un(Z)− χ(Z)∥2

)
,

which converges to zero as n tends to infinity by the property of the convergence
of Fourier series. This completes the proof. □

Proof of Theorem 4. We prove the result by verifying conditions (A1)-(A3)
and (B1)-(B2) of Theorem 7 with Tnj = ûn(Zj). Clearly (A1), (A3) and (B1)
correspond to (2.18), (2.19) and (2.20) respectively, while (A2) follows from
(2.21) and (5.16) below. We are left to verify (B2). First, by Cauchy inequality
and (2.21), ∥∥∥ 1

n

n∑
j=1

E (ψ(Zj)⊗ (ûn(Zj)− vn(Zj))
∥∥∥2

≤ E(∥ψ(Z)∥2) 1
n

n∑
j=1

E
(
∥ûn(Zj)− vn(Zj)∥2

)
= o(m−1

n ),

so that the An in (B2) satisfies

An = E (ψ(Z)⊗ vn(Z)) + o(m−1/2
n ).
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Note that trace(Un) ≤ mn|Un|o = O(mn) and

nE(∥v̄n∥2) = E(∥vn(Z)∥2) ≤ |W1/2
n |2oE(∥W−1/2

n vn(Z)∥2)
= |W1/2

n |2otrace(Un).

This shows
∥v̄n∥ = Op(n

−1/2m1/2
n ). (5.16)

By Cauchy inequality,

∥E (ψ(Z)⊗ vn(Z)) ∥2 ≤ E
(
∥ψ(Z)∥2

)
E
(
∥vn(Z)∥2

)
.

But
E
(
∥vn(Z)∥2

)
≤ |W1/2

n |2oE
(
∥W−1/2

n vn(Z)∥2
)

= |W1/2
n |2otrace(Un) = O(mn).

Hence
E (ψ(Z)⊗ vn(Z)) = O(m1/2

n ).

Therefore combining the above and in view of (2.22) we arrive at

1

n

n∑
j=1

AnW
−1
n ûn(Zj) =

(
E (ψ(Z)⊗ vn(Z)) + o(m−1/2

n )
)
W−1

n

×
(
v̄n + op(m

−1/2
n n−1/2)

)
= E (ψ(Z)⊗ vn(Z))W

−1
n v̄n + op(n

−1/2),

Analogous to the proof of (B2) in Theorem 3 (or applying un = vn), we have

E (ψ(Z)⊗ vn(Z))W
−1
n v̄n = χ̄+ op(n

−1/2),

where χ = Π(ψ|[v∞]) is the projection of ψ(Z) onto the closed linear span
[v∞]. Clearly

∫
χ dQ = 0 and

∫
|χ|2 dQ < ∞. Thus (B2) is proved with φ =

χ = Π(ψ|[v∞]). This finishes the proof. □
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