An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries

Lingnan Li

Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis

July 30, 2013

Lingnan Li An Empirical Likelihood Approach Of Testing of High Dimensional

Outline

Introduction

Wilks Theorems with fixed number of constraints

Example

Simulations Testing Symmetries

Reference

ヘロン 人間 とくほ とくほ とう

Jackknife Empirical likelihood for Multivariate U-statistics

Let $(\mathscr{Z}, \mathscr{S})$ be a measurable space and *P* be a probability measure on this space. Let $\mathbf{Z}_1, \ldots, \mathbf{Z}_n$ be independent copies of a \mathscr{Z} -valued random variable **Z** with cumulative distribution function *F* under *P*. Let $\mathbf{h} : \mathbb{R}^m \mapsto \mathbb{R}^d$ be a known function that is permutation symmetric in its *m* arguments. A multivariate or vector U-statistic with kernel **h** of order *m* is defined as

$$\mathbf{U}_n \equiv \mathbf{U}_{nm}(h) = \binom{n}{m}^{-1} \sum_{1 \leq i_1 < \ldots < i_m \leq n} \mathbf{h}(\mathbf{Z}_{i_1}, \ldots, \mathbf{Z}_{i_m}), \quad n \geq 2.$$

Introduction to U-statitstics

•
$$\mathbf{h} \in \mathbf{L}_2(F^m)$$
, where $L_2(F^m) = \{\mathbf{f} : \int \|\mathbf{f}\|^2 dF^m < \infty\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction to U-statitstics

•
$$\mathbf{h} \in \mathbf{L}_2(F^m)$$
, where $L_2(F^m) = \left\{ \mathbf{f} : \int \|\mathbf{f}\|^2 dF^m < \infty \right\}$

$$\bullet \ \boldsymbol{\theta} = E(\mathbf{h}) := E(\mathbf{h}(\mathbf{Z}_1, \dots, \mathbf{Z}_m)) = \int \mathbf{h} \, dF^m$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction to U-statitstics

•
$$\mathbf{h} \in \mathbf{L}_2(F^m)$$
, where $L_2(F^m) = \{\mathbf{f} : \int \|\mathbf{f}\|^2 dF^m < \infty\}$

$$\bullet \ \boldsymbol{\theta} = E(\mathbf{h}) := E(\mathbf{h}(\mathbf{Z}_1, \dots, \mathbf{Z}_m)) = \int \mathbf{h} \, dF^m$$

$$\blacktriangleright P_n \mathbf{f} = n^{-1} \sum_{j=1}^n \mathbf{f}(\mathbf{Z}_j), P \mathbf{f} = E(\mathbf{f}(\mathbf{Z}))$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶

Э

Introduction to U-statitstics

•
$$\mathbf{h} \in \mathbf{L}_2(F^m)$$
, where $L_2(F^m) = \left\{ \mathbf{f} : \int \|\mathbf{f}\|^2 \, dF^m < \infty \right\}$

$$\bullet \ \boldsymbol{\theta} = E(\mathbf{h}) := E(\mathbf{h}(\mathbf{Z}_1, \dots, \mathbf{Z}_m)) = \int \mathbf{h} \, dF^m$$

•
$$P_n \mathbf{f} = n^{-1} \sum_{j=1}^n \mathbf{f}(\mathbf{Z}_j)$$
, $P \mathbf{f} = E(\mathbf{f}(\mathbf{Z}))$

• \mathbf{U}_n is an unbiased estimate of $\boldsymbol{\theta}$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Introduction to U-statitstics

•
$$\mathbf{h} \in \mathbf{L}_2(F^m)$$
, where $L_2(F^m) = \left\{ \mathbf{f} : \int \|\mathbf{f}\|^2 dF^m < \infty \right\}$

$$\bullet \ \boldsymbol{\theta} = E(\mathbf{h}) := E(\mathbf{h}(\mathbf{Z}_1, \dots, \mathbf{Z}_m)) = \int \mathbf{h} \, dF^m$$

$$\blacktriangleright P_n \mathbf{f} = n^{-1} \sum_{j=1}^n \mathbf{f}(\mathbf{Z}_j), P \mathbf{f} = E(\mathbf{f}(\mathbf{Z}))$$

- \mathbf{U}_n is an unbiased estimate of $\boldsymbol{\theta}$
- ► Let U[#]_n denote the projection of U_n, then U[#]_n is a sum of independent and identically distributed random vectors, as

$$\mathbf{U}_n^{\#} = \sum_{j=1}^n E(\mathbf{U}_n | \mathbf{Z}_j) - (n-1)\boldsymbol{\theta}.$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Introduction to U-statitstics

•
$$\mathbf{h} \in \mathbf{L}_2(F^m)$$
, where $L_2(F^m) = \left\{ \mathbf{f} : \int \|\mathbf{f}\|^2 dF^m < \infty \right\}$

$$\bullet \ \boldsymbol{\theta} = E(\mathbf{h}) := E(\mathbf{h}(\mathbf{Z}_1, \dots, \mathbf{Z}_m)) = \int \mathbf{h} \, dF^m$$

$$\blacktriangleright P_n \mathbf{f} = n^{-1} \sum_{j=1}^n \mathbf{f}(\mathbf{Z}_j) , P \mathbf{f} = E(\mathbf{f}(\mathbf{Z}))$$

- \mathbf{U}_n is an unbiased estimate of $\boldsymbol{\theta}$
- ► Let U[#]_n denote the projection of U_n, then U[#]_n is a sum of independent and identically distributed random vectors, as

$$\mathbf{U}_n^{\#} = \sum_{j=1}^n E(\mathbf{U}_n | \mathbf{Z}_j) - (n-1)\boldsymbol{\theta}.$$

One obtains the approximation,

$$U_n = \mathbf{U}_n^{\#} + \boldsymbol{\alpha}_n, \quad \boldsymbol{\alpha}_n = O_p(n^{-1}).$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Introduction to U-statitstics

•
$$\mathbf{h} \in \mathbf{L}_2(F^m)$$
, where $L_2(F^m) = \left\{ \mathbf{f} : \int \|\mathbf{f}\|^2 dF^m < \infty \right\}$

$$\bullet \ \boldsymbol{\theta} = E(\mathbf{h}) := E(\mathbf{h}(\mathbf{Z}_1, \dots, \mathbf{Z}_m)) = \int \mathbf{h} \, dF^m$$

$$\blacktriangleright P_n \mathbf{f} = n^{-1} \sum_{j=1}^n \mathbf{f}(\mathbf{Z}_j) , P \mathbf{f} = E(\mathbf{f}(\mathbf{Z}))$$

- \mathbf{U}_n is an unbiased estimate of $\boldsymbol{\theta}$
- ► Let U[#]_n denote the projection of U_n, then U[#]_n is a sum of independent and identically distributed random vectors, as

$$\mathbf{U}_n^{\#} = \sum_{j=1}^n E(\mathbf{U}_n | \mathbf{Z}_j) - (n-1)\boldsymbol{\theta}.$$

One obtains the approximation,

$$U_n = \mathbf{U}_n^{\#} + \boldsymbol{\alpha}_n, \quad \boldsymbol{\alpha}_n = O_p(n^{-1}).$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Lemma

(The Central Limit Theorem for Multivariate U-statistics) Suppose the kernel **h** is square-integrable and the dispersion matrix $\Sigma = \text{Var}(\mathbf{U})$ is positive definite. Then $\sqrt{n}(\mathbf{U}_n - \boldsymbol{\theta})$ and $\sqrt{n}(\mathbf{U}_n^{\#} - \boldsymbol{\theta})$ are asymptotically equivalent, hence $\sqrt{n}(\mathbf{U}_n - \boldsymbol{\theta})$ is asymptotically normal with mean zero and covariance matrix $m^2 \Sigma$, that is,

$$\sqrt{n}(\mathbf{U}_n-\boldsymbol{\theta})\implies \mathscr{N}(0,m^2\boldsymbol{\Sigma}).$$

• □ • • □ • • □ • • □ •

Jackknife pseudo values of U-statistics

► Let $\mathbf{U}_{n-1}^{(-j)}$ denote the U-statistic based on the n-1 observations $\mathbf{Z}_1, \ldots, \mathbf{Z}_{j-1}, \mathbf{Z}_{j+1}, \ldots, \mathbf{Z}_n$.

・ロト ・ ア・ ・ ア・ ・ ア・ ・ ア

Jackknife pseudo values of U-statistics

- ► Let $\mathbf{U}_{n-1}^{(-j)}$ denote the U-statistic based on the n-1 observations $\mathbf{Z}_1, \ldots, \mathbf{Z}_{j-1}, \mathbf{Z}_{j+1}, \ldots, \mathbf{Z}_n$.
- The Jackknife pseudo values of the U-statistic are defined as

$$\mathbf{V}_{nj} = n\mathbf{U}_n - (n-1)\mathbf{U}_{n-1}^{(-j)}, \quad j = 1, \dots, n.$$

(日)

Jackknife pseudo values of U-statistics

- ► Let $\mathbf{U}_{n-1}^{(-j)}$ denote the U-statistic based on the n-1 observations $\mathbf{Z}_1, \ldots, \mathbf{Z}_{j-1}, \mathbf{Z}_{j+1}, \ldots, \mathbf{Z}_n$.
- The Jackknife pseudo values of the U-statistic are defined as

$$\mathbf{V}_{nj} = n\mathbf{U}_n - (n-1)\mathbf{U}_{n-1}^{(-j)}, \quad j = 1, \dots, n.$$

$$\blacktriangleright \tilde{\mathbf{V}}_{nj} = \mathbf{V}_{nj} - \boldsymbol{\theta}$$

(日)

Some Properties

• V_{nj} is also an unbiased estimator of θ .

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

Some Properties

• V_{nj} is also an unbiased estimator of θ .

One has

$$\tilde{\mathbf{V}}_{nj} = m\tilde{\mathbf{h}}_1(\mathbf{Z}_j) + O_p(n^{-1/2}), \quad j = 1, \dots, n.$$

where

$$h_c(\mathbf{z}_1,\ldots,\mathbf{z}_c) = E(\mathbf{h}(\mathbf{Z}_1,\ldots,\mathbf{Z}_m)|\mathbf{Z}_1=\mathbf{z}_1,\ldots,\mathbf{Z}_c=\mathbf{z}_c),$$
$$c = 1,\ldots,m-1.$$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

э

• It shows that each Jackknife value \mathbf{V}_{nj} depends asymptotically on \mathbf{Z}_{j} , so that $\mathbf{V}_{nj}, j = 1, ..., n$ are asymptotically *independent*.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- ▶ It shows that each Jackknife value \mathbf{V}_{nj} depends asymptotically on \mathbf{Z}_{j} , so that \mathbf{V}_{nj} , j = 1, ..., n are asymptotically *independent*.
- If π_j is a probability mass placed at Z_j, then approximately the same probability mass π_j is placed at the Jackknife value V_{nj} for j = 1,..., n.

- It shows that each Jackknife value \mathbf{V}_{nj} depends asymptotically on \mathbf{Z}_j , so that $\mathbf{V}_{nj}, j = 1, ..., n$ are asymptotically *independent*.
- If π_j is a probability mass placed at Z_j, then approximately the same probability mass π_j is placed at the Jackknife value V_{nj} for j = 1,..., n.
- The joint likelihood is approximately the product of these π'_i s.

Jackknife Empirical likelihood with side information

$$\mathscr{R}_n(\mathbf{h},\mathbf{g}) = \sup \Big\{ \prod_{j=1}^n n\pi_j : \pi \in \mathscr{P}_n, \sum_{j=1}^n \pi_j \tilde{\mathbf{V}}_{nj} = 0, \quad \sum_{j=1}^n \pi_j \mathbf{g}(\mathbf{Z}_j) = 0 \Big\},\$$

- ▶ **g** is a measurable functions from \mathscr{Z} to \mathbb{R}^r such that $\int \mathbf{g} dF = 0$ and $\int ||\mathbf{g}||^2 dF$ is finite.
- ► r is the number of equalities that express the side information, and we shall call them *constraints*.
- ► We allow *r* to depend on the sample size *n*, *r* = *r_n*, and to grow to infinity slowly with *n* and study the asymptotic behaviors of the empirical likelihood.

Wilks Theorems with fixed number of constraints

- Let h⁽ⁱ⁾ be a measurable functions from *𝔅^{m_i}* to ℝ^{d_i} which is argument-symmetric and square-integrable for i = 1,...,r.
- Let V
 {nj}(h⁽ⁱ⁾) be the centered jackknife pseduo value of the U-statistic U{nmk}(h^(k)) of order m_i.

Wilks Theorems with fixed number of constraints

- Let h⁽ⁱ⁾ be a measurable functions from *𝔅^{m_i}* to ℝ^{d_i} which is argument-symmetric and square-integrable for i = 1,...,r.
- Let V
 {nj}(h⁽ⁱ⁾) be the centered jackknife pseduo value of the U-statistic U{nmk}(h^(k)) of order m_i.
- With the U-statistics as side information, we associate the empirical likelihood

$$\mathscr{R}_n(\mathbf{h}^{(1)},\ldots,\mathbf{h}^{(r)}) = \sup \Big\{ \prod_{j=1}^n n\pi_j : \pi \in \mathscr{P}_n, \sum_{j=1}^n \pi_j \tilde{\mathbf{V}}_{nj}(\mathbf{h}^{(k)}) = 0, \\ k = 1,\ldots,r \Big\}.$$

Wilks Theorems with fixed number of constraints

Theorem THEOREM 1 Let $r_n = r$ for all n. Suppose $\mathbf{h}^{(1)}, \ldots, \mathbf{h}^{(r)}$ are argument-symmetric and square-integrable kernels. Assume $\mathbf{W}(\mathbf{h}^{(1)}, \ldots, \mathbf{h}^{(r)})$ is positive definite. Then

$$-2\log \mathscr{R}_n(\mathbf{h}^{(1)},\ldots,\mathbf{h}^{(r)}) \implies \chi^2_{d_1+\cdots+d_r}.$$

-Example

Testing Uniformity

Suppose X₁,..., X_n is a random sample from uniform distribution on the unit sphere, 𝒴(𝔅^{d−1}).

(日)

- Example

Testing Uniformity

- Suppose X₁,..., X_n is a random sample from uniform distribution on the unit sphere, 𝒴(𝔅^{d−1}).
- Let $2 \le m \le n$.

◆□▶ ◆禄▶ ◆臣▶ ◆臣▶ 臣 のくぐ

-Example

Testing Uniformity

Suppose X₁,..., X_n is a random sample from uniform distribution on the unit sphere, 𝒴(𝔅^{d−1}).

• Let
$$2 \le m \le n$$
.

▶
$$\bar{\mathbf{X}}_m = m^{-1} \sum_{i=1}^m \mathbf{X}_i$$
 (the sample mean vector);
 $\bar{\mathbf{X}}_m^o = \bar{\mathbf{X}}_m / \|\bar{\mathbf{X}}_m\|$ (the direction of sample mean);
 $R_m = \|\bar{\mathbf{X}}_m\|$ (length of the sample resultant).

(日)

- Example

Testing Uniformity

- Suppose X₁,..., X_n is a random sample from uniform distribution on the unit sphere, 𝒴(𝔅^{d−1}).
- Let $2 \le m \le n$.
- $\bar{\mathbf{X}}_m = m^{-1} \sum_{i=1}^m \mathbf{X}_i$ (the sample mean vector); $\bar{\mathbf{X}}_m^o = \bar{\mathbf{X}}_m / \|\bar{\mathbf{X}}_m\|$ (the direction of sample mean); $R_m = \|\bar{\mathbf{X}}_m\|$ (length of the sample resultant).
- ► Kent, Mardia and Rao (1979) proved that Uniformity $\Leftrightarrow \bar{\mathbf{X}}_m^o \perp R_m$, which implies

$$E(a_k(R_m)\bar{\mathbf{X}}_m^o) = 0, \quad a_k \in L_{2,0}(F), k = 1, 2, \dots,$$

where *F* is the distribution function of R_m , and $\{a_k\}$ is a basis of $L_{2,0}(F)$.

Example

For convenience, let m = 2 and d = 3.

イロン イロン イヨン イヨン

æ

- Example

- For convenience, let m = 2 and d = 3.
- ► $\mathbf{X} \sim \mathscr{U}(\mathcal{S}^2), \mathbf{X} = (x, y, z)^\top$, and the density is $f(x, y, z) = \frac{1}{4\pi}, (x, y, z) \in \mathcal{S}^2$.
- Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d copies of \mathbf{X} .

$$R(\mathbf{X}_i, \mathbf{X}_j) = \|\mathbf{X}_i + \mathbf{X}_j\|, \quad S(\mathbf{X}_i, \mathbf{X}_j) = \frac{\mathbf{X}_i + \mathbf{X}_j}{\|\mathbf{X}_i + \mathbf{X}_j\|}, \quad i, j = 1, \dots, n.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

-Example

- For convenience, let m = 2 and d = 3.
- ► $\mathbf{X} \sim \mathscr{U}(\mathcal{S}^2), \mathbf{X} = (x, y, z)^\top$, and the density is $f(x, y, z) = \frac{1}{4\pi}, (x, y, z) \in \mathcal{S}^2$.
- Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d copies of \mathbf{X} .

$$R(\mathbf{X}_i, \mathbf{X}_j) = \|\mathbf{X}_i + \mathbf{X}_j\|, \quad S(\mathbf{X}_i, \mathbf{X}_j) = \frac{\mathbf{X}_i + \mathbf{X}_j}{\|\mathbf{X}_i + \mathbf{X}_j\|}, \quad i, j = 1, \dots, n.$$

• It follows that $E(a_k(R(\mathbf{X}_i, \mathbf{X}_j))S(\mathbf{X}_i, \mathbf{X}_j)) = 0, \quad a_k \in L_{2,0}(F), k = 1, 2, \dots,$

・ロト ・四ト ・ヨト ・ヨト

-Example

- For convenience, let m = 2 and d = 3.
- ► $\mathbf{X} \sim \mathscr{U}(\mathcal{S}^2), \mathbf{X} = (x, y, z)^\top$, and the density is $f(x, y, z) = \frac{1}{4\pi}, (x, y, z) \in \mathcal{S}^2$.
- Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d copies of \mathbf{X} .

$$R(\mathbf{X}_i, \mathbf{X}_j) = \|\mathbf{X}_i + \mathbf{X}_j\|, \quad S(\mathbf{X}_i, \mathbf{X}_j) = \frac{\mathbf{X}_i + \mathbf{X}_j}{\|\mathbf{X}_i + \mathbf{X}_j\|}, \quad i, j = 1, \dots, n.$$

- ► It follows that $E(a_k(\mathbf{R}(\mathbf{X}_i, \mathbf{X}_j))S(\mathbf{X}_i, \mathbf{X}_j)) = 0, \quad a_k \in L_{2,0}(F), k = 1, 2, ...,$
- Assume that *F* is continuous. Then a basis of $L_{2,0}(F)$ is $\{\varphi_k \circ F\}$, where $\{\varphi_k\} = \{\varphi_k : k = 1, 2, ...\}$ is a basis of $L_{2,0}(\mathcal{U})$ with \mathcal{U} the uniform distribution over [0, 1].

イロト 不得 トイヨト イヨト ニヨー

– Example

- For convenience, let m = 2 and d = 3.
- ► $\mathbf{X} \sim \mathscr{U}(\mathcal{S}^2), \mathbf{X} = (x, y, z)^\top$, and the density is $f(x, y, z) = \frac{1}{4\pi}, (x, y, z) \in \mathcal{S}^2$.
- Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d copies of \mathbf{X} .

$$R(\mathbf{X}_i, \mathbf{X}_j) = \|\mathbf{X}_i + \mathbf{X}_j\|, \quad S(\mathbf{X}_i, \mathbf{X}_j) = \frac{\mathbf{X}_i + \mathbf{X}_j}{\|\mathbf{X}_i + \mathbf{X}_j\|}, \quad i, j = 1, \dots, n.$$

- ► It follows that $E(a_k(\mathbf{R}(\mathbf{X}_i, \mathbf{X}_j))S(\mathbf{X}_i, \mathbf{X}_j)) = 0, \quad a_k \in L_{2,0}(F), k = 1, 2, ...,$
- Assume that *F* is continuous. Then a basis of $L_{2,0}(F)$ is $\{\varphi_k \circ F\}$, where $\{\varphi_k\} = \{\varphi_k : k = 1, 2, ...\}$ is a basis of $L_{2,0}(\mathcal{U})$ with \mathcal{U} the uniform distribution over [0, 1].
- We usually use the trignometric basis $\varphi_k(t) = \sqrt{2} \cos k\pi t$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

-Example

In this case, an estimator of the above expected value is the vector U-statistics

$$\mathbf{U}_n = \binom{n}{m}^{-1} \sum_{1 \le i < j \le n} a_k(\mathbf{R}(\mathbf{X}_i, \mathbf{X}_j)) S(\mathbf{X}_i, \mathbf{X}_j)$$

・ロト ・四ト ・日ト・日下

- Example

In this case, an estimator of the above expected value is the vector U-statistics

$$\mathbf{U}_n = \binom{n}{m}^{-1} \sum_{1 \le i < j \le n} a_k(\mathbf{R}(\mathbf{X}_i, \mathbf{X}_j)) S(\mathbf{X}_i, \mathbf{X}_j)$$

► We can show that this is a minimum variance unbiased estimator of E(a_k(R(X_i, X_j))S(X_i, X_j)).

・ロト ・四ト ・ヨト ・ヨト

-Example

In this case, an estimator of the above expected value is the vector U-statistics

$$\mathbf{U}_n = \binom{n}{m}^{-1} \sum_{1 \le i < j \le n} a_k(\mathbf{R}(\mathbf{X}_i, \mathbf{X}_j)) S(\mathbf{X}_i, \mathbf{X}_j)$$

- ► We can show that this is a minimum variance unbiased estimator of E(a_k(R(X_i, X_j))S(X_i, X_j)).
- Jackknifing this vector U-statistics by the Jackknife pseudo values

$$\mathbf{V}_{nj} = n\mathbf{U}_n - (n-1)\mathbf{U}_{n-1}^{(-j)}$$

where $\mathbf{U}_{n-1}^{(-j)}$ denote the vector U-statistic based on the n-1 observations $\mathbf{X}_1, \ldots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \ldots, \mathbf{X}_n$.

(日)

• State the null hypothesis $\mathbf{H}_0: X_1, \ldots, X_n \sim \mathscr{U}(\mathcal{S}^2)$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

- Example

- State the null hypothesis $\mathbf{H}_0 : X_1, \dots, X_n \sim \mathscr{U}(\mathcal{S}^2)$
- ► The null hypothesis implies E(a_k(R(X_i, X_j))S(X_i, X_j)) = 0. This suggests the jackknife empirical likelihood

$$\mathscr{R}_n = \sup \left\{ \prod_{i=1}^n n\pi_i : \boldsymbol{\pi} \in \mathscr{P}_n, \sum_{j=1}^n \pi_j \mathbf{v}_{nj}(a_k) = 0, \quad k = 1, \dots, r \right\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Example

- State the null hypothesis $\mathbf{H}_0 : X_1, \dots, X_n \sim \mathscr{U}(\mathcal{S}^2)$
- ► The null hypothesis implies $E(a_k(\mathbf{R}(\mathbf{X}_i, \mathbf{X}_j))S(\mathbf{X}_i, \mathbf{X}_j)) = 0$. This suggests the jackknife empirical likelihood

$$\mathscr{R}_n = \sup \left\{ \prod_{i=1}^n n\pi_i : \boldsymbol{\pi} \in \mathscr{P}_n, \sum_{j=1}^n \pi_j \mathbf{v}_{nj}(a_k) = 0, \quad k = 1, \dots, r \right\}.$$

We will show that

$$-2\log \mathscr{R}_n \implies \chi^2_{r \times d}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

-Example

- State the null hypothesis $\mathbf{H}_0 : X_1, \dots, X_n \sim \mathscr{U}(\mathcal{S}^2)$
- ► The null hypothesis implies E(a_k(R(X_i, X_j))S(X_i, X_j)) = 0. This suggests the jackknife empirical likelihood

$$\mathscr{R}_n = \sup \left\{ \prod_{i=1}^n n\pi_i : \boldsymbol{\pi} \in \mathscr{P}_n, \sum_{j=1}^n \pi_j \mathbf{v}_{nj}(a_k) = 0, \quad k = 1, \dots, r \right\}.$$

We will show that

$$-2\log \mathscr{R}_n \implies \chi^2_{r \times d}$$

▶ In this case, we accept H_0 if $-2 \log \Re_n \le \chi^2_{3 \times r}(1 - \alpha)$, where α is the level of significance. $\chi^2_r(1 - \alpha)$ is the $(1 - \alpha) \times 100\%$ percentile of χ^2 distribution with degrees of freedom *r*.

-Simulations

└─ Testing Symmetries

Spherical Symmetry

Rotational Symmetry

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

— Testing Symmetries

Testing Spherical Symmetry

Suppose a random vector $\mathbf{X} \in \mathcal{R}^d$ has a distribution spherically symmetric about $\boldsymbol{\theta}$, i.e.,

$$\mathbf{X} - \boldsymbol{\theta} \stackrel{d}{=} \Gamma(\mathbf{X} - \boldsymbol{\theta}),$$

for every orthogonal $d \times d$ matrix Γ .

— Testing Symmetries

Testing Spherical Symmetry

Suppose a random vector $\mathbf{X} \in \mathcal{R}^d$ has a distribution spherically symmetric about $\boldsymbol{\theta}$, i.e.,

$$\mathbf{X} - \boldsymbol{\theta} \stackrel{d}{=} \Gamma(\mathbf{X} - \boldsymbol{\theta}),$$

for every orthogonal $d \times d$ matrix Γ .

►
$$V = ||\mathbf{X} - \boldsymbol{\theta}||, \mathbf{U} = (\mathbf{X} - \boldsymbol{\theta}) / ||\mathbf{X} - \boldsymbol{\theta}||.$$
 We have $\mathbf{U} \sim \mathscr{U}(\mathcal{S}^{d-1})$.

— Testing Symmetries

Testing Spherical Symmetry

Suppose a random vector $\mathbf{X} \in \mathcal{R}^d$ has a distribution spherically symmetric about $\boldsymbol{\theta}$, i.e.,

$$\mathbf{X} - \boldsymbol{\theta} \stackrel{d}{=} \Gamma(\mathbf{X} - \boldsymbol{\theta}),$$

for every orthogonal $d \times d$ matrix Γ .

►
$$V = \|\mathbf{X} - \boldsymbol{\theta}\|, \mathbf{U} = (\mathbf{X} - \boldsymbol{\theta}) / \|\mathbf{X} - \boldsymbol{\theta}\|.$$
 We have $\mathbf{U} \sim \mathscr{U}(\mathcal{S}^{d-1})$.

▶ Spherical symmetry $\Leftrightarrow V \perp \mathbf{U} \Leftrightarrow E[a(V)b(\mathbf{U})] = 0, \quad a \in L_{2,0}(F_V), b \in L_{2,0}(F_{\mathbf{U}}).$ The choices for *a*, *b* are uncountably many.

L Testing Symmetries

► However *a*, *b* can be reduced to countably many equations.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

э

imulations	
- Testing Symmetries	

- ▶ However *a*, *b* can be reduced to countably many equations.
- Let {a_j} denote a basis of L_{2,0}(F_V) and {b_k} denote a basis of L_{2,0}(F_U).

Take $a_j = \varphi_j \circ F_V$ and $b_k = \varphi_k \circ F_U$. $\varphi_k(t) = \sqrt{2} \cos k\pi t$.

-	Simulations		

- Testing Symmetries

- ▶ However *a*, *b* can be reduced to countably many equations.
- Let $\{a_j\}$ denote a basis of $L_{2,0}(F_V)$ and $\{b_k\}$ denote a basis of $L_{2,0}(F_U)$.

Take $a_j = \varphi_j \circ F_V$ and $b_k = \varphi_k \circ F_U$. $\varphi_k(t) = \sqrt{2} \cos k\pi t$.

Using the first few basis functions, we can construct empirical likelihood ratio:

$$\mathscr{R}_n^{ss} = \sup\left\{\prod_{i=1}^n n\pi_i : \boldsymbol{\pi} \in \mathscr{P}_n, \sum_{i=1}^n \pi_i a_j(V_i)b_k(\mathbf{U}_i) = 0, \quad j = 1, ..., J, k = 1, ..., K\right\}$$

where $(V_i, \mathbf{U}_i), i = 1, ..., n$ is a random sample of (V, \mathbf{U}) .

Simulatio	ns
-----------	----

└─ Testing Symmetries

- ▶ However *a*, *b* can be reduced to countably many equations.
- Let $\{a_j\}$ denote a basis of $L_{2,0}(F_V)$ and $\{b_k\}$ denote a basis of $L_{2,0}(F_U)$.

Take $a_j = \varphi_j \circ F_V$ and $b_k = \varphi_k \circ F_U$. $\varphi_k(t) = \sqrt{2} \cos k\pi t$.

Using the first few basis functions, we can construct empirical likelihood ratio:

$$\mathscr{R}_n^{ss} = \sup\left\{\prod_{i=1}^n n\pi_i : \pi \in \mathscr{P}_n, \sum_{i=1}^n \pi_i a_j(V_i)b_k(\mathbf{U}_i) = 0, \quad j = 1, ..., J, \\ k = 1, ..., K\right\}$$

where $(V_i, \mathbf{U}_i), i = 1, ..., n$ is a random sample of (V, \mathbf{U}) .

• By Owen's theorem, $-2\log \mathscr{R}_n^{ss} \Rightarrow \chi_{JK}^2$.

— Testing Symmetries

► Consider a vector function U → f(U) for some known function f: R^d → R^e. (For example, f(U) = U.)

(日)

An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries

— Testing Symmetries

- Consider a vector function U → f(U) for some known function f: R^d → R^e. (For example, f(U) = U.)
- The empirical likelihood takes the form

$$\mathscr{R}_n^{ssh} = \sup\left\{\prod_{i=1}^n n\pi_i : \pi \in \mathscr{P}_n, \sum_{i=1}^n \pi_i a_j(V_i)\mathbf{f}(\mathbf{U}_i) = 0, \quad j = 1, ..., J\right\}$$

・ロト ・四ト ・ヨト ・ヨト

An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries

— Testing Symmetries

- ► Consider a vector function $\mathbf{U} \to \mathbf{f}(\mathbf{U})$ for some known function $\mathbf{f} : \mathcal{R}^d \to \mathcal{R}^e$. (For example, $\mathbf{f}(\mathbf{U}) = \mathbf{U}$.)
- The empirical likelihood takes the form

$$\mathscr{R}_n^{ssh} = \sup\left\{\prod_{i=1}^n n\pi_i : \boldsymbol{\pi} \in \mathscr{P}_n, \sum_{i=1}^n \pi_i a_j(V_i)\mathbf{f}(\mathbf{U}_i) = 0, \quad j = 1, ..., J\right\}$$

In this case, under certain conditions we have

$$-2\log \mathscr{R}_n^{ssh} \Rightarrow \chi_{Je}^2$$

(日)

-Simulations

— Testing Symmetries

Simulations with Jackknife pseudo values

► Suppose *X*₁,..., *X_n* is a random sample from a spherically symmetrical distribution.

— Testing Symmetries

Simulations with Jackknife pseudo values

► Suppose *X*₁,..., *X_n* is a random sample from a spherically symmetrical distribution.

$$V_i = \|\mathbf{X}_i - \boldsymbol{\theta}\|, \mathbf{U}_i = (\mathbf{X}_i - \boldsymbol{\theta}) / \|\mathbf{X}_i - \boldsymbol{\theta}\|, \\ \mathbf{U}_i \sim \mathcal{U}(\mathcal{S}^{d-1}), i = 1, \dots, n.$$

— Testing Symmetries

Simulations with Jackknife pseudo values

► Suppose *X*₁,..., *X_n* is a random sample from a spherically symmetrical distribution.

$$V_i = \|\mathbf{X}_i - \boldsymbol{\theta}\|, \mathbf{U}_i = (\mathbf{X}_i - \boldsymbol{\theta}) / \|\mathbf{X}_i - \boldsymbol{\theta}\|, \\ \mathbf{U}_i \sim \mathscr{U}(\mathcal{S}^{d-1}), i = 1, \dots, n.$$

• Let
$$m = 2$$
, for any $p, q = 1, ..., n$, let $\mathbf{R} = \mathbf{U}_p + \mathbf{U}_q$,
 $\mathbf{R}^0 = \mathbf{R}/||\mathbf{R}||$.

— Testing Symmetries

Simulations with Jackknife pseudo values

► Suppose *X*₁,..., *X_n* is a random sample from a spherically symmetrical distribution.

$$V_i = \|\mathbf{X}_i - \boldsymbol{\theta}\|, \mathbf{U}_i = (\mathbf{X}_i - \boldsymbol{\theta}) / \|\mathbf{X}_i - \boldsymbol{\theta}\|, \\ \mathbf{U}_i \sim \mathcal{U}(\mathcal{S}^{d-1}), i = 1, \dots, n.$$

- Let m = 2, for any p, q = 1, ..., n, let $\mathbf{R} = \mathbf{U}_p + \mathbf{U}_q$, $\mathbf{R}^0 = \mathbf{R}/||\mathbf{R}||$.
- We have the fact that $\mathbf{U}_i \sim \mathscr{U}(\mathcal{S}^{d-1}) \Leftrightarrow \|\mathbf{R}\| \perp \mathbf{R}^0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

L Testing Symmetries

► Let
$$b_k = \varphi_k \circ G$$
, $\varphi_k(t) = \sqrt{2} \cos k\pi t$, $k = 1, \dots, K$.
 $\mathbf{b}_K = (b_1, \dots, b_K)^\top$.
 $G(u) = {n \choose 2}^{-1} \sum_{1 \le p < q \le n} \mathbf{1}[||\mathbf{U}_p + \mathbf{U}_q|| \le u].$

— Testing Symmetries

► Let
$$b_k = \varphi_k \circ G$$
, $\varphi_k(t) = \sqrt{2} \cos k\pi t$, $k = 1, \dots, K$.
 $\mathbf{b}_K = (b_1, \dots, b_K)^\top$.
 $G(u) = {n \choose 2}^{-1} \sum_{1 \le p < q \le n} \mathbf{1}[\|\mathbf{U}_p + \mathbf{U}_q\| \le u]$.

• Let the kernel function $\mathbf{h}(\mathbf{U}_p, \mathbf{U}_q) = \mathbf{b}_K(||\mathbf{U}_p + \mathbf{U}_q||) \otimes ((\mathbf{U}_p + \mathbf{U}_q)/||\mathbf{U}_p + \mathbf{U}_q||)$, which is argument-symmetric.

ヘロン 人間 とくほど 人間 とう

└─ Testing Symmetries

Let
$$b_k = \varphi_k \circ G$$
, $\varphi_k(t) = \sqrt{2} \cos k\pi t$, $k = 1, \dots, K$.
 $\mathbf{b}_K = (b_1, \dots, b_K)^\top$.
 $G(u) = {n \choose 2}^{-1} \sum_{1 \le p < q \le n} \mathbf{1}[\|\mathbf{U}_p + \mathbf{U}_q\| \le u].$

- Let the kernel function $\mathbf{h}(\mathbf{U}_p, \mathbf{U}_q) = \mathbf{b}_K(||\mathbf{U}_p + \mathbf{U}_q||) \otimes ((\mathbf{U}_p + \mathbf{U}_q)/||\mathbf{U}_p + \mathbf{U}_q||)$, which is argument-symmetric.
- ► The U-statistics with the kernel **h** is given by

$$\mathbf{U}_n(\mathbf{b}_K) = \binom{n}{2}^{-1} \sum_{1 \le p < q \le n} \mathbf{h}(\mathbf{U}_p, \mathbf{U}_q)$$

└─ Testing Symmetries

Let
$$b_k = \varphi_k \circ G$$
, $\varphi_k(t) = \sqrt{2} \cos k\pi t$, $k = 1, \dots, K$.
 $\mathbf{b}_K = (b_1, \dots, b_K)^\top$.
 $G(u) = {n \choose 2}^{-1} \sum_{1 \le p < q \le n} \mathbf{1}[\|\mathbf{U}_p + \mathbf{U}_q\| \le u]$.

- ► Let the kernel function $\mathbf{h}(\mathbf{U}_p, \mathbf{U}_q) = \mathbf{b}_K(||\mathbf{U}_p + \mathbf{U}_q||) \otimes ((\mathbf{U}_p + \mathbf{U}_q)/||\mathbf{U}_p + \mathbf{U}_q||)$, which is argument-symmetric.
- ► The U-statistics with the kernel **h** is given by

$$\mathbf{U}_n(\mathbf{b}_K) = \binom{n}{2}^{-1} \sum_{1 \le p < q \le n} \mathbf{h}(\mathbf{U}_p, \mathbf{U}_q)$$

The Jackknife pseudo values of the U-statistics is given by

$$\mathbf{V}_{ni} = n\mathbf{U}_n(\mathbf{b}_K) - (n-1)\mathbf{U}_{n-1}(\mathbf{b}_K), \quad i = 1, \dots, n.$$

(日)

-Simulations

L Testing Symmetries

• Let $\mathbf{a}_J = (a_1, \ldots, a_J)^{\top}$.

-Simulations

— Testing Symmetries

• Let
$$\mathbf{a}_J = (a_1, \ldots, a_J)^\top$$
.

 Combine two parts together, we get the Jackknife empirical likelihood with side information as follows,

$$\mathscr{R}_{n}(\mathbf{h},\mathbf{g}) = \sup \left\{ \prod_{i=1}^{n} n\pi_{i} : \boldsymbol{\pi} \in \mathscr{P}_{n}, \sum_{i=1}^{n} \pi_{i} \mathbf{a}_{J}(V_{i}) \otimes \mathbf{f}(\mathbf{U}_{i}) = 0, \right.$$
$$\left. \sum_{i=1}^{n} \pi_{i} \mathbf{V}_{ni} = 0 \right\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

-Simulations

— Testing Symmetries

• Let
$$\mathbf{a}_J = (a_1, \ldots, a_J)^\top$$
.

 Combine two parts together, we get the Jackknife empirical likelihood with side information as follows,

$$\mathscr{R}_{n}(\mathbf{h},\mathbf{g}) = \sup \left\{ \prod_{i=1}^{n} n\pi_{i} : \boldsymbol{\pi} \in \mathscr{P}_{n}, \sum_{i=1}^{n} \pi_{i} \mathbf{a}_{J}(V_{i}) \otimes \mathbf{f}(\mathbf{U}_{i}) = 0, \right.$$
$$\sum_{i=1}^{n} \pi_{i} \mathbf{V}_{ni} = 0 \right\}$$

• By Theorem 1, under certain conditions we have

$$-2\log \mathscr{R}_n(\mathbf{h},\mathbf{g}) \to \chi^2_{(Je+Kd)}$$

イロン 不良 とくほどう

— Testing Symmetries

Simulation results of samples from normal distribution

- We still calculate powers of this test with different settings.
- For convenience, we set d = e = dim, and J = K = r.
- ► *r* is basically the number of basis functions.
- The null hypothesis H₀: θ = (0,0,0)^T. rep(x, dim) denotes the alternative hypothesis H₁: θ = (x, x, x)^T.

	Multiv	ariate No	rmal Dist	ribution		
	Comparison of Po				HO:theta=0	0
		n=100	m=2000			
		d=e=d:	im J=K=r			
		r=1	r=2	r=3	r=4	r=5
	rep(0,dim)	0.044	0.031	0.04	0.056	0.0785
	rep(0.1,dim)	0.1215	0.084	0.081	0.1015	
dim=2	rep(0.2,dim)	0. 4185	0. 329	0. 2825	0. 2935	0.3595
uim-2	rep(0.3,dim)	0. 793	0.7365	0.663	0.6715	0. 707
	rep(0.4,dim)	0. 9225	0.971	0. 928	0.9215	0.9265
	rep(0.5,dim)	0.901	0. 9985	0.9955	0.9945	0. 9935
	rep(0,dim)	0. 0325	0. 0345	0.0715	0.1355	0. 2825
	rep(0.1, dim)	0.0775	0. 097	0.131	0.201	0.363
dim=3	rep(0.2, dim)	0.293	0. 335	0.381	0.471	0. 6185
01m-5	rep(0.3,dim)	0. 531	0.7425	0.7355	0. 7995	0.8665
	rep(0.4, dim)	0.6055	0.954	0.9365	0.956	0.9665
	rep(0.5,dim)	0.566	0.9465	0. 9395	0.9695	0.9795
	rep(0,dim)	0.0235	0.054	0.145	0.349	0.639
	rep(0.1,dim)	0.068	0.109	0.214	0.443	0.717
dim=4	rep(0.2,dim)	0.209	0.351	0. 477	0.6965	0.8825
a1m-4	rep(0.3,dim)	0.3425	0.7225	0.772	0.9135	0.9595
	rep(0.4, dim)	0.374	0.836	0.8735	0.9515	0.981
	rep(0.5,dim)	0. 3155	0. 757	0.842	0. 933	0 . 9745

— Testing Symmetries

Simulation results of samples from *t* distribution

- We still calculate powers of this test with different settings.
- ► For convenience, we set d = e = dim, and J = K = r, df denotes the degrees of freedom of t distribution.
- r is basically the number of basis functions.
- The null hypothesis H₀ : θ = (0,0,0)^T. rep(x, dim) denotes the alternative hypothesis H₁ : θ = (x, x, x)^T.

	Mu	ltivariat	e t Distr	ibution		
(Comparison of H				H0:theta	=0
		n=100 i	m=2000 df:	=1		
		d=e=	dim J=K=r			
	rep(0, dim)	0.044	0.0295	0. 0335	0.0505	0. 0835
	rep(0.1, dim)	0.0745	0.053	0.0595	0.079	0.1145
dim=2	rep(0.2, dim)	0.2145	0.1635	0.159	0.1755	0. 225
um-2	rep(0.3, dim)	0.484	0.3955	0.367	0.3635	0.4045
	rep(0.4, dim)	0.733	0.6925	0.6085	0.5995	0.643
	rep(0.5, dim)	0.8725	0.889	0.8275	0.8045	0.8195
	rep(0,dim)	0.036	0.037	0.07	0.1245	0.274
	rep(0.1, dim)	0.06	0.0625	0.1025	0.19	0.3195
dim=3	rep(0.2, dim)	0.198	0. 2255	0.255	0.35	0. 5115
alm-2	rep(0.3, dim)	0. 4035	0.485	0. 4915	0. 599	0.7065
	rep(0.4, dim)	0.619	0.762	0.7265	0.817	0.8765
	rep(0.5, dim)	0.734	0.918	0.89	0.929	0.9585
	rep(0,dim)	0. 0295	0.0495	0.1365	0.326	0.6315
	rep(0.1, dim)	0.062	0.097	0. 1985	0.418	0.713
1	rep(0.2, dim)	0.205	0.284	0.4025	0. 6295	0.8315
dim=4	rep(0.3, dim)	0.3, dim) 0.4385 0.574 0.6575 0.82	0.8205	0.929		
	rep(0.4, dim)	0.6315	0.8235	0.8495	0.9405	0.9735
	rep(0.5, dim)	0.7275	0.912	0. 9215	0.977	0. 9935

	Multivariate t Distribution					
(Comparison of Power for Different H1 with H0:theta=0					
	-	n=100	m=2000 df	=2		
		d=e=	dim J=K=r			
		r=1	r=2	r=3	r=4	r=5
	rep(0,dim)	0.042	0. 033	0.0375	0.056	0.092
	rep(0.1, dim)	0.0805	0.055	0.0615	0. 0795	0.1265
dim=2	rep(0.2, dim)	0.2415	0. 1925	0.15	0.176	0. 241
uim-2	rep(0.3, dim)	0.514	0.462	0.38	0.3995	0. 452
	rep(0.4, dim)	0.7585	0.7725	0.664	0.6695	0. 708
	rep(0.5, dim)	0. 7985	0. 9355	0.8875	0.8755	0.8755
	rep(0,dim)	0.034	0.041	0.065	0.129	0.2615
	rep(0.1, dim)	0.0605	0.068	0. 0945	0.1775	0.332
dim=3	rep(0.2, dim)	0.14	0. 222	0. 236	0.3485	0. 5085
uim-5	rep(0.3, dim)	0.2845	0. 4875	0. 5135	0.6155	0.7195
	rep(0.4, dim)	0.3755	0.769	0.749	0.834	0.8875
	rep(0.5, dim)	0. 3895	0.883	0.8785	0.934	0.964
	rep(0,dim)	0. 027	0.05	0.1375	0. 3335	0.636
	rep(0.1, dim)	0. 049	0.101	0. 2045	0. 4035	0.691
dim=4	rep(0.2, dim)	0. 107	0. 2535	0.3665	0. 5895	0.824
u1111-4	rep(0.3, dim)	0. 191	0. 5205	0.624	0.8155	0. 925
	rep(0.4, dim)	0.2765	0. 735	0.8075	0. 9265	0.9725
	rep(0.5, dim)	0. 306	0.8055	0. 8535	0.947	0. 985

	Mu	ltivariat	e t Distr	ibution		
(Comparison of D	Power for	Differen	t H1 with	HO:theta	l=0
		n=100	m=2000 df	=3		
		d=e=	dim J=K=r			
		r=1	r=2	r=3	r=4	r=5
	rep(0, dim)	0.0425	0.0365	0.0385	0.054	0.092
	rep(0.1, dim)	0.102	0.0565	0.0655	0.083	0.118
dim=2	rep(0.2, dim)	0.2615	0.199	0. 1665	0.197	0.24
uim-2	rep(0.3, dim)	0.5625	0. 5165	0. 435	0. 4375	0.476
	rep(0.4, dim)	0.7745	0.821	0.7565	0.7355	0.738
	rep(0.5, dim)	0.8225	0.957	0.9245	0.912	0.8975
	rep(0,dim)	0.029	0.039	0.075	0.135	0.2665
	rep(0.1, dim)	0.0575	0.0705	0.108	0.186	0.3405
dim=3	rep(0.2, dim)	0.1405	0.198	0.251	0.3485	0. 5215
aim-3	rep(0.3, dim)	0.2545	0. 4995	0.5325	0.6355	0.7465
	rep(0.4, dim)	0.3165	0.804	0.7775	0.84	0.902
	rep(0.5, dim)	0.305	0.874	0.8835	0.932	0.9585
	rep(0,dim)	0.031	0.0505	0.1425	0.332	0.642
	rep(0.1, dim)	0.047	0.093	0.191	0. 4155	0.705
1	rep(0.2, dim)	0.0915	0.231	0.3715	0.6105	0.817
dim=4	rep(0.3, dim)	0.147	0. 5055	0.619	0. 7995	0.935
	rep(0.4, dim)	ep(0.4, dim) 0.1705 0.6985 0.7985 0.9105 (
	rep(0.5, dim)	0.1745	0.7145	0. 7995	0.9435	0.981

-Simulations

— Testing Symmetries

Testing Rotational Symmetry

Suppose a random vector X ∈ S^{d−1} is rotationally symmetric about direction θ, that is,

$$\mathbf{X} - \boldsymbol{\theta} \stackrel{d}{=} O(\mathbf{X} - \boldsymbol{\theta}),$$

for every $d \times d$ rotation matrix O about a fixed direction θ in \mathbb{R}^d .

イロト イポト イヨト イヨト

-Simulations

— Testing Symmetries

Testing Rotational Symmetry

Suppose a random vector X ∈ S^{d−1} is rotationally symmetric about direction θ, that is,

$$\mathbf{X} - \boldsymbol{\theta} \stackrel{d}{=} O(\mathbf{X} - \boldsymbol{\theta}),$$

for every $d \times d$ rotation matrix *O* about a fixed direction θ in \mathbb{R}^d . Let $T = \theta^\top \mathbf{X}$ be the projection of \mathbf{X} onto the direction θ .

-Simulations

— Testing Symmetries

Testing Rotational Symmetry

Suppose a random vector X ∈ S^{d−1} is rotationally symmetric about direction θ, that is,

$$\mathbf{X} - \boldsymbol{\theta} \stackrel{d}{=} O(\mathbf{X} - \boldsymbol{\theta}),$$

for every $d \times d$ rotation matrix O about a fixed direction θ in \mathbb{R}^d .

- Let $T = \theta^{\top} \mathbf{X}$ be the projection of \mathbf{X} onto the direction θ .
- ► Let $\boldsymbol{\xi}$ be the unit tangent at $\boldsymbol{\theta}$ to \mathcal{S}^{d-1} . $\boldsymbol{\xi} \sim \mathscr{U}(\mathcal{S}^{d-2}(\boldsymbol{\theta}))$, where $\mathcal{S}^{d-2}(\boldsymbol{\theta}) = \{ \mathbf{x} \in \mathcal{R}^d : |\mathbf{x}| = 1, \mathbf{x}^\top \boldsymbol{\theta} = 0 \}.$

• Rotational Symmetry $\Rightarrow T = \theta^{\top} \mathbf{X} \perp \boldsymbol{\xi} = \frac{\mathbf{X} - T\theta}{\|\mathbf{X} - T\theta\|}.$

-Simulations

— Testing Symmetries

- Independence implies $\mathbf{E}(a(T)b(\boldsymbol{\xi})) = 0, \quad a \in L_{2,0}(F_T), \ b \in L_{2,0}(G_{\boldsymbol{\xi}}).$
- Similar to the spherical symmetry case, take $a_j = \varphi_j \circ F_T$, $j = 1, \ldots, J$, and a vector function $\boldsymbol{\xi} \to \mathbf{f}(\boldsymbol{\xi})$ for some known function $\mathbf{f} : \mathcal{R}^d \to \mathcal{R}^e$.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 回 ● の Q @

-Simulations

— Testing Symmetries

- Independence implies $\mathbf{E}(a(T)b(\boldsymbol{\xi})) = 0, \quad a \in L_{2,0}(F_T), \ b \in L_{2,0}(G_{\boldsymbol{\xi}}).$
- ▶ Similar to the spherical symmetry case, take $a_j = \varphi_j \circ F_T$, j = 1, ..., J, and a vector function $\boldsymbol{\xi} \to \mathbf{f}(\boldsymbol{\xi})$ for some known function $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^e$.
- We have E(a_j(T)ξ) = 0. Let a_J = (a₁,..., a_J)[⊤]. The empirical likelihood ratio takes the form

$$\mathscr{R}_{n}^{rsh} = \sup\left\{\prod_{i=1}^{n} n\pi_{i}: \boldsymbol{\pi} \in \mathscr{P}_{n}, \sum_{i=1}^{n} \pi_{i}\mathbf{a}_{\mathbf{J}}(T) \otimes \boldsymbol{\xi} = 0\right\}$$

-Simulations

└─ Testing Symmetries

- Independence implies $\mathbf{E}(a(T)b(\boldsymbol{\xi})) = 0, \quad a \in L_{2,0}(F_T), \ b \in L_{2,0}(G_{\boldsymbol{\xi}}).$
- ▶ Similar to the spherical symmetry case, take $a_j = \varphi_j \circ F_T$, j = 1, ..., J, and a vector function $\boldsymbol{\xi} \to \mathbf{f}(\boldsymbol{\xi})$ for some known function $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^e$.
- We have E(a_j(T)ξ) = 0. Let a_J = (a₁,..., a_J)[⊤]. The empirical likelihood ratio takes the form

$$\mathscr{R}_{n}^{rsh} = \sup\left\{\prod_{i=1}^{n} n\pi_{i}: \pi \in \mathscr{P}_{n}, \sum_{i=1}^{n} \pi_{i}\mathbf{a}_{\mathbf{J}}(T) \otimes \boldsymbol{\xi} = 0\right\}$$

Under certain conditions we have

$$-2\log \mathscr{R}_n^{rsh} \Rightarrow \chi^2_{Je}$$

— Testing Symmetries

Simulations with Jackknife pseudo values

We construct the same U-statistics and Jackknife pseudo values as the spherical symmetry case.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

— Testing Symmetries

Simulations with Jackknife pseudo values

- We construct the same U-statistics and Jackknife pseudo values as the spherical symmetry case.
- Eventually we have the same asymptotic distribution for the Jackknife empirical likelihood

$$-2\log \mathscr{R}_n(\mathbf{h},\mathbf{g}) \to \chi^2_{(Je+Kd)}$$

イロト イヨト イヨト イヨト

└─ Testing Symmetries

Simulations with Jackknife pseudo values

- We construct the same U-statistics and Jackknife pseudo values as the spherical symmetry case.
- Eventually we have the same asymptotic distribution for the Jackknife empirical likelihood

$$-2\log \mathscr{R}_n(\mathbf{h},\mathbf{g}) \to \chi^2_{(Je+Kd)}$$

 In our simulation, we generated the data distributed from Von Mises-Fisher distribution.

イロト イポト イヨト イヨト

└─ Testing Symmetries

Simulations with Jackknife pseudo values

- We construct the same U-statistics and Jackknife pseudo values as the spherical symmetry case.
- Eventually we have the same asymptotic distribution for the Jackknife empirical likelihood

$$-2\log \mathscr{R}_n(\mathbf{h},\mathbf{g}) \to \chi^2_{(Je+Kd)}$$

- In our simulation, we generated the data distributed from Von Mises-Fisher distribution.
- We are testing $H_0: \boldsymbol{\theta} = (0, 0, 1)^\top$ V.S. $H_1: \boldsymbol{\theta} = (0.14, 0.14, 0.98)^\top$.

— Testing Symmetries

- Calculate the powers of this test with different settings.
- For convenience, take d = e = 3, J = K = r.
- r is basically the number of basis functions.
- The results of simulations are showed below:

イロン 不良 とくほどう

The 1	evel of sign	nificance	of the t	testing	of
	rota	tional syn	mmetry		
	H0:	theta=(0	, 0, 1)		
	d=e=	3 J=K=r m	n=2000		
	r=1	r=3		r=5	
n=50	0.0	505	0.099		0.2275
n=100	0.	053	0.0685		0.0865

The power of the testing of rotational symmetry H0: theta=(0,0,1) V.S. H1: theta=(0.14,0.14,0.98)					
r=1 r=3 r=5					
n=50	0.949	0.9995	0.9955		
n=100 0.9995 1 1					

- Reference

Reference

- Kent, J. T., Mardia, K. V. and Rao, J. S.(1979). A Characterization of the Uniform Distribution on the Circle. Ann. Statist. Volume 7, Number 4 (1979), 882-889.
- KOWALSKI, J. and Tu, X. M. (2008). Modern Applied U-Statistics. John Wiley & Sons, Inc.
- Peng, H. X. and Shick, A (2012). An Empirical Likelihood Approach to Goodness of Fit Testing.
- Peng, H. X. and Lin, Q. (2013). A Jackknife Empirical Likelihood Approach to Goodness of Fit U-Statistics Testing.

-Reference

Thank you very much!

イロト イヨト イヨト イヨト