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Introduction

Jackknife Empirical likelihood for Multivariate U-statistics

Let (Z ,S ) be a measurable space and P be a probability measure on
this space. Let Z1, . . . ,Zn be independent copies of a Z -valued
random variable Z with cumulative distribution function F under P.
Let h : Rm 7→ Rd be a known function that is permutation symmetric
in its m arguments. A multivariate or vector U-statistic with kernel h
of order m is defined as

Un ≡ Unm(h) =

(
n
m

)−1 ∑
1≤i1<...<im≤n

h(Zi1 , . . . ,Zim), n ≥ 2.
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Introduction

Introduction to U-statitstics
I h ∈ L2(Fm), where L2(Fm) =

{
f :
∫
‖f‖2 dFm <∞

}

I θ = E(h) := E(h(Z1, . . . ,Zm)) =
∫

h dFm

I Pnf = n−1∑n
j=1 f(Zj) , Pf = E(f(Z))

I Un is an unbiased estimate of θ
I Let U#

n denote the projection of Un, then U#
n is a sum of

independent and identically distributed random vectors, as

U#
n =

n∑
j=1

E(Un|Zj)− (n− 1)θ.

I One obtains the approximation,

Un = U#
n + αn, αn = Op(n−1).
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Introduction

Lemma
(The Central Limit Theorem for Multivariate U-statistics)
Suppose the kernel h is square-integrable and the dispersion matrix
Σ = Var(U) is positive definite. Then

√
n(Un − θ) and

√
n(U#

n − θ)
are asymptotically equivalent, hence

√
n(Un − θ) is asymptotically

normal with mean zero and covariance matrix m2Σ, that is,
√

n(Un − θ) =⇒ N (0,m2Σ).
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Jackknife pseudo values of U-statistics

I Let U(−j)
n−1 denote the U-statistic based on the n− 1 observations

Z1, . . . , Zj−1,Zj+1, . . . ,Zn.

I The Jackknife pseudo values of the U-statistic are defined as

Vnj = nUn − (n− 1)U(−j)
n−1 , j = 1, . . . , n.

I Ṽnj = Vnj − θ
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Some Properties

I Vnj is also an unbiased estimator of θ.

I One has

Ṽnj = mh̃1(Zj) + Op(n−1/2), j = 1, . . . , n.

where

hc(z1, . . . , zc) = E(h(Z1, . . . ,Zm)|Z1 = z1, . . . ,Zc = zc),

c = 1, . . . ,m− 1.
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I It shows that each Jackknife value Vnj depends asymptotically on
Zj, so that Vnj, j = 1, . . . , n are asymptotically independent.

I If πj is a probability mass placed at Zj, then approximately the
same probability mass πj is placed at the Jackknife value Vnj for
j = 1, . . . , n.

I The joint likelihood is approximately the product of these π′js.
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Introduction

Jackknife Empirical likelihood with side information

Rn(h, g) = sup
{ n∏

j=1

nπj : π ∈Pn,

n∑
j=1

πjṼnj = 0,
n∑

j=1

πjg(Zj) = 0
}
,

I g is a measurable functions from Z to Rr such that
∫

g dF = 0
and

∫
‖g‖2 dF is finite.

I r is the number of equalities that express the side information,
and we shall call them constraints.

I We allow r to depend on the sample size n, r = rn, and to grow
to infinity slowly with n and study the asymptotic behaviors of
the empirical likelihood.
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Wilks Theorems with fixed number of constraints

I Let h(i) be a measurable functions from Z mi to Rdi which is
argument-symmetric and square-integrable for i = 1, . . . , r.

I Let Ṽnj(h(i)) be the centered jackknife pseduo value of the
U-statistic Unmk(h(k)) of order mi.

I With the U-statistics as side information, we associate the
empirical likelihood

Rn(h(1), . . . ,h(r)) = sup
{ n∏

j=1

nπj : π ∈Pn,

n∑
j=1

πjṼnj(h(k)) = 0,

k = 1, . . . , r
}
.
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Wilks Theorems with fixed number of constraints

Theorem
THEOREM 1 Let rn = r for all n. Suppose h(1), . . . ,h(r) are
argument-symmetric and square-integrable kernels. Assume
W(h(1), . . . ,h(r)) is positive definite. Then

−2 log Rn(h(1), . . . ,h(r)) =⇒ χ2
d1+···+dr

.
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Example

Testing Uniformity

I Suppose X1, . . . ,Xn is a random sample from uniform
distribution on the unit sphere, U (Sd−1).

I Let 2 ≤ m ≤ n.
I X̄m = m−1∑m

i=1 Xi (the sample mean vector);
X̄o

m = X̄m/‖X̄m‖ (the direction of sample mean);
Rm = ‖X̄m‖ (length of the sample resultant).

I Kent, Mardia and Rao (1979) proved that
Uniformity⇔ X̄o

m ⊥⊥ Rm, which implies

E
(
ak(Rm)X̄o

m
)

= 0, ak ∈ L2,0(F), k = 1, 2, . . . ,

where F is the distribution function of Rm, and {ak} is a basis of
L2,0(F).
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I For convenience, let m = 2 and d = 3.

I X ∼ U (S2), X = (x, y, z)>, and the density is
f (x, y, z) = 1

4π , (x, y, z) ∈ S2.
I Let X1, . . . ,Xn be i.i.d copies of X.

R(Xi,Xj) = ‖Xi+Xj‖, S(Xi,Xj) =
Xi + Xj

‖Xi + Xj‖
, i, j = 1, . . . , n.

I It follows that
E
(
ak(R(Xi,Xj))S(Xi,Xj)

)
= 0, ak ∈ L2,0(F), k = 1, 2, . . . ,

I Assume that F is continuous. Then a basis of L2,0(F) is
{ϕk ◦ F}, where {ϕk} = {ϕk : k = 1, 2, . . .} is a basis of
L2,0(U ) with U the uniform distribution over [0, 1].

I We usually use the trignometric basis ϕk(t) =
√

2 cos kπt.
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Example

I In this case, an estimator of the above expected value is the
vector U-statistics

Un =

(
n
m

)−1 ∑
1≤i<j≤n

ak(R(Xi,Xj))S(Xi,Xj)

I We can show that this is a minimum variance unbiased estimator
of E

(
ak(R(Xi,Xj))S(Xi,Xj)

)
.

I Jackknifing this vector U-statistics by the Jackknife pseudo
values

Vnj = nUn − (n− 1)U(−j)
n−1

where U(−j)
n−1 denote the vector U-statistic based on the n− 1

observations X1, . . . , Xj−1,Xj+1, . . . ,Xn.
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I State the null hypothesis H0 : X1, . . . ,Xn ∼ U (S2)

I The null hypothesis implies E
(
ak(R(Xi,Xj))S(Xi,Xj)

)
= 0.

This suggests the jackknife empirical likelihood

Rn = sup
{ n∏

i=1

nπi : π ∈Pn,

n∑
j=1

πjvnj(ak) = 0, k = 1, . . . , r
}
.

I We will show that
−2 log Rn =⇒ χ2

r×d

I In this case, we accept H0 if −2 log Rn ≤ χ2
3×r(1− α), where α

is the level of significance. χ2
r (1− α) is the (1− α)× 100%

percentile of χ2 distribution with degrees of freedom r.
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Simulations

Testing Symmetries

Testing Symmetries

I Spherical Symmetry
I Rotational Symmetry
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Simulations

Testing Symmetries

Testing Spherical Symmetry

I Suppose a random vector X ∈ Rd has a distribution spherically
symmetric about θ, i.e.,

X− θ
d
= Γ(X− θ),

for every orthogonal d × d matrix Γ.

I V = ‖X− θ‖, U = (X− θ)/‖X− θ‖. We have U ∼ U (Sd−1).
I Spherical symmetry
⇔ V ⊥⊥ U⇔ E[a(V)b(U)] = 0, a ∈ L2,0(FV), b ∈ L2,0(FU).
The choices for a, b are uncountably many.
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Simulations

Testing Symmetries

I However a, b can be reduced to countably many equations.

I Let {aj} denote a basis of L2,0(FV) and {bk} denote a basis of
L2,0(FU).
Take aj = ϕj ◦ FV and bk = ϕk ◦ FU. ϕk(t) =

√
2 cos kπt.

I Using the first few basis functions, we can construct empirical
likelihood ratio:

Rss
n = sup

{ n∏
i=1

nπi : π ∈Pn,

n∑
i=1

πiaj(Vi)bk(Ui) = 0, j = 1, ..., J,

k = 1, ...,K
}

where (Vi,Ui), i = 1, ..., n is a random sample of (V,U).
I By Owen’s theorem, −2 log Rss

n ⇒ χ2
JK .
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Simulations

Testing Symmetries

I Consider a vector function U→ f(U) for some known function
f : Rd → Re. (For example, f(U) = U.)

I The empirical likelihood takes the form

Rssh
n = sup

{ n∏
i=1

nπi : π ∈Pn,
n∑

i=1

πiaj(Vi)f(Ui) = 0, j = 1, ..., J
}

I In this case, under certain conditions we have

−2 log Rssh
n ⇒ χ2

Je
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Simulations

Testing Symmetries

Simulations with Jackknife pseudo values

I Suppose X1, . . . ,Xn is a random sample from a spherically
symmetrical distribution.

I Vi = ‖Xi − θ‖, Ui = (Xi − θ)/‖Xi − θ‖,
Ui ∼ U (Sd−1),i = 1, . . . , n.

I Let m = 2, for any p, q = 1, . . . , n, let R = Up + Uq,
R0 = R/‖R‖.

I We have the fact that Ui ∼ U (Sd−1)⇔ ‖R‖ ⊥⊥ R0.
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Simulations

Testing Symmetries

I Let bk = ϕk ◦ G, ϕk(t) =
√

2 cos kπt, k = 1, . . . ,K.
bK = (b1, . . . , bK)>.
G(u) =

(n
2

)−1∑
1≤p<q≤n 1[‖Up + Uq‖ ≤ u].

I Let the kernel function
h(Up,Uq) = bK(‖Up + Uq‖)⊗ ((Up + Uq)/‖Up + Uq‖), which
is argument-symmetric.

I The U-statistics with the kernel h is given by

Un(bK) =

(
n
2

)−1 ∑
1≤p<q≤n

h(Up,Uq)

I The Jackknife pseudo values of the U-statistics is given by

Vni = nUn(bK)− (n− 1)Un−1(bK), i = 1, . . . , n.
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Simulations

Testing Symmetries

I Let aJ = (a1, . . . , aJ)>.

I Combine two parts together, we get the Jackknife empirical
likelihood with side information as follows,

Rn(h, g) = sup
{ n∏

i=1

nπi : π ∈Pn,
n∑

i=1

πiaJ(Vi)⊗ f(Ui) = 0,

n∑
i=1

πiVni = 0
}

I By Theorem 1, under certain conditions we have

−2 log Rn(h, g)→ χ2
(Je+Kd)
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Simulations

Testing Symmetries

Simulation results of samples from normal distribution

I We still calculate powers of this test with different settings.
I For convenience, we set d = e = dim, and J = K = r.
I r is basically the number of basis functions.
I The null hypothesis H0 : θ = (0, 0, 0)>.

rep(x, dim) denotes the alternative hypothesis
H1 : θ = (x, x, x)>.
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Simulations

Testing Symmetries

Simulation results of samples from t distribution

I We still calculate powers of this test with different settings.
I For convenience, we set d = e = dim, and J = K = r, df

denotes the degrees of freedom of t distribution.
I r is basically the number of basis functions.
I The null hypothesis H0 : θ = (0, 0, 0)>.

rep(x, dim) denotes the alternative hypothesis
H1 : θ = (x, x, x)>.
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Simulations

Testing Symmetries

Testing Rotational Symmetry

I Suppose a random vector X ∈ Sd−1 is rotationally symmetric
about direction θ, that is,

X− θ
d
= O(X− θ),

for every d× d rotation matrix O about a fixed direction θ inRd.

I Let T = θ>X be the projection of X onto the direction θ.
I Let ξ be the unit tangent at θ to Sd−1.

ξ ∼ U (Sd−2(θ)), where
Sd−2(θ) =

{
x ∈ Rd : |x| = 1, x>θ = 0

}
.

I Rotational Symmetry⇒ T = θ>X ⊥⊥ ξ = X−Tθ
‖X−Tθ‖

.
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Simulations

Testing Symmetries

I Independence implies
E(a(T)b(ξ)) = 0, a ∈ L2,0(FT), b ∈ L2,0(Gξ).

I Similar to the spherical symmetry case, take aj = ϕj ◦ FT ,
j = 1, . . . , J, and a vector function ξ → f(ξ) for some known
function f : Rd → Re.

I We have E(aj(T)ξ) = 0. Let aJ = (a1, . . . , aJ)>. The empirical
likelihood ratio takes the form

Rrsh
n = sup

{ n∏
i=1

nπi : π ∈Pn,

n∑
i=1

πiaJ(T)⊗ ξ = 0
}

I Under certain conditions we have

−2 log Rrsh
n ⇒ χ2

Je

Lingnan Li An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries



An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries

Simulations

Testing Symmetries

I Independence implies
E(a(T)b(ξ)) = 0, a ∈ L2,0(FT), b ∈ L2,0(Gξ).

I Similar to the spherical symmetry case, take aj = ϕj ◦ FT ,
j = 1, . . . , J, and a vector function ξ → f(ξ) for some known
function f : Rd → Re.

I We have E(aj(T)ξ) = 0. Let aJ = (a1, . . . , aJ)>. The empirical
likelihood ratio takes the form

Rrsh
n = sup

{ n∏
i=1

nπi : π ∈Pn,

n∑
i=1

πiaJ(T)⊗ ξ = 0
}

I Under certain conditions we have

−2 log Rrsh
n ⇒ χ2

Je

Lingnan Li An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries



An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries

Simulations

Testing Symmetries

I Independence implies
E(a(T)b(ξ)) = 0, a ∈ L2,0(FT), b ∈ L2,0(Gξ).

I Similar to the spherical symmetry case, take aj = ϕj ◦ FT ,
j = 1, . . . , J, and a vector function ξ → f(ξ) for some known
function f : Rd → Re.

I We have E(aj(T)ξ) = 0. Let aJ = (a1, . . . , aJ)>. The empirical
likelihood ratio takes the form

Rrsh
n = sup

{ n∏
i=1

nπi : π ∈Pn,

n∑
i=1

πiaJ(T)⊗ ξ = 0
}

I Under certain conditions we have

−2 log Rrsh
n ⇒ χ2

Je

Lingnan Li An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries



An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries

Simulations

Testing Symmetries

Simulations with Jackknife pseudo values

I We construct the same U-statistics and Jackknife pseudo values
as the spherical symmetry case.

I Eventually we have the same asymptotic distribution for the
Jackknife empirical likelihood

−2 log Rn(h, g)→ χ2
(Je+Kd)

I In our simulation, we generated the data distributed from Von
Mises-Fisher distribution.

I We are testing
H0 : θ = (0, 0, 1)> V.S. H1 : θ = (0.14, 0.14, 0.98)>.
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Simulations

Testing Symmetries

I Calculate the powers of this test with different settings.
I For convenience, take d = e = 3, J = K = r.
I r is basically the number of basis functions.
I The results of simulations are showed below:
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Thank you very much!
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