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1. Introduction

Let (Z ,S ) be a measurable space, Q be a family of probability measures on
S , and κ be a function from Q onto an open subset Θ of Rk. Let Z1, . . . , Zn

be independent and identically distributed Z -valued random variables with
an unknown distribution Q belonging to the model Q. We are interested in
inference about the characteristic θ = κ(Q) of Q. Let us look at the following
case.

(K0) There is a function u from Z × Θ into R
m, with m ≥ k, such that, for

every R in Q, the identity

∫
u(z, κ(R)) dR(z) = 0
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holds and the matrix

W (R) =

∫
u(z, κ(R))u�(z, κ(R)) dR(z)

is positive definite.

We refer to u as a constraint function. To simplify notation we abbreviate
W (Q) by W and set

Un = n−1/2
n∑

j=1

u(Zj , θ).

Let Pn denote the closed probability simplex of dimension n,

Pn =
{
π = (π1, . . . , πn)

� ∈ [0, 1]n :

n∑
j=1

πj = 1
}
.

To construct confidence sets for θ, Owen (1988 [11], 1990 [12], 2001 [13]) intro-
duced the empirical likelihood

Rn(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πju(Zj , ϑ) = 0
}
, ϑ ∈ Θ,

and proved the following theorem.

Theorem 1.1. Suppose (K0) holds. Then −2 logRn(θ) is asymptotically chi-
square with m degrees of freedom.

This allowed him to show that the set

Cn = {ϑ ∈ Θ : −2 logRn(ϑ)) < χ2
1−α(m)},

where χ2
1−α(m) denotes the (1−α)-quantile of the chi-square distribution with

m degrees of freedom, is a confidence set for θ of asymptotic size 1−α. Indeed,
this follows from

P (θ ∈ Cn) = P (−2 logRn(θ) < χ2
1−α(m)) → 1− α.

Of course, this result can also be used to test whether θ equals some specific
value, say θ0. The corresponding test

δn = 1[−2 logRn(θ0) ≥ χ2
1−α(m)]

rejects the null hypothesis H0 : θ = θ0 if the test statistic −2 logRn(θ0) equals
or exceeds χ2

1−α(m). This test has asymptotic size α.
Soon it was realized that the empirical likelihood can also be used to construct

point estimators. Qin and Lawless (1994 [16]) studied the maximum empirical
likelihood estimator (MELE)

θ̂ = argmax
ϑ∈Θ

Rn(ϑ).
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Similar to the classical theory for parametric models, where the behavior of the
maximum likelihood estimator is tied to the behavior of the local log-likelihood
ratio, the behavior of the empirical likelihood analogs is now linked to the be-
havior of the local empirical log-likelihood ratio

Ln(t) = log
Rn(θ + n−1/2t)

Rn(θ)
, t ∈ R

k, θ + n−1/2t ∈ Θ.

The local empirical log-likelihood is said to satisfy the uniform local asymp-
totic normality (ULAN) condition if the expansion

sup
|t|≤C

|Ln(t)− t�Γn + 1/2t�Jt| = oP (1) (1.1)

holds for all finite constants C, some invertible k × k dispersion matrix J , and
random vectors Γn satisfying

Γn =⇒ N(0, J).

Qin and Lawless (1994 [16]) obtain this condition under regularity and in-
tegrability conditions on the constraint function u and its partial derivatives
with respect to the parameter. Their assumptions imply the following condi-
tions with the matrix A equal to −E[u̇(Z, θ)], where u̇ denotes the derivative of
u with respect to the parameter.

(Q1) For each sequence Cn of positive numbers satisfying Cn = o(n1/2), one
has

sup
|t|≤Cn

1

n

n∑
j=1

|u(Zj , θ + n−1/2t)− u(Zj , θ)|2 = oP (1).

(Q2) There is an m× k matrix A of full rank k such that the expansion

sup
|t|≤Cn

∣∣n−1/2
∑n

j=1[u(Zj , θ + n−1/2t)− u(Zj , θ)] +At
∣∣

1 + |t| = oP (1)

holds for each sequence Cn of positive numbers satisfying Cn = o(n1/2).

The conditions (Q1) and (Q2) are also implied by Assumptions 2.1 and 2.2 in
Parente and Smith (2011 [14]) who allow for irregular u and treat generalized
empirical likelihood. Under their assumptions the matrix A equals the derivative
of the map ϑ �→ −E[u(X,ϑ)] at θ.

Here we shall show that the ULAN condition holds under the following weaker
conditions which restrict the sequences Cn in (Q1) and (Q2) to be bounded.

(K1) For every finite constant C, one has

Dn(C) = sup
|t|≤C

1

n

n∑
j=1

|u(Zj , θ + n−1/2t)− u(Zj , θ)|2 = oP (1).
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(K2) There is an m× k matrix A of full rank k such that the expansion

sup
|t|≤C

∣∣∣n−1/2
n∑

j=1

[u(Zj , θ + n−1/2t)− u(Zj , θ)] +At
∣∣∣ = oP (1)

holds for every finite constant C.

Theorem 1.2. Suppose (K0)–(K2) hold. Then the expansion

sup
|t|≤C

| − 2 logRn(θ + n−1/2t)− (Un −At)�W−1(Un −At)| = oP (1)

holds for every finite C. Thus the local empirical log-likelihood satisfies the
ULAN condition with J = A�W−1A and Γn = A�W−1Un.

The expansion (1.1) is critical to the study of maximum empirical likelihood
estimation. Assume for the moment that the map ϑ �→ Rn(ϑ) attains a max-
imum on each compact subset of Θ. This is the case when the map is upper
semi-continuous or if it takes only finitely many values. Note that the function
h defined by

h(t) = t�Γn − 1/2t�Jt

= 1/2[Γ�
n J−1Γn − (t− J−1Γn)

�J(t− J−1Γn)], t ∈ R
k,

(1.2)

is uniquely maximized by t̂ = J−1Γn. This shows that under the ULAN condi-
tion the random function ϑ �→ Rn(ϑ) has a local maximum θ̂ such that

n1/2(θ̂ − θ)− J−1Γn = oP (1). (1.3)

In particular, if ϑ �→ Rn(ϑ) has one local maximizer with probability tending to

1, then this local maximizer θ̂ will obey the expansion (1.3). The theory becomes
more involved if ϑ �→ Rn(ϑ) has several local maxima or if maxima do not exist.

For J and Γn of Theorem 1.2, the expansion (1.3) can be written as

θ̂ = θ + (A�W−1A)−1A�W−1 1

n

n∑
j=1

u(Zj , θ) + oP (n
−1/2). (1.4)

If m = k, then A will be invertible, and (1.4) simplifies to

θ̂ = θ +
1

n

n∑
j=1

A−1u(Zj , θ) + oP (n
−1/2).

We call an estimator θ̂ that satisfies (1.4) central. Qin and Lawless (1994 [16])
have shown that central estimators possess some optimality properties, i.e., they
are efficient in the model defined by the constraint function u which is the largest
model for which (K0) holds.
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Qin and Lawless (1994 [16]) claim that the MELE is central under their as-
sumptions. Their proof, however, only establishes that a maximizer in a neigh-
borhood of the true parameter of radius n−1/3 has this property, see the proof
of their Lemma 1. Parente and Smith (2011 [14]) consider a compact parameter
space, an interior point θ of this parameter space and show that the MELE is
central under their assumptions which imply (Q1) and (Q2). The assumption
that the parameter space is compact is mathematically convenient, but typically
not realistic in applications. We shall obtain central estimators under the weaker
conditions (K1) and (K2) and without compactness, but require the availability
of a

√
n-consistent estimator.

In Section 3 we address two methods of constructing central estimators,
namely, one-step maximum empirical likelihood estimation and guided maximum
empirical likelihood estimation. These methods yield the following constructive
existence result for central estimators.

Theorem 1.3. Suppose (K0)–(K2) hold, and θ̃ is a
√
n-consistent estimator in

the sense that n1/2(θ̃−θ) = OP (1). Then one can construct a central estimator.

It follows from the previous two theorems that, under the assumptions of
Theorem 1.3, every central estimator θ̂ satisfies the expansion

−2 logRn(θ̂) = Ũ�
n (I −ΠA)Ũn + oP (1)

with Ũn = W−1/2Un and ΠA the idempotent matrix

ΠA = W−1/2A(A�W−1A)−1A�W−1/2.

Since the m-dimensional random vector Ũn is asymptotically standard normal,
we see that −2 logRn(θ̂) is asymptotically chi-square with m − k degrees of

freedom provided m is greater than k. If m equals k, then −2 logRn(θ̂) con-
verges to zero in probability. For m > k, a similar result has been proved in
Corollary 4 by Qin and Lawless (1994 [16]) under their regularity assumptions
and more recently for the irregular case under stronger conditions in Theorem
1 by Lopez, Van Keilegom and Veraverbeke (2009 [7]) and in Theorem 3.1 by
Parente and Smith (2011 [14]). We avoid some of the difficulties by working
with central estimators instead of the maximum empirical likelihood estimator.
The latter satisfies the expansion (1.4) only under additional requirements such
as consistency. Note the simplicity of our conditions as compared to conditions
(C0)–(C6) of Lopez, Van Keilegom and Veraverbeke (2009 [7]).

In the above we have focused on maximum empirical likelihood estimation.
The key to this was the ULAN condition. As this condition plays a key role
in the theory of likelihood ratio tests for parametric models, it should not be
surprising that the theory for likelihood ratio testing for parametric model car-
ries over to the empirical likelihood setting. Indeed, Qin and Lawless (1994 [16])
have already discussed this under their sufficient conditions for ULAN. We shall
develop the appropriate theory for empirical likelihood ratio testing in Section 4.

So far we have discussed a simple approach to maximum empirical likelihood
estimation which generalizes results of Qin and Lawless (1994 [16]) to allow for
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irregular constraint functions and relaxes the conditions in Parente and Smith
(2011 [14]). Of great interest are extensions to constraint functions that depend
on nuisance parameters. Generalizations of Theorem 1.1 that allow for estimated
constraint functions have been developed in Hjort, McKeague and Van Keilegom
(2009 [3]) and Peng and Schick (2013 [15]). Here we are interested in developing
a theory parallel to Theorems 1.2 and 1.3 that allows for constraint functions
with estimated nuisance parameters. The theory will be developed in Section 2.

The remainder of this paper is organized as follows. In Section 2 we discuss
the case when the constraint function depends on characteristics of the underly-
ing distribution and is thus unknown. We develop a theory parallel to that given
in this introduction based on estimates of the unknown constraint function. The
key result is Theorem 2.2 which gives the ULAN condition for the local empir-
ical likelihood based on random constraint functions. In Section 3 we address
the construction of central estimators in the more general setting of Section 2.
Section 4 treats empirical likelihood ratio testing again for random constraint
functions. In Section 5 we treat several inference problems related to quantiles as
these provide constraints that are not regular. In particular, we treat maximum
empirical likelihood estimation of quantiles with and without additional infor-
mation, and empirical likelihood ratio testing about quantiles and about the
equality of median and mean. The results of a simulation study are reported
in Section 6, where we compare the behavior of the various constructions of
central estimators in small to moderate sample sizes and present simulated sig-
nificance levels and powers of empirical likelihood ratio tests. Residual-based
inference about a quantile is considered in Section 7 for regression models. We
first treat linear regression and then discuss how the results carry over to non-
parametric and semiparametric regression models. In Section 8 we present a
uniform expansion for an abstract general empirical likelihood process. This
result is then used to prove Theorem 2.2 and other related expansions.

2. Maximum empirical likelihood estimation in the presence of
nuisance parameters

Our goal is to extend the results discussed in the Introduction beyond the ba-
sic assumption (K0). We are interested in extensions that allow for nuisance
parameters. This is important for applications to semiparametric models. A for-
mulation that allows for this is given next. Again, let m be an integer satisfying
m ≥ k.

(L0) For every R in Q there is a function uR from Z × Θ into R
m such that

the identity ∫
uR(z, κ(R)) dR(z) = 0

holds and the matrix

W (R) =

∫
uR(z, κ(R))u�

R(z, κ(R)) dR(z)

is positive definite.
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Note that (K0) is the special case of (L0) in which uR = u for all R ∈ Q. To
simplify notation we abbreviate W (Q) by W and set

Un = n−1/2
n∑

j=1

uQ(Zj , θ). (2.1)

Since uQ is not known, we work with the modified empirical likelihood

R̂n(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj ûn(Zj , ϑ) = 0
}
, ϑ ∈ Θ,

where ûn is an estimator of uQ based on the observations Z1, . . . , Zn. General-
izations of Theorem 1.1 for the modified empirical likelihood have been discussed
by Hjort, McKeague and Van Keilegom (2009 [3]) and Peng and Schick (2013

[15]). Possible limit distributions of −2 log R̂n(θ) do now include generalized
chi-square distributions. But direct analogues of Theorem 1.1 are possible if uR

and ûn are chosen carefully, see Peng and Schick (2013 [15]).

Theorem 2.1. Suppose (L0) holds and ûn satisfies

1

n

n∑
j=1

|ûn(Zj , θ)− uQ(Zj , θ)|2 = oP (1)

and

n−1/2
n∑

j=1

(
ûn(Zj , θ)− uQ(Zj , θ)

)
= oP (1).

Then −2 log R̂n(θ) is asymptotically chi-square with m degrees of freedom.

Next we are looking for a generalization of Theorem 1.2. The corresponding
local empirical log-likelihood ratio is

L̂n(t) = log
R̂n(θ + n−1/2t)

R̂n(θ)
, t ∈ R

k, θ + n−1/2t ∈ Θ.

Motivated by the conditions (K1) and (K2), we introduce the following condi-
tions.

(L1) For every finite constant C one has

D̂n(C) = sup
|t|≤C

1

n

n∑
j=1

|ûn(Zj , θ + n−1/2t)− uQ(Zj , θ)|2 = oP (1).

(L2) There is an m× k matrix A of full rank k such that the expansion

sup
|t|≤C

∣∣∣n−1/2
n∑

j=1

(
ûn(Zj , θ + n−1/2t)− uQ(Zj , θ)

)
+At

∣∣∣ = oP (1)

holds for each finite constant C.
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Theorem 2.2. Suppose (L0) – (L2) hold. Then the expansions

sup
|t|≤C

| − 2 log R̂n(θ + n−1/2t)− (Un −At)�W−1(Un −At)| = oP (1)

and
sup
|t|≤C

|L̂n(t)− t�A�W−1Un + 1/2t�A�W−1At| = oP (1) (2.2)

hold for every finite C.

Theorem 1.2 is a special case of this theorem. To see this take uR = u
for all R ∈ Q and ûn = u. Theorem 2.2 lets us also treat the case when
(K0) holds, but we want to work with a slightly perturbed version un of u. In
this case ûn = un is non-stochastic. In particular, this allows the treatment of
smoothed versions of u. If Θ = R

k, a possible smoothed version is given by
un(z, ϑ) =

∫
u(z, ϑ+ bnu)K(u) du, where K is a kernel and bn is a bandwidth.

Having obtained the ULAN property for the modified empirical likelihood,
the theory for central estimators based on it can be developed as before. Now a
central estimator must satisfy the expansion

θ̂ = θ + (A�W−1A)−1 1

n

n∑
j=1

A�W−1uQ(Zj , θ) + oP (n
−1/2). (2.3)

The following theorem is a consequence of the results of Section 3.

Theorem 2.3. Suppose (L0)–(L2) hold, and θ̃ is a
√
n-consistent estimator.

Then one can construct a central estimator.

One has to be careful in selecting the functions {uR : R ∈ Q} in order to
achieve (L2). This will be explained by means of an example in Section 7.

3. On the construction of central estimators

In this section we address the construction of central estimators. We shall restrict
our attention to the more general case when the assumptions (L0)–(L2) are
met. Results for this case immediately yield results for the case (K0)–(K2);
simply take uR = u and ûn = u. All our methods require the availability of a
preliminary

√
n-consistent estimator of θ. Thus throughout this section we shall

always assume that the following condition is met.

(A) The conditions (L0)–(L2) hold and θ̃ is a
√
n-consistent estimator, i.e.

n1/2(θ̃ − θ) = OP (1).

We abbreviate W (Q) from (L0) by W and let Un be the random vector
defined in (2.1). It follows from Theorem 2.2 that the ULAN condition holds
with Γn = A�W−1Un and J = A�W−1A.

We begin with a simple observation. A n1/2-consistent (generalized) MELE
is central.
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Lemma 3.1. Suppose condition (A) holds and θ̃ is a generalized MELE, i.e. θ̃
satisfies

R̂n(θ̃) ≥ e−1/n sup
ϑ∈Θ

R̂n(ϑ).

Then θ̃ is central.

Proof. We need to show Δ̂ = n1/2(θ̃−θ)−J−1Γn = oP (1). Let C be a constant.
Then, on the event An = {n1/2|θ̃ − θ| ≤ C} ∩ {|J−1Γn| ≤ C}, we derive from
the ULAN condition and the identity (1.2) the expansions

Bn1 = L̂n(n
1/2(θ̃ − θ)) = (1/2)[ΓnJ

−1Γn − Δ̂�J−1Δ̂)] + oP (1)

and
Bn2 = sup

|t|≤C

L̂n(t) = (1/2)ΓnJ
−1Γn + oP (1).

On this event, we also have Bn1 ≥ Bn2−1/n, and therefore 1[An]Δ̂ = oP (1) by
the positive definiteness of J . Since this holds for every C, we obtain the desired
result in view of the n1/2-consistency of θ̃.

The previous lemma was formulated for a generalized MELE, which in con-
trast to a MELE does always exist. The practical value of this lemma is limited,
as it does not provide a method of constructing a n1/2-consistent generalized
MELE and hence a central estimator. Explicit methods of constructing cen-
tral estimators are discussed next.

Method 1: One-step maximum empirical likelihood estimation. One-step max-
imum likelihood estimators were introduced by Le Cam (1960 [6]), who showed
that such estimators are asymptotically efficient in parametric LAN families.
He actually used a discretized preliminary estimator in his construction. Dis-
cretization is not needed here, in view of the more stringent ULAN condition.

A one-step maximum empirical likelihood estimator is of the form

θ̃ + n−1/2J̃−1Γ̃n

where J̃ is a consistent estimator of J = A�W−1A, i.e.,

J̃ = J + oP (1) (3.1)

and the random vector Γ̃n obeys the expansion

Γ̃n = Γn − JΔ+ oP (1) (3.2)

with Γn = A�W−1Un and Δ = n1/2(θ̃ − θ). It is easy to see that such an
estimator is central.

There are several ways to construct the quantities J̃ and Γ̃n. One such method
is described in Fabian and Hannan (1982 [1]) who use first and second order
differences of the log-likelihood. Here we follow a different approach which uses
least squares.
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Let us set

r(t) = log
R̂n(θ̃ + n−1/2t)

R̂n(θ̃)
, t ∈ R

k.

Then r(t) equals L̂n(Δ + t)− L̂n(Δ) and we obtain the identity

r(t) = t�(Γn − JΔ)− (1/2)t�Jt+ ηn(t)

with
sup
|t|≤C

|ηn(t)| = op(1)

for every finite C. This identity can be rewritten as

r(t) = t�(Γn − JΔ) + s(t)�diag(−J) + φ(tt�)�φ(−J) + ηn(t)

with s(t) = (1/2)(t21, . . . , t
2
k)

T , and where, for a k × k matrix M , diag(M) de-
notes the vector formed by the diagonal of M and φ(M) denotes the vector
(M1,2, . . . ,M1,k,M2,3, . . . ,M2,k, . . . ,Mk−1,k)

� formed by the upper triangular
entries Mij , 1 ≤ i < j ≤ k, ordered by row index and then by column index.
Now let t1,. . . ,tL be vectors in R

k and set

r =

⎛
⎜⎝
r(t1)
...

r(tL)

⎞
⎟⎠ e =

⎛
⎜⎝
ηn(t1)

...
ηn(tL)

⎞
⎟⎠ V =

⎛
⎝Γn − JΔ
−diag(J)
−φ(J)

⎞
⎠

and

D =

⎡
⎢⎣
t�1 s�(t1) φ�(t1t

�
1 )

...
...

...
t�L s�(tL) φ�(tLt

�
L )

⎤
⎥⎦ .

Then we have the identity r = DV + e. Assume now that the matrix D has full
rank K = k+k+k(k−1)/2 = k(k+3)/2. Then the minimizer b̂ = (D�D)−1D�r

of ‖r−Db‖2 satisfies b̂ = V +(D�D)−1D�e = V +oP (1). Thus the requirements

(3.1) and (3.2) are met if we take Γ̃n = (b̂1, . . . , b̂k)
� and J̃ the symmetric matrix

with diagonal −(b̂k+1, . . . , b̂2k)
� and upper triangular part formed by the last

K − 2k entries of −b̂ in an obvious way. We refer to the one-step MELE with
these choices of J̃ and Γ̃n as the least squares one-step MELE, short LSMELE.

Let us summarize our findings in the following theorem.

Theorem 3.1. Suppose condition (A) holds and the vectors t1, . . . , tL are cho-
sen such that the matrix D has full rank K. Then the LSMELE is central.

In the case k = 1, we can take t1, . . . , tL to be distinct non-zero numbers that
satisfy t31 + · · ·+ t3L = 0. Then the LSMELE takes on the simple form

θ̃ − n−1/2

∑L
l=1 tlr(tl)

∑L
l=1 t

4
l

2
∑L

l=1 t
2
l r(tl)

∑L
l=1 t

2
l

.
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The above theorem remains true even if the vectors t1, . . . , tL are replaced by
random vectors which are bounded in probability and for which D�D is positive
definite. Moreover L, the number of vectors, can be made random as long as we
keep it bounded by a fixed number L0.

Method 2. Guided maximum empirical likelihood estimation using one-step
estimators. Let θ̂∗ denote a one-step MELE such as the LSMELE. Although this
estimator is central under condition (A), we might want to slightly modify it to
resemble more a MELE. Roughly speaking our second method works with an
approximate maximizer of R̂n(ϑ) in a ball of radius cn−1/2 centered at the one-

step MELE. More precisely, we call an estimator θ̂ that satisfies n1/2|θ̂− θ̂∗| ≤ c
and

R̂n(θ̂) ≥ e−1/n sup
|ϑ−θ̂∗|≤cn−1/2

R̂n(ϑ)

for some (small) positive c a (generalized) maximum empirical likelihood esti-

mator guided by a one-step estimator, short GOMELE. If the map ϑ �→ R̂n(ϑ)

is upper semi-continuous, then we can take θ̂ to be a maximizer of R̂n on the
random set {ϑ ∈ Θ : |ϑ− θ̂∗| ≤ c}. Such a maximizer may no longer exist if we
do not have upper semi-continuity. In this case, we need to work with the more
general definition.

Theorem 3.2. Under condition (A) every GOMELE is central.

Proof. Let us set Δ∗ = n1/2(θ̂∗ − θ) and Δ = n1/2(θ̂ − θ̂∗). Then we have

L̂n(Δ∗ +Δ) ≥ sup
|t|≤c

L̂n(Δ∗ + t)− 1/n.

Since Δ∗ is bounded in probability, the ULAN condition implies

sup
|t|≤c

|L̂n(Δ∗ + t)− h(Δ∗ + t)| = oP (1)

with h as in (1.2). Since θ̂∗ is central, we have Δ∗ − J−1Γn = oP (1) and thus

sup
|t|≤c

|h(Δ∗ + t)− 1/2Γ�
n JΓn + 1/2t�Jt| = oP (1).

Thus we have the expansion

sup
|t|≤c

|L̂n(Δ∗ + t)− 1/2Γ�
n JΓn + 1/2t�Jt| = oP (1).

From this and the invertibility of J we immediately conclude the desired result
Δ = oP (1).

Method 3: Guided maximum empirical likelihood estimation using a n1/2-
consistent estimator. Guided (generalized) maximum empirical likelihood esti-
mation can also be done using the n1/2-consistent estimator θ̃ rather than the
one-step estimator. This, however, requires a larger neighborhood and a stronger
version of the ULAN condition.
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Theorem 3.3. Let condition (A) hold and let Cn be a sequence of positive
numbers tending to infinity and satisfying Cn = o(n1/2). Suppose that

sup
|t|≤2Cn

|L̂n(t)− t�Γn + 1/2t�Jt|
(1 + |t|)2 = oP (1) (3.3)

holds. Then an estimator θ̂ that satisfies n1/2|θ̂ − θ̃| ≤ Cn and

R̂n(θ̂) ≥ e−1/n sup
n1/2|ϑ−θ̃|≤Cn

R̂n(ϑ)

is central.

Proof. Set Δ̃ = n1/2(θ̃−θ). Then, with h as in (1.2) and λ the smallest eigenvalue
of J , we have

L̂n(Δ̃ + t) = h(Δ̃ + t) +Rn(t)

≤ 1

2
[Γ�

n J−1Γn − λ|Δ̃ + t− J−1Γn|2] +Rn(t)

≤ 1

2
[Γ�

n J−1Γn − λ(|t| − |J−1Γn − Δ̃|)2] +Rn(t)

≤ 1

2
[−λ|t|2 + 2λ|t||J−1Γn − Δ̃|+ Γ�

n J−1Γn] +Rn(t)

where sup|t|≤Cn
|Rn(t)|/(1+|t|)2 = oP (1). Let cn ≤ Cn be a sequence that tends

to infinity. It is now easy to see that

sup
cn≤|t|≤Cn

L̂n(Δ̃ + t) → −∞

in probability. From this and L̂n(0) = oP (1), we derive P (n1/2|θ̂− θ̃| > cn) → 0.

Since cn is arbitrary, we conclude the n1/2-consistency of θ̂. The desired result
now follows as in Lemma 3.1.

From a practical point it is preferable to work with a very slowly growing Cn,
say Cn = (logn)1/2. Sufficient conditions for the strengthened version of ULAN
needed in the theorem can be given by strengthening (L0)–(L2). A general result
will be given in Section 8. Here we mention the special case for Cn = (logn)1/2.

Lemma 3.2. Suppose (L0) holds, E[log(1+ |uQ(Z, θ)|)|uQ(Z, θ)|2] is finite, and
we have the rates

sup
|t|≤2(logn)1/2

1

n

n∑
j=1

|ûn(Zj , θ + n−1/2t)− uQ(Zj , θ)|2 = oP ((logn)
−1),

and

sup
|t|≤2(log n)1/2

∣∣∣n−1/2
∑n

j=1

(
ûn(Zj , θ + n−1/2t)− uQ(Zj , θ)

)
+At

∣∣∣
1 + |t| = oP (1),

for an m× k matrix A of full rank k. Then (3.3) holds with Cn = (logn)1/2.
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4. Empirical likelihood ratio testing

In this section we shall discuss empirical likelihood ratio testing. For this we
assume again the setting of the introduction and require that (L0)–(L2) hold so
that we have the ULAN condition for the likelihood ratio. We do not separately
discuss the case for the conditions (K0)–(K2) as this is just the special case with
uR = u for all R ∈ Q and ûn = u.

We begin with a preliminary result. Let us set

Ũn = n−1/2
n∑

j=1

W−1/2uQ(Zj , θ).

In view of Theorems 2.2 and 2.3, a central estimator θ̂ satisfies the expansion

−2 log R̂n(θ̂) = Ũ�
n (I −ΠA)Ũn + oP (1)

with ΠA the idempotent matrix

ΠA = W−1/2A(A�W−1A)−1A�W−1/2.

We are interested in testing the null hypothesis H0 : θ ∈ Θ0 for some subset
Θ0 of Θ. We assume that Θ0 is the image {ψ(t) : t ∈ Δ} of some open subset
Δ of Rl under some injective differentiable function ψ which has derivatives of
full rank l < k. With Θ0 we associate the submodel

Q0 = {R ∈ Q : κ(R) ∈ Θ0}

and the functional κ0 from Q0 onto Δ defined by

κ0(R) = ψ−1(κ(R)), R ∈ Q0,

where ψ−1 : Θ0 → Δ is the inverse map of ψ. Suppose from now on that θ
belongs to Θ0 so that the null hypothesis is true. Then there is a unique τ in Δ
such that θ = ψ(τ), and the derivative B of ψ at τ has full rank l. We have

ψ(τ + n−1/2s) = θ + n−1/2Bs+ n−1/2tn

with tn = n1/2(ψ(τ + n−1/2s)− ψ(τ))− Bs → 0. It is now easy to see that for
every finite constant C

sup
|s|≤C

1

n

n∑
j=1

|ûn(Zj , ψ(τ + n−1/2s))− u(Zj , ψ(τ))|2 = oP (1)

and

sup
|s|≤C

∣∣∣n−1/2
n∑

j=1

(ûn(Zj , ψ(τ + n−1/2))− u(Zj , ψ(τ)) +ABs
∣∣∣ = oP (1).
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Thus the analogues of the conditions (L0)–(L2) hold for the submodel Q0 and

the functional κ0. The roles of R̂n, θ, and A are now played by R̂n◦ψ, τ = κ0(Q),
and AB. Thus Theorem 2.2 yields the expansions

sup
|s|≤C

| − 2 log R̂n(ψ(τ + n−1/2s))− (Un −ABs)�W−1(Un −ABs)| = oP (1)

and

sup
|s|≤C

|L̂n(φ(τ + n−1/2s))− s�B�Γn +
1

2
s�B�JBs| = oP (1)

for every finite C with Γn = A�W−1Un and J = A�W−1A. Hence a central es-
timator τ̂ of τ for the submodel satisfies the expansion

τ̂ = τ +
1

n

n∑
j=1

Mu(Zj , θ) + oP (n
−1/2) (4.1)

with M = (B�A�W−1AB)−1B�A�W−1. The delta-method yields the expan-
sion

ψ(τ̂) = θ +
1

n

n∑
j=1

BMu(Zj , θ + oP (n
−1/2).

Thus we find

−2 log R̂n(ψ(τ̂)) = Ũ�
n (I −ΠAB)Ũn + oP (1)

with ΠAB the idempotent matrix defined by

ΠAB = W−1/2AB(B�A�W−1AB)−1B�A�W−1/2.

Analogous to the classical likelihood ratio, the empirical likelihood ratio test
rejects the null hypothesis for small values of the test statistic

supϑ∈Θ0
R̂n(ϑ)

supϑ∈Θ R̂n(ϑ)
=

supt∈Δ R̂n(ψ(t))

supϑ∈Θ R̂n(ϑ)
.

It will be more convenient to work instead with the test statistic

Tn =
R̂n(ψ(τ̂))

R̂n(θ̂)
,

where θ̂ is a central estimator in the full model and τ̂ is a central estimator in
the submodel Q0 with functional κ0. In view of the previous results, we have
the expansion

−2 log Tn = Ũ�
n (ΠA −ΠAB)Ũn + oP (1).

The matrix ΠA − ΠAB is idempotent with trace k − l. Thus −2 log Tn has a
limiting chi-square distribution with k− l degrees of freedom. Consequently, the
test 1[−2 log Tn > χ2

1−α(k − l)] has asymptotic size α. The above shows that
the empirical likelihood ratio test behaves like the usual parametric likelihood
ratio test.
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5. Inference about quantiles

Throughout this sectionX1, . . . , Xn are independent copies of a random variable
X with distribution function F . We shall focus on inference problems related to
quantiles as these provide constraints that are not regular. We let F−1 denote
the left inverse of F defined by

F−1(γ) = inf{x ∈ R : F (x) ≥ γ}, 0 < γ < 1.

We say F is γ-regular, if γ belongs to the interval (0, 1) and F has a positive
derivative at F−1(γ). If F is γ-regular, then F−1(γ) is the unique γ-quantile
and the sample γ-quantile q̂γ obeys the expansion

q̂γ = F−1(γ)− 1

n

n∑
j=1

1[Xj ≤ F−1(γ)]− γ

F ′(F−1(γ))
+ oP (n

−1/2).

In the following examples the verification of the conditions (K1) and (K2)
will rely on the following well known result.

Lemma 5.1. Let C be a finite constant and q be a real number. Then we have

sup
|t|≤C

1

n

n∑
j=1

|1[Xj ≤ q + n−1/2t]− 1[Xj ≤ q]|2 = oP (1)

if F is continuous at q, and have

sup
|t|≤C

∣∣∣n−1/2
n∑

j=1

1[Xj ≤ q + n−1/2t]− 1[Xj ≤ q]− tF ′(q)
∣∣∣ = oP (1)

if F is differentiable at q.

Example 5.1. Let us assume that F is γ-regular. We want to estimate the
γ-quantile θ = F−1(γ) of F using the empirical likelihood approach. Since F is
continuous, θ satisfies E[1[X1 ≤ θ]] = γ. This suggests to look at the empirical
likelihood

Rn(q) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj(1[Xj ≤ q]− γ) = 0
}
, q ∈ R.

In view of Lemma 5.1 and the γ-regularity of F , the conditions (K0)–(K2) hold
with u(z, ϑ) = 1[z ≤ ϑ] − γ, W = γ(1 − γ) and A = −F ′(θ). Thus we obtain

from Theorem 1.3 that a GOMELE θ̂ satisfies

θ̂ = θ − 1

n

n∑
j=1

1[Xj ≤ θ]− γ

F ′(θ)
+ oP (n

−1/2)

and hence is asymptotically equivalent to the sample quantile.
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Here we have an explicit formula for the empirical likelihood,

Rn(q) = 1[0 < N(q) < n]
( nγ

N(q)

)N(q)( n(1− γ)

n−N(q)

)n−N(q)

, q ∈ R,

where N(q) =
∑n

j=1 1[Xj ≤ q]. This follows as in Owen (2001 [13]), page 43,
who considered a slightly modified version. From the formula we derive the
identity

Rn(ϑ) =

n−1∑
j=1

1[X(j) ≤ ϑ < X(j+1)]gγ(j, n),

where X(1), . . . , X(n) are the order statistics and

gγ(x, y) = yy
(1− γ

y − x

)y−x(γ
x

)x

, 0 < x < y.

It is easy to check that the function x �→ gγ(x, n) is increasing on the interval
(0, nγ] and decreasing on the interval [nγ, n). This shows that, almost surely,
the function ϑ �→ Rn(ϑ) is piecewise constant, non-decreasing on (−∞, X(kn+1))
and non-increasing on [X(kn+1),∞), where kn is the integer part of nγ. Thus a
MELE is given by

1[gγ(kn, n) ≥ gγ(kn + 1, n)]X(kn) + 1[gγ(kn, n) < gγ(kn + 1, n)]X(kn+1).

Remark 5.1. For γ = 1/2, we can also use the empirical likelihood

Rn(q) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjsign(Xj − q) = 0
}
, q ∈ R,

with sign(x) = 1[x > 0] − 1[x < 0]. Then the conditions (K0)–(K2) hold with
u(z, ϑ) = sign(z − ϑ), W = 1 and A = 2F ′(θ). Thus a GOMELE obeys the
expansion

θ̂ = θ +
1

n

n∑
j=1

sign(Xj − θ)

2F ′(θ)
+ oP (n

−1/2).

It is easy to show that the sample median is a MELE.

The above example is easily extended to cover the simultaneous estimation
of several quantiles. Let us sketch this briefly.

Example 5.2. Let 0 < γ1 < · · · < γm < 1 and assume that F is γi-regular
for i = 1, . . . ,m. We set θ = (θ1, . . . , θm)� with θi = F−1(γi) for i = 1, . . . ,m.
Note that θ belongs to Θ = {ϑ ∈ R

m : ϑ1 < · · · < ϑm}. We can work with the
empirical likelihood

Rn(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj

⎛
⎜⎝

1[Xj ≤ ϑ1]− γ1
...

1[Xj ≤ ϑm]− γm

⎞
⎟⎠ = 0

}
, ϑ ∈ Θ.
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Here (K0)–(K2) hold with A = −diag(F ′(θ1), . . . , F
′(θm)) and W the matrix

with entries Wij = γi − γiγj for 1 ≤ i ≤ j ≤ m. From this and Theorem 1.3 we

find that the i-th component θ̂i of a GOMELE θ̂ satisfies the expansion

θ̂i = θi −
1

n

n∑
j=1

1[Xj ≤ θi]− γi
F ′(θi)

+ oP (n
−1/2).

The above empirical likelihoods can be used to test composite hypothesis
about quantiles. We explain this in a concrete example.

Example 5.3. Suppose that F is i/4-regular for i = 1, 2, 3. We want to test the
null hypothesis H0 : θ1+ θ3 = 2θ2 about the quartiles θi = F−1(i/4), i = 1, 2, 3.
The empirical likelihood associated with the quartiles is

Rn(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj(1[Xj ≤ ϑi]− i/4) = 0, i = 1, 2, 3
}
,

where ϑ is such that ϑ1 < ϑ2 < ϑ3. We take

Θ0 = {ψ(t1, t2) = (t2 − t1, t2, t2 + t1)
� : t1 > 0, t2 ∈ R}.

Let now τ̂ be a GOMELE for the empirical likelihood Rn(ψ(t)). Then the test
statistic −2 logRn(ψ(τ̂)) has a limiting chi-square distribution with 1 degree of
freedom. Consequently, the test 1[−2 logRn(ψ(τ̂)) ≥ χ2

1−α(1)] has asymptotic
size α.

Example 5.4. We assume that X has a finite variance σ2 and its distribution
function F has a positive derivative F ′(mF ) at its (unique) median mF . We
want to test whether the mean μF of F equals the median mF . For this we look
at

Rn(q, r) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj

(
sign(Xj − q)

Xj − r

)
= 0

}
, q, r ∈ R.

The assumptions (K0)–(K2) hold with

u(z, q, r) =

(
sign(z − q)

z − r

)
, A =

[
2F ′(mF ) 0

0 1

]
and W =

[
1 ρ
ρ σ2

]
,

where ρ is the covariance of ε = X − μF and sign(X −mF ). This follows from
Lemma 5.1 and simple calculations. The map ψ can be taken to be ψ(t) =
(t, t)� and has derivative (1, 1)� of rank 1. It is easy to see that Rn(q, r) is
maximized by q̂, r̂, where q̂ is the sample median and r̂ is the sample mean and
that Rn(q̂, r̂) = 1. The empirical likelihood ratio statistic Tn simplifies to Tn =
Rn(τ̂ , τ̂), where τ̂ is a GOMELE under the null hypothesis of the common value
τ of μF and mF , and −2 log Tn has a limiting chi-square distribution with one
degree of freedom. From this we conclude that the test 1[−2 log Tn ≥ χ2

1−α(1)]
has asymptotic size α.
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In the next examples we address estimation of a quantile under additional
assumptions on the underlying distribution function F .

Example 5.5. Suppose F is γ-regular and has zero mean and finite variance
σ2. We estimate θ = F−1(γ) using the empirical likelihood

Rn(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,
n∑

j=1

πj

(
1[Xj ≤ ϑ]− γ

Xj

)
= 0

}
, ϑ ∈ R.

It is easy to check that (K0)–(K2) hold in this case with

u(z, ϑ) =

(
1[z ≤ ϑ]− γ

z

)
, W =

[
γ(1− γ) ρ

ρ σ2

]
and A =

[
−F ′(θ)

0

]

where ρ is the covariance between X and 1[X ≤ θ]. Thus a GOMELE θ̂ of θ
satisfies

θ̂ = θ − 1

n

n∑
j=1

1[Xj ≤ θ]− γ − ρ/σ2Xj

F ′(θ)
+ oP (n

−1/2)

and has asymptotic variance (γ(1− γ)− ρ2/σ2)/(F ′(θ))2.

Example 5.6. Suppose F is γ-regular for some γ = 1/2 and has known median
0. To estimate θ = F−1(γ), we rely on the empirical likelihood

Rn(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj

(
1[Xj ≤ ϑ]− γ

sign(Xj)

)
= 0

}
, ϑ ∈ R.

It is easy to check that (K0)–(K2) hold in this case with

u(z, ϑ) =

(
1[z ≤ q]− γ

sign(z)

)
, W =

[
γ(1− γ) ρ

ρ 1

]
and A =

[
−F ′(θ)

0

]

where ρ is the covariance between sign(X) and 1[X ≤ θ]. Thus a GOMELE θ̂
of θ satisfies

θ̂ = θ − 1

n

n∑
j=1

1[Xj ≤ θ]− γ − ρsign(Xj)

F ′(θ)
+ oP (n

−1/2)

and has asymptotic variance (γ(1− γ)− ρ2)/(F ′(θ))2.

6. Simulations

To study the performance of one-step and guided maximum likelihood estima-
tion and of likelihood ratio tests in small to moderate sample sizes we carried
out a small simulation study. This was done with the aid of the R package [17].
We used the function elm provided by Art Owen to calculate the log-empirical
likelihood.
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6.1. Simulations for Example 5.5

We first looked at estimating the median θ when the distribution has known
mean zero utilizing the empirical likelihood

Rn(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj

(
1[Xj ≤ ϑ]− .5

Xj

)
= 0

}
, ϑ ∈ R.

The theory for this was treated in Example 5.5 where we considered the more
general problem of estimating a quantile when the mean is known. We chose
this problem as the criterion function is irregular.

Table 1 reports n times the simulated mean square errors of five estimators
of θ, sample median θ̃ (SMED), LSMELE, GOMELE (guided by LSMELE),
GMELE (guided by the sample median), and MELE, for four different distribu-
tions and four sample sizes (n = 30, 60, 90, 120). The distributions chosen were

(1) the standard normal distribution with density

f1(x) = (2π)−1/2 exp(−x2/2),

(2) the logistic distribution with density

f2(x) = exp(−x)/(1 + exp(−x))2,

(3) the double exponential distribution with density

f3(x) = exp(−|x|)/2,

(4) a shifted exponential distribution with density

f4(x) = exp(−x− 1)1[x+ 1 > 0].

The respective asymptotic variances of the sample median for these four distri-
butions are π/2 � 1.5708, 4, 1, and 1, while those of a central estimator are π/2−
1 = .5708, 4−48(log(2))2/π2 � 1.6634, .5, and 1−(log(2))2 � .5195. These num-
bers show that much can be gained from the knowledge that the mean is zero.

The present empirical likelihood is piecewise constant between neighbor-
ing order statistics and thus only needs to be calculated for the midpoints
between neighboring order statistics. We used this observation to calculate
LSMELE, GOMELE, GMELE and MELE. The GOMELE was chosen as a
maximizer over a neighborhood of the LSMELE of radius 2.5σ̂n−1/2 and the
GMELE over a neighborhood of the sample median of radius σ̂ log(n)n−1/2,
with σ̂ = n/(2

∑n
i=1 1[|Xj − θ̃| < .5]) an estimator of the asymptotic standard

deviation of the sample median. Since the maximizers are not unique, we used
the midpoint of the maximizing interval. For the LSMELE, we first computed
θ̃i = θ̃+n−1/2σ̂(−2.55+i/10), i = 0, . . . , 51, then associated with θ̃i the average
θ̃∗i of the largest observation less than or equal to θ̃i and the smallest observation
larger that θ̃i, computed Ti = n1/2(θ̃∗i − θ̃), eliminated duplicate values among
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Table 1

Estimating Median When Mean Is Zero

density n SMED LSMELE GOMELE GMELE MELE
f1 30 1.5610 0.3622 0.5626 0.5603 0.5638

60 1.5574 0.4086 0.5729 0.5533 0.5533
90 1.5332 0.4576 0.5756 0.5687 0.5687
120 1.5765 0.4373 0.5723 0.5723 0.5723

f2 30 3.8309 1.1881 1.6196 1.6197 1.6251
60 3.9929 1.2723 1.6850 1.6836 1.6857
90 3.9978 1.3218 1.6533 1.6526 1.6526
120 3.9320 1.3021 1.6462 1.6462 1.6462

f3 30 1.2524 0.5445 0.6189 0.6189 0.6198
60 1.2046 0.5400 0.5727 0.5706 0.5706
90 1.1891 0.5306 0.5568 0.5557 0.5557
120 1.1405 0.5202 0.5633 0.5633 0.5633

f4 30 0.9926 0.3496 0.5240 0.5120 0.5549
60 0.9635 0.3815 0.5219 0.5125 0.5169
90 0.9872 0.4013 0.5100 0.5100 0.5104
120 0.9747 0.4370 0.5353 0.5229 0.5229

Each entry is the sample size times the simulated mean square error for
the corresponding estimator, sample size and error density. The results are
based on 4000 repetitions.

T0, . . . , T51 resulting in t1, . . . , tL distinct values with L ≤ 52. Here L and the
values t1, . . . , tL are random.

From Table 1 we see that the LSMELE performs best in all cases considered
and that GOMELE, GMELE and MELE perform about the same. The perfor-
mance of the LSMELE is better than suggested by the asymptotic theory for
three of the four densities.

6.2. Simulations for Example 5.6

We also looked at an example with a smooth constraint function, namely es-
timating the mean when the median is known to be zero using the empirical
likelihood

Rn(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj

(
Xj − ϑ
sign(Xj)

)
= 0

}
, ϑ ∈ R.

A
√
n-consistent estimator is given by the sample mean X̄. Table 2 reports

again n times the simulated mean square errors of the sample mean (SM), the
LSMELE (guided by the sample mean), and versions of the LSMELE associated
with different design points and the corresponding GOMELE for the first three
densities which are symmetric about zero and thus have median zero. The re-
spective asymptotic variances of the sample mean for these three distributions
are 1, π2/3 � 3.290 and 2, while those of a central estimator are 1−2/π � .3634,
1.3681 and 1. These numbers show that much can be gained from the knowledge
that the median is zero.
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Table 2

Estimating Mean When Median Is Zero

density n SM L(1) G(1) L(1.5) G(1.5) L(2) G(2) GMELE
f1 50 1.018 0.398 0.384 0.397 0.384 0.400 0.384 0.384

100 1.016 0.375 0.366 0.375 0.366 0.378 0.365 0.366
f2 50 3.239 1.459 1.437 1.504 1.438 1.580 1.439 1.439

100 3.268 1.454 1.372 1.465 1.373 1.504 1.374 1.374
f3 50 1.983 1.000 1.014 1.058 1.014 1.138 1.014 1.014

100 2.006 1.012 0.999 1.042 0.999 1.097 0.999 0.999

Each entry is the sample size times the simulated mean square error for
the corresponding estimator, sample size and error density. The results are
based on 4000 repetitions.

We ran the simulations for the sample sizes n = 50 and n = 100 and used
4000 iterations in each case. The GMELE was found via a grid search using
the grid {X̄ + iσ̂Cn/(100

√
n) : i = −100, . . . , 100} with σ̂ the sample standard

deviation and Cn = 4 +
√
logn. For a = 1, 1.5, 2, we used the design points

{ti = iσ̂Cn/100, i = −an, . . . , an} where an is the integer closest to 100a/Cn to
compute the LSMELE L(a) and used a grid search with the above grid points
within 2σ̂/

√
n units of L(a) to find the GOMELE G(a).

From Table 2 we see that the performance of the GOMELE’s and the GMELE
are the same, and that the performance of the LSMELE’s is slightly worse and
seems to be better for smaller a.

6.3. Simulations for Example 5.3

Here we report simulation results for the empirical likelihood ratio test de-
scribed in Example 5.3 which addresses testing the null hypothesis F−1(1/4) +
F−1(3/4)− 2F−1(1/2) = 0. The data were generated from F = F0 for comput-
ing the significance level and from the mixture distribution F = .65F0 + .35Gβ

for computing the power. The distribution F0 was taken to be symmetric about
zero so that the null hypothesis was met by F = F0. The distribution Gβ was
taken from a parametric family with parameter β. The parameter β was selected
so that the difference δ = F−1(1/4)+F−1(3/4)−2F−1(1/2) took the values .4,
.6 and .8. We worked with three choices for F0, the standard normal distribution
N(0, 1), the Cauchy distribution Cau(0), and the Laplace distribution Lap(0).
We picked six choices for Gβ , namely, the Cauchy distribution Cau(β) with lo-
cation parameter β, the exponential distribution Exp(β) with rate parameter
β, the Laplace distribution Lap(β) with location parameter β, the Logistic dis-
tribution Logis(β) with location parameter β, the normal distribution N(β, 1)
with mean β and variance 1, and the uniform distribution Unif(β, 2β).

The R function constrOptim was used to compute the two-dimensional
GMELE of the parameter τ = (τ1, τ2). Here the arguments ui,ci (the constraint
matrix and constraint vector) of the R function constrOptim were set to ensure
that the search region is 0 < τ1 ≤ τ̃1+3

√
log(n)/n and τ̃2−3

√
log(n)/n ≤ τ2 ≤
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Table 3

Simulated significance levels and powers of the EL test about
H0 : δ = F−1(1/4) + F−1(3/4)− 2F−1(1/2) = 0 at the nominal level .05 for the sample
sizes n = 120, 140, 160. Data were generated from F = F0 and F = 0.65F0 + 0.35Gβ .

Gβ δ F0 = N(0, 1) F0 = Cau(0) F0 = Lap(0)
120 140 160 120 140 160 120 140 160

0.0 .046 .030 .020 .101 .063 .046 .039 .028 .027
0.4 .169 .198 .222 .088 .101 .103 .275 .301 .354

Cau(β) 0.6 .284 .348 .397 .172 .175 .191 .460 .560 .615
0.8 .436 .509 .560 .234 .292 .337 .626 .723 .790
0.4 .305 .283 .282 .180 .174 .188 .240 .264 .309

Exp(β) 0.6 .400 .416 .452 .261 .281 .313 .391 .430 .514
0.8 .536 .535 .565 .380 .404 .439 .487 .574 .620
0.4 .137 .151 .194 .166 .145 .124 .129 .171 .184

Lap(β) 0.6 .264 .319 .356 .222 .228 .201 .230 .274 .329
0.8 .429 .504 .553 .290 .311 .327 .369 .419 .483
0.4 .224 .221 .274 .125 .114 .131 .187 .203 .242

Logis(β) 0.6 .357 .406 .451 .174 .199 .238 .305 .349 .420
0.8 .467 .542 .599 .260 .308 .352 .435 .504 .556
0.4 .153 .184 .197 .106 .093 .105 .139 .129 .156

N(β, 1) 0.6 .286 .314 .348 .186 .175 .199 .197 .240 .263
0.8 .436 .487 .559 .296 .278 .285 .313 .331 .409
0.4 .522 .513 .510 .621 .646 .675 .390 .355 .334

Unif(β, 2β) 0.6 .532 .533 .574 .655 .655 .694 .456 .449 .445
0.8 .613 .629 .657 .636 .671 .668 .535 .569 .575

τ̃2+3
√

log(n)/n, where τ̃1 was chosen to be the difference of the third and first
sample quartile, and τ̃2 was taken to be the sample median.

Table 3 reports the simulated significance level and power of the test given
in Example 5.3. The results are based on 2000 repetitions and the sample sizes
n = 120, 140 and 160.

6.4. Simulations for Example 5.4

Here we report simulation results for the empirical likelihood ratio test described
in Example 5.4 to test for the equality of mean and median. The data were
generated from F0 for computing the significance level and from the mixture
distribution F = 0.95F0 + 0.05Gβ for computing the power. Here again F0 is a
symmetric distribution and Gβ comes from a parametric model. We selected F0

to be the standard normal distribution N(0, 1), the standard logistic distribu-
tion Logis(0, 1), the t-distribution t(4) with 4 degrees of freedom, and the slash
t-distribution SLt(4, 5) with 4 degrees of freedom and tail index 5 (stochasti-
cally equivalently, SLt(4, 5) = t(4)/Unif(0, 1)1/5). We used two choices for Gβ ,
the exponential distribution Exp(β) with rate β and the Gamma distribution
Gam(β, 5) with rate β and shape equal to 5. The parameter β was selected so
that the difference δ = μF −mF took the values .4, .6 and .8.

The R function optimize was used to find the one-dimensional GMELE with
the argument interval having endpoints τ̃ ± σ̃

√
log(n), where τ̃ is the average
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of the sample mean and sample median, and σ̃ is the jackknife estimator of the
standard error of τ̃ .

Table 4 reports the simulated significance level and power of the empirical
likelihood test from Example 5.4. Also listed in the table are the values of β
which correspond to the values of δ. The results are based on 2000 repetitions
and for the sample sizes n = 40, 80 and 120.

Table 4

Simulated significance level and power of the EL test about H0 : δ = μF −medF = 0 at the
nominal level .05 for several sample sizes n. Data were generated from F0 and from the

contaminated symmetric distribution F = 0.95F0 + 0.05F1.

F1 = Exp(β) F1 = Gam(β, 5)
F0 δ 40 80 120 β 40 80 120 β

N(0, 1) 0.0 .046 .044 .049 .040 .050 .047
0.2 .150 .261 .380 0.19 .170 .308 .420 0.94
0.4 .310 .509 .672 0.11 .353 .580 .758 0.54
0.6 .404 .642 .806 0.08 .492 .741 .878 0.36

Logis(0, 1) 0.0 .036 .051 .048 .039 .040 .043
0.2 .096 .145 .196 0.14 .088 .158 .218 0.70
0.4 .194 .340 .464 0.09 .230 .391 .550 0.45
0.6 .298 .476 .654 0.07 .329 .570 .731 0.33

SLt(4, 5) 0.0 .056 .045 .048 .052 .043 .044
0.2 .130 .200 .251 0.17 .114 .222 .314 0.85
0.4 .241 .381 .520 0.10 .278 .464 .612 0.50
0.6 .358 .564 .688 0.07 .400 .638 .789 0.40

t(4) 0.0 .049 .044 .048 .034 .040 .044
0.2 .156 .228 .314 0.19 .149 .260 .357 0.92
0.4 .278 .475 .610 0.11 .308 .540 .722 0.53
0.6 .408 .612 .768 0.07 .445 .704 .852 0.37

7. Residual-based inference about a quantile

Let Z1, . . . , Zn be independent replicas of the random vector Z = (X�, Y )�

which forms the linear regression model

Y = β0 + β�
1 X + ε,

where ε and X are independent, X has a positive definite dispersion matrix,
and ε has mean zero, a finite variance σ2, and a uniformly continuous density
f with {f > 0} an interval. We are interested in estimating the γ-quantile θ of
ε for some 0 < γ < 1. If the error variables ε1, . . . , εn were observable, we could
work with the empirical likelihood from Example 5.5

Rn(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,
n∑

j=1

πj

(
1[εj ≤ ϑ]− γ

εj

)
= 0

}

which takes into account the fact that the errors are centered. A naive ap-
proach would now be to replace the unobservable error variables by the resid-
uals ε̂1, . . . , ε̂n, based on the least squares approach. While this choice yields
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the desired (L1), it does not produce (L2). This follows from the fact that the
sum of the residuals is zero. We should also point out the following additional
properties of the residuals,

Mn = max
1≤j≤n

|ε̂j − εj | = oP (1) and Dn =
1

n

n∑
j=1

|ε̂j − εj |2 = OP (n
−1).

To find an appropriate choice of uQ, we start with the fact that the least
squares residuals satisfy the property

sup
t∈R

∣∣∣ 1
n

n∑
j=1

(
1[ε̂j ≤ t]− 1[εj ≤ t]− f(t)εj

)∣∣∣ = oP (n
−1/2). (7.1)

This can be derived from results of Koul (1969 [4]) for the fixed design case and
Müller, Schick and Wefelmeyer (2007 [8]) for the random design case used here,
see also Remark 2 in Müller, Schick and Wefelmeyer (2009 [9]). The expansion
(7.1) and the fact that the residuals sum to zero imply that

sup
t∈R

∣∣∣n−1/2
n∑

j=1

[(
1[ε̂j ≤ t]− F (t) + f̂(t)ε̂j

)
−

(
1[εj ≤ t]− F (t) + f(t)εj

)]∣∣∣

converges to zero in probability for any estimator f̂ of f . This suggests to work
with the empirical likelihood

R̂n(ϑ) = sup
{ n∏

j=1

nπj : π ∈ Pn,
n∑

j=1

πj

(
1[ε̂j ≤ ϑ]− γ + f̂(ϑ)ε̂j

)
= 0

}
,

where f̂ is a residual based kernel density estimator of f ,

f̂(y) =
1

nb

n∑
j=1

K
(y − ε̂j

b

)
, y ∈ R,

with K a symmetric Lipschitz-continuous density and b a bandwidth satisfying
nb4 → ∞ and b → 0. Then the residual-based density estimator f̂ is uniformly
consistent,

‖f̂ − f‖∞ = sup
y∈R

|f̂(y)− f(y)| = oP (1).

This follows from uniform consistency of the error-based kernel estimator f̃
(defined as f̂ but with εj in place of ε̂j) and the inequality

|f̂(y)− f̃(y)| ≤ L

b2
1

n

n∑
j=1

|ε̂j − εj | ≤
LD

1/2
n

b2

with L the Lipschitz constant for K.
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Here we have
uQ(Z, ϑ) = 1[ε ≤ ϑ]− γ + f(ϑ)ε

and
W = γ(1− γ) + f2(θ)σ2 + 2f(θ)E[ε1[ε ≤ θ]].

Let us now show that (L1) and (L2) hold, the latter with A = −f(θ). We
conclude (L1) from the inequality

sup
|t|≤C

1

n

n∑
j=1

∣∣1[ε̂j ≤ θ + n−1/2t] + f̂(θ + n−1/2t)ε̂j − 1[εj ≤ θ]− f(θ)εj
∣∣2

≤ 1

n

n∑
j=1

31[|εj − θ| ≤ Mn + Cn−1/2] + 3Dn‖f̂‖2∞

+
1

n

n∑
j=1

3ε2j

(
‖f̂ − f‖∞ + sup

|t|≤C

|f(θ + n−1/2t)− f(θ)|
)2

.

Since the residuals sum to zero, the desired (L2) follows from the inequality

∣∣∣n−1/2
n∑

j=1

(
1[ε̂j ≤ θ + n−1/2t]− 1[εj ≤ θ]− f(θ)εj

)
− f(θ)t

∣∣∣

≤
∣∣∣n−1/2

n∑
j=1

(
1[ε̂j ≤ θ + n−1/2t]− 1[εj ≤ θ + n−1/2t]− f(θ + n−1/2t)εj

)∣∣∣

+
∣∣∣n−1/2

n∑
j=1

(
1[εj ≤ θ + n−1/2t]− 1[εj ≤ θ]− (F (θ + n−1/2t)− F (θ))

)∣∣∣
+ |n1/2(F (θ + n−1/2t)− F (θ))− tf(θ)|

+ |f(θ + n−1/2t)− f(θ)|
∣∣∣n−1/2

n∑
j=1

εj

∣∣∣,

equation (7.1), properties of the empirical process and the uniform continuity
of f .

We obtain from Theorem 2.2 that a GOMELE θ̂ obeys the expansion

θ̂ = θ − 1

n

n∑
j=1

(1[εj ≤ θ]− γ

f(θ)
+ εj

)
+ oP (1). (7.2)

As pointed out in Müller, Schick and Wefelmeyer (2012 [10]), the uniform ex-
pansion (7.1) and results of Gill (1989 [2]) yield the expansion

F̂−1(γ) = θ − 1

n

n∑
j=1

(1[εj ≤ θ]− γ

f(θ)
+ εj

)
+ oP (1)

with F̂ the residual-based empirical distribution function. This shows that resid-
ual-based sample quantiles are central and hence equivalent to the GOMELE.
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This implies that a residual-based sample quantile can be used instead of a
one-step MELE in the construction of the GOMELE.

The asymptotic variance of the residual-based quantile or a GOMELE is

γ(1− γ)

f2(θ)
+ σ2 + 2

E[ε1[ε ≤ θ]]

f(θ)
.

The first summand is the asymptotic variance of the sample quantile based on
the actual errors. The sum of the last two terms may be negative. Indeed, if f
is a centered normal density, then the sum of the last two terms equals −σ2.
Thus the residual-based sample quantile can have a smaller variance than the
sample quantile based on the actual errors.

Table 5

Comparison Of Estimators Of The Median

n EBSM RBSM G(0.1) G(0.2) G(0.3) G(0.4) G(0.5)
N(0, 1)

31 1.5761 0.5406 0.5493 0.5569 0.5631 0.5686 0.5725
61 1.6405 0.5662 0.5723 0.5778 0.5827 0.5864 0.5900
91 1.5767 0.5667 0.5714 0.5757 0.5794 0.5826 0.5847

t(4, 0, 1/
√
2)

31 0.8777 0.4995 0.5108 0.5217 0.5323 0.5420 0.5515
61 0.8927 0.5439 0.5530 0.5619 0.5702 0.5783 0.5862
91 0.9205 0.5543 0.5619 0.5695 0.5768 0.5839 0.5907

Lap(0, 1/
√
2)

31 0.6515 0.4804 0.4921 0.5034 0.5142 0.5246 0.5344
61 0.6104 0.4971 0.5054 0.5138 0.5218 0.5296 0.5371
91 0.5768 0.4876 0.4940 0.5005 0.5066 0.5126 0.5187

Logis(0,
√
3/π)

31 1.2148 0.5028 0.5141 0.5242 0.5337 0.5421 0.5488
61 1.2205 0.5256 0.5343 0.5427 0.5507 0.5580 0.5649
91 1.1920 0.5092 0.5166 0.5236 0.5301 0.5365 0.5422

Each entry is the sample size times the simulated mean square error for the
corresponding estimator, sample size and error distribution. The results
are based on 4000 repetitions.

We performed a simulation study to illustrate the above for the case γ = 1/2,
i.e., for estimating the median. We restricted ourselves to the simple linear re-
gression model Y = 1+2X + ε with X having a normal distribution with mean
1 and variance 1 and considered four symmetric error distributions, namely,
N(0, 1), Lap(0, 1/

√
2), Logis(0,

√
3/π) and t(4, 0, 1/

√
2) which is the Student

t-distribution with 4 degrees of freedom, location parameter 0 and scale param-
eter 1/

√
2. Each of these distributions has variance 1 and median θ = F−1(1/2)

equal to 0. We compared the error-based sample median (EBSM), the residual-
based sample median (RBSM), and the modified GOMELE (with the RBSM in
place of a one-step MELE)

G(c) = argmax
|ϑ−ϑ̃|≤cσ̃

R̂n(ϑ)
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for several choices of c. Here ϑ̃ denotes the RBSM and σ̃ denotes the jackknife
estimate of the standard error of ϑ̃. Reported in Table 5 are the simulated mean
squared errors multiplied by the sample size n of the estimators EBSM, RBSM
and G(c) with c = .1, .2, .3, .4, .5. We looked at odd sample sizes since for an
even sample size n = 2m the RBSM (ε̂(m) + ε̂(m+1))/2 is also a MELE. The ta-
ble shows that the RBSM has smallest simulated mean square error in all cases
considered and the mean square errors of the estimators G(c) increase with c.
Based on this we recommend the use of the RBSM.

The above results for linear regression carry over to nonparametric regression.
Let us explain this in the simplest case when Z = (X,Y )� and Y = r(X) + ε,
with r a twice continuously differentiable function and X and ε are independent,
with ε having mean zero and finite variance, and X is quasi-uniform on the unit
interval [0, 1]. The latter means X has a density g that is bounded and bounded
away from zero on its support [0, 1]. Under the additional assumption that the
density f is Hölder of order 1/3 and has a finite moment of order greater than
order 8/3, Müller et al (2007) have shown that there are estimators r̂n of r such
that (7.1) also hold for the nonparametric residuals ε̂j = Yj − r̂n(Xj). These
nonparametric residuals satisfy, for some ρ > 1/2,

Mn = oP (1),

n∑
j=1

ε̂j = oP (n
1/2), and Dn = oP (n

−ρ). (7.3)

It is now easy to check that the kernel density estimator f̂ based on these non-
parametric residuals is uniformly consistent for f if also nρb4 → ∞. One verifies
(L1) and (L2) with A = −f(θ) and again obtains the expansion (7.2) for the
corresponding GOMELE.

Expansions to nonparametric regression models with multivariate covariates
are possible using the results of Müller et al (2009 [9]). The results in Müller et
al (2007 [8], 2012 [10]) can be used to obtain extensions to the partly linear re-
gression model and to the additive nonparametric regression model, while those
of Koul, Müller and Schick (2017 [5]) can be used for extensions to single-index
models. In all these models one can construct residuals so that (7.1) and (7.3)
hold and then obtains the expansion (7.2). We should mention that we do not
get the second part of (7.3) for all regression models. This is already so in linear
regression without an intercept.

Remark 7.1. A key point of the section is that one has to be careful in select-
ing the constraint function in order to be able to achieve (L1) and (L2). We are
not the first to observe this. Zhu and Xue (2006 [20]) have pointed this out in
the context of a single index model. Here we look at a more general single-index
random-coefficient model, namely

Y = β�(V + θ�U)X + ε

where V is a random variable, U is a k-dimensional random vector, X is a q-
dimensional random vector, the error variable is independent of the covariates
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(U, V,X) with mean zero and finite positive variance, β is an unknown smooth
function from R into R

q, and the k-dimensional vector θ is the parameter of
interest.

If q = 1 and X = 1, then this model reduces to the single index model

Y = β(V + θ�U) + ε.

For this model, Xue and Zhu (2006 [19]) used the constraint function

uR(U, V, Y, t) = (Y − βR(It))β
′
R(It)U,

with It = V + t�U and were unable to verify (L1) and (L2). Zhu and Xue (2006
[20]) considered instead the constraint function

uR(U, V, Y, t) = (Y − βR(It))β
′
R(It)[U − ER(U |It)]

and were able to verify (L1) and (L2).
In the general case, the constraint function

uR(U, V,X, Y, t) = (Y − βR(It))β
′
R(It)

�XU

used by Xue and Wang (2012 [18]) is not suitable for obtaining (L1) and (L2).
Instead, one should work with the constraint function

uR(U, V,X, Y, t) = (Y − βR(It))[β
′
R(It)

�XU −MR(It)X]

where the matrix

MR(It) = ER(β
′
R(It)

�XUX�|It)ER(XX�|It)−1X

is the projection of β′
R(It)

�XU onto the space of functions of the form A(It)
�X

with A a function into R
k×q satisfying ER[|A(It)|2] < ∞}. Here one needs to

assume that the matrix ER(XX�|It) is invertible.

8. A general result

Let Tn1(t), . . . ,Tnn(t) be m-dimensional random vectors indexed by t ∈ R
k,

where k ≤ m. Let Cn be a sequence of positive numbers such that infn Cn > 0
and Cn = o(n1/2). We are interested in the asymptotic behavior of the empirical
likelihood process

Rn(t) = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjTnj(t) = 0
}
, |t| ≤ Cn.

To this end we shall use the following result which is a special case of Lemma
5.2 of Peng and Schick (2013 [15]).
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Lemma 8.1. Let x1, . . . , xn be m-dimensional vectors. Set

x∗ = max
1≤j≤n

|xj |, x̄ =
1

n

n∑
j=1

xj , S =
1

n

n∑
j=1

xjx
�
j ,

and let λ denote the smallest and Λ the largest eigenvalue of the matrix S. Then
the inequality λ > 5|x̄|x∗ implies

∣∣∣− 2 logR − nx̄�S−1x̄
∣∣∣ ≤ (

Λ +
Λ3

4λ2

) 2n|x̄|3x∗

(λ− |x̄|x∗)3
(8.1)

where

R = sup
{ n∏

j=1

nπj : π ∈ Pn,

n∑
i=1

πixi = 0
}
.

Motivated by this we introduce the quantities

T
∗
n(t) = max

1≤j≤n
|Tnj(t)|, T̄n(t) =

1

n

n∑
j=1

Tnj(t),

and

Sn(t) =
1

n

n∑
j=1

Tnj(t)T
�
nj(t).

We impose the following conditions.

(B1) sup|t|≤Cn
(1 + |t|)T∗

n(t) = oP (n
1/2).

(B2) There is a positive definite m×m matrix S such that

sup
|t|≤Cn

|Sn(t)− S| = oP (1).

(B3) There exist k-dimensional random vectors Un and an m × k matrix A of
full rank k such that Un = OP (1) and

sup
|t|≤Cn

|√nT̄n(t)− Un +At|
1 + |t| = oP (1).

We have the following result.

Theorem 8.1. Suppose (B1)–(B3) hold. Then we have

sup
|t|≤Cn

| − 2 logRn(t)− (Un −At)�S−1(Un −At)|
(1 + |t|)2 = oP (1)

and therefore

sup
|t|≤Cn

| log(Rn(t)/Rn(0))− t�A�S−1Un + 1
2 t

�A�S−1At|
(1 + |t|)2 = oP (1).



MELE 2991

Proof. Let λn(t) and Λn(t) denote the smallest and largest eigenvalues of Sn(t).
It follows from (B2) that there are constants 0 < η < K < ∞ such that

P ( sup
|t|≤Cn

Λn(t) > K) → 0 and P ( inf
|t|≤Cn

λn(t) < η) → 0. (8.2)

It follows from (B3) that

sup
|t|≤Cn

|T̄n(t)|
1 + |t| = OP (n

−1/2).

This and (B1) yield

sup
|t|≤Cn

T
∗
n(t)|T̄n(t)| = oP (1) (8.3)

and

sup
|t|≤Cn

nT∗
n(t)|T̄n(t)|3
(1 + |t|)2 = oP (1). (8.4)

From (8.1) – (8.4) it follows that

sup
|t|≤Cn

| − 2 logRn(t)− nT̄n(t)
�
Sn(t)

−1
T̄n(t)|

(1 + |t|)2 = oP (1). (8.5)

From (B2) we derive

sup
|t|≤Cn

|Sn(t)−1 − S−1| = oP (1)

and thus obtain the expansion

sup
|t|≤Cn

|nT̄n(t)
�
Sn(t)

−1
T̄n(t)− nT̄n(t)

�S−1
T̄n(t)|

(1 + |t|)2 = oP (1). (8.6)

The first conclusion in the theorem follows from (8.6), (8.5) and (B3). The
second conclusion is a simple consequence of the first one.

From the above we immediately derive the following result which gives suffi-
cient conditions for (3.3). The assumptions used in this result imply (L0)–(L2).
We use the notation of Section 2. We need the following stronger version of (L2).

(SL2) For an m× k matrix A of full rank k we have the expansion

sup
|t|≤2Cn

∣∣∣ 1√
n

∑n
j=1

(
ûn(Zj , θ + n−1/2t)− uQ(Zj , θ)

)
+At

∣∣∣
1 + |t| = oP (1).

Lemma 8.2. In addition to (L0) and (SL2) assume the rates

sup
|t|≤2Cn

max
1≤j≤n

Cn|ûn(Zj , θ + n−1/2t)| = oP (n
1/2), (8.7)
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sup
|t|≤2Cn

1

n

n∑
j=1

|ûn(Zj , θ + n−1/2t)− uQ(Zj , θ)|2 = oP (1). (8.8)

Then the expansion

sup
|t|≤2Cn

| − 2 log R̂n(θ + n−1/2t)− (Un −At)�W−1(Un −At)|
(1 + |t|)2 = oP (1)

holds, and this implies (3.3).

Proof. The desired result follows if we verify the assumptions of Theorem 8.1
with Tnj(t) = ûn(Zj , θ + n−1/2t), S = W , and Un as in (2.1) and with Cn

replaced by 2Cn. Note that (B1) follows from (8.7) and (B3) from (SL2) and
the central limit theorem. We are left to verify (B2). To simplify notation we
set w(z) = uQ(z, θ) and W̄n = 1

n

∑n
j=1 w(Zj)w

�(Zj). Since
∫
|w|2 dQ is finite,

we obtain
|W̄n −Wn| = oP (1). (8.9)

Then (B2) follows from (8.8), (8.9) and the bound

|a�(Sn(t)− W̄n)a| =
∣∣∣ 1
n

n∑
j=1

(a�ûn(Zj , θ + n−1/2t))2 − 1

n

n∑
j=1

(a�w(Zj))
2
∣∣∣

≤ D̂n + 2
( 1

n

n∑
j=1

|w(Zj)|2D̂n

)1/2

valid for every unit vector a in R
k, every t with |t| ≤ 2Cn, and with D̂n the left-

hand side of (8.8). The above inequality was already used in Peng and Schick
(2013 [15]), see their (4.3).

Remark 8.1. Note that we have the bound

sup
|t|≤2Cn

max
1≤j≤n

|ûn(Zj , θ + n−1/2t)| ≤ max
1≤j≤n

|uQ(Zj , θ)|+ n1/2D̂1/2
n .

Thus we can replace (8.7) and (8.8) by the conditions

U∗
n = max

1≤j≤n
|uQ(Zj , θ)| = op(n

1/2/Cn) (8.10)

and

sup
|t|≤2Cn

1

n

n∑
j=1

|ûn(Zj , θ + n−1/2t)− uQ(Zj , θ)|2 = op(C
−2
n ). (8.11)

The first condition can typically be verified under additional moment conditions
on T = |uQ(Z, θ)|. For example, if E[[T 2 log(1 + T )] is finite, then we have

U∗
n = op((n/ log n)

1/2).
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Indeed, with ηn = s(n/ log n)1/2 and s > 0, we have the bound

P (U∗
n > ηn) ≤ nP (T > ηn) ≤

nE[T 2 log(1 + T )1[T > ηn]]

η2n log(1 + ηn)

which tends to zero by the Lebesgue dominated convergence theorem and the
fact that n/(η2n log(1 + ηn)) is bounded. This verifies Lemma 3.2.

Proof of Theorem 2.2. Fix a finite C. The desired result follows from
Lemma 8.2 with Cn = C. In view of the previous remark it suffices to verify
(8.10), (8.11) and (SL2) with Cn = C. Since

∫
|uQ(z, θ)|2 dQ is finite, we obtain

max
1≤j≤n

|uQ(Zj , θ)| = oP (n
1/2), (8.12)

which is (8.10) for Cn = C. Of course, for Cn = C, (L1) is equivalent to (8.11)
and (L2) is equivalent to (SL2).
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Manteiga, T. Schmidt, J.-L. Wang, eds.), 209–233, Springer, Cham.
MR3752334

[6] LeCam, L. (1960). Locally asymptotically normal families of distributions.
Univ. California Publ. Statist. 3 37–98. MR0126903

http://www.ams.org/mathscinet-getitem?mr=0656510
http://www.ams.org/mathscinet-getitem?mr=1028971
http://www.ams.org/mathscinet-getitem?mr=2509068
http://www.ams.org/mathscinet-getitem?mr=0260126
http://www.ams.org/mathscinet-getitem?mr=3752334
http://www.ams.org/mathscinet-getitem?mr=0126903


2994 H. Peng and A. Schick

[7] Molanes Lopez, E. M., Van Keilegom, I. and Veraverbeke,

N. (2009). Empirical likelihood for non-smooth criterion functions.
Scand. J. Statist. 36 413–432. MR2549702

[8] Müller, U. U., Schick A. and Wefelmeyer, W. (2007). Esti-
mating the error distribution function in semiparametric regression.
Statist. Decisions 25 1–18. MR2370101

[9] Müller, U. U., Schick A. and Wefelmeyer, W. (2009). Estimat-
ing the error distribution function in nonparametric regression with
multivariate covariates. Statist. Probab. Lett. 79 957–964. MR2509488

[10] Müller, U. U., Schick A. and Wefelmeyer, W. (2012). Estimating
the error distribution function in semiparametric additive regression
models. J. Statist. Plann. Inference 142 552–566. MR2843057

[11] Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a
single functional. Biometrika 75 237–249. MR0946049

[12] Owen, A. B. (1990). Empirical likelihood ratio confidence regions.
Ann. Sta-tist. 18 90–120. MR1041387

[13] Owen, A. B. (2001). Empirical Likelihood. Chapman & Hall/CRC,
London.

[14] Parente, P. M. D. C. and Smith, R. J. (2011). GEL methods for non-
smooth moment indicators. Econometric Theory 27 74–113. MR2771012

[15] Peng, H. and Schick, A. (2013). Empirical likelihood approach to
goodness of fit testing. Bernoulli 19 954–981. MR3079302

[16] Qin, J. and Lawless, J. (1994). Empirical likelihood and general
estimating equations. Ann. Statist. 22 300–325. MR1272085

[17] R Core Team (2014). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org/.

[18] Xue, L. and Wang, Q. (2012). Empirical likelihood for single-index
varying-coefficient models. Bernoulli 18 836–856. MR2948904

[19] Xue, L. and Zhu, L. (2006) Empirical likelihood for single-index models.
J. Multivariate Anal. 97 1295–1312. MR2279674

[20] Zhu, L. and Xue, L. (2006). Empirical likelihood confidence regions in
a partially linear single-index model. J. Roy. Statist. Soc., Series B 68
549–570. MR2278341

http://www.ams.org/mathscinet-getitem?mr=2549702
http://www.ams.org/mathscinet-getitem?mr=2370101
http://www.ams.org/mathscinet-getitem?mr=2509488
http://www.ams.org/mathscinet-getitem?mr=2843057
http://www.ams.org/mathscinet-getitem?mr=0946049
http://www.ams.org/mathscinet-getitem?mr=1041387
http://www.ams.org/mathscinet-getitem?mr=2771012
http://www.ams.org/mathscinet-getitem?mr=3079302
http://www.ams.org/mathscinet-getitem?mr=1272085
http://www.R-project.org/
http://www.ams.org/mathscinet-getitem?mr=2948904
http://www.ams.org/mathscinet-getitem?mr=2279674
http://www.ams.org/mathscinet-getitem?mr=2278341

	Introduction
	Maximum empirical likelihood estimation in the presence of nuisance parameters
	On the construction of central estimators
	Empirical likelihood ratio testing
	Inference about quantiles
	Simulations
	Simulations for Example 5.5
	Simulations for Example 5.6
	Simulations for Example 5.3
	Simulations for Example 5.4

	Residual-based inference about a quantile
	A general result
	Acknowledgment
	References

