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SUMMARY

In this article, we present a general procedure to analyze exchangeable binary data that may also be viewed as
realizations of binomial mixtures. Our approach unifies existing models and is practical and computationally easy.
Resulting from completely monotonic functions, we give a rich family of parametric parsimonious binomial mixtures,
including the incomplete Beta-, Gamma-, Normal-, and Poisson-binomial, generalizing the Beta-binomial. We show
that the family is closed under convex linear combinations, products, and composites. We also give the moments and
the Markov property for this family of mixtures. With such distributions, we can perform statistical inference on
correlated binary data and, in particular, overdispersed data. We propose a regression procedure which generalizes
logistic regression. We provide a forward model selection procedure about how a possible optimal model from the
family can be achieved. We run a small simulation to validate the inclusion of the binomial distribution. Finally, we
apply the proposed procedure to analyze the 2, 4, 5-T and E2 data and compare the results with existing procedures.

Copyright c© 2000 John Wiley & Sons, Ltd.

1. Introduction

The binomial distribution is widely used in modeling binary response data in many different areas of science.
The binomial distribution, however, assumes that the binary responses are independent, an assumption
which is often not valid for real data. Non-independence usually leads to a variance that is greater than the
nominal variance of the binomial distribution. This is known as over-dispersion (or extra-binomial variation).
The perception of exchangeability, intensely studied over the past century, is meant to capture the notion of
symmetry in a collection of random variables and is often used as an alternative to independence. In this
article, we relax independence to exchangeability and introduce a rich family of parsimonious distributions
resulting from emphcompletely monotonic functions. We present a general framework that unifies existing
procedures for modeling correlated binary responses and demonstrate the procedure using real correlated
binary and overdispersed data.

As a specific example from the familial correlated data, let us look at a typical developmental toxicity
experiment in animal studies, where fetuses from the same litter will respond more similarly to a stimulus
than fetuses from different litters. Consider a litter of m fetuses with binary responses B1, ..., Bm, where
Bi = 1 or 0 denotes death or no death, malformation or no malformation. These binary responses are not
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independent but correlated. One simple way to model them is to assume that the responses are exchangeable.
As another specific example, let us look at risk analysis in Finance such as CreditRisk+, where the default
probability of a company is assumed to depend upon a set of common economic factors; given these common
factors, defaults of the individual obligors are conditionally independent. Consider a portfolio of m obligors
with concentration on the binary outcomes B1, ..., Bm of default or non-default of the obligors. One way
in practice to formalize the notion of a homogeneous group is to assume that these binary outcomes are
exchangeable. For a full description, see, e.g., Frey and McNeil [1]. Specifically, binary events B1, ..., Bm are
exchangeable if for every {0, 1}-valued variables b1, ..., bm, we have

P(B1 = b1, ..., Bm = bm) = P(Bπ1
= b1, ..., Bπm

= bm),

for every permutation π1, ..., πm of 1, ...,m. Let Y = B1 + ...+Bm be the total number of “successes”. Under
exchangeability, the distribution of the number Y of successes (in a litter) is given by

P(Y = y) =

(
m

y

) m−y∑

k=0

(−1)k

(
m− y

k

)
λy+k, y = 0, 1, ...,m, (1.1)

where λ0 = 1 and λk = P(B1 = 1, ..., Bk = 1), termed in the literature as the marginal probability, is the
probability of k consecutive successes for k = 1, ...,m. See, e.g., Kendall [2], George and Bowman [3], or Chow
and Teicher [4]. We write Y ∼ EB(λ) with (λ = {λk}) and refer it to as the Exchangeable Binomial (EB)
distribution. Clearly, if binary events B1, ..., Bm are independent, then λk = λk

1 , k = 1, ...,m and probability
(1.1) reduces to the binomial probability P(Y = y) =

(
m
y

)
λy

1(1 − λ1)
m−y for y = 0, 1, ...,m, where λ1 is the

probability of a single success.
Applications are not limited to the aforementioned financial and familial data. A wide variety of

applications can be found in other fields of science. For example, in social science, see Conaway [5]; in
clinical trails, see Fanaroff [6]; and in botany, see Example 1.3, Collett [7].

Data consisting of independent clusters or groups of dependent binary random variables commonly arise
in many fields of science, including developmental toxicity studies, financial credit risk analysis, longitudinal
studies with repeated measurements of subjects, studies of familial diseases, and cluster sample surveys. The
literature describing the analysis of correlated binary data is extensive (see, e.g., Joe [8]; Collett [7]; Neuhaus
[9]). The different approaches account for cluster effects in different ways and may be broken into three main
approaches. The exchangeable model is one approach. A second approach is the random effects model. The
third approach is the quasi-likelihood or generalized estimating equations (GEE) model.

In a random effects model, the within-cluster (litter) correlation is assumed to be induced by random
effects. Given the random effects, the within-cluster responses are conditionally independent and identically
distributed, hence the sum of the responses follows the (conditional) binomial distribution. Williams [10]
and Kupper and Haseman [11] proposed to use the Beta distribution to model the random effects on the
response probability, leading to the commonly used Beta-Binomial distribution. Stiratelli, Laird and Ware
[12] modeled the logit of the response probability to be normally distributed and introduced the logit-normal-
binomial distribution. Modeling the probit of the response probability to be normally distributed, Ochi and
Prentice [13] proposed the probit-normal-binomial model. Conaway [5] modeled the iterated logarithm of the
response probability to have a log-Gamma distribution. Coull and Agresti [14] modeled the joint distribution
of multiple binomial responses by the multivariate Logit-Normal-Binomial. Instead of assuming a parametric
mixing distribution, Follmann and Lambert [15] left the mixing distribution completely unspecified and
estimated it by a nonparametric maximum likelihood. Although these models are easily interpreted, most of
them, like many Bayesian procedures, involve formidable numerical integration.

In the quasi-likelihood or GEE approach, the first two moments are specified, while the higher order
moments and correlations are approximated by a “working matrix”, (see, e.g., Williams [16], Liang, Qaqish
and Zeger [17], and Lipsitz, Laird and Harrrington [18]). With this approach, estimates can be obtained
by iterative weighted least squares. However, these estimates are generally inefficient when the correlation
structure is of primary interest. Furthermore, as pointed out by George and Bowman [3] and Kuk [19],
the GEE approach often cannot provide satisfactory estimates of quantities which depend on higher order
moments. For example, it cannot satisfactorily estimate the probability of affected litters which is of interest
in teratological risk assessment.
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The proposed framework has many advantages over some commonly used procedures. The statistical
inference based on the conditional analysis does not use any information about the distribution of the latent
effects since it is lost in the conditioning. The EM algorithm method by Mislevy [20] is conceptually simple,
but the computations may be formidable because each E-step in the computation may require a numerical
integration. The empirical Bayes approach by Stiratelli, Laird, and Ware [12] may also be computationally
difficult. The quasi-likelihood and GEE approach only use the first two moments. By exploiting the notions of
exchangeability and complete monotonicity, our approach uses all of the distributional information including,
of course, all order moments, so that it is a full likelihood approach. The probability mass functions of the
proposed models are both mathematically and computationally simple. The likelihoods can be computed
without numerical integration and parameter estimation can be obtained by maximum likelihood using
packages such as R or SAS.

From the celebrated de Finetti theorem, a sequence of exchangeable binary random variables is a mixture
of binomials, whereas the mixture can be characterized by a completely monotonic sequence. Using this
characterization between exchangeability and complete monotonicity, George and Bowman [3] initiated an
investigation on correlated binary data and proposed the folded logistic link. In Section 2, we point out that it
is not a valid link, where we also provide a modified version. Kuk [19] proposed the power link and established
its complete monotonicity. George and Bowman [3] and Kuk [19] applied their approaches in clinical and
developmental toxicity studies and compared their results with existing models such as the generalized
estimating equations and the Beta-binomial. Stefanescu and Turnbull [21] used the EM algorithm to model
exchangeable binary data with varying cluster sizes. Xu and Prorok [22] showed that, in general, there is no
closed form for the maximum likelihood estimates of the marginal probabilities and that the MLE’s can only
be calculated by numerical methods. They applied their results to a double-blind randomized clinical trial
for comparing two antibiotics, cefaclor and amoxicillin, and performed several simulation studies. It is our
thinking that further study on this approach is worthwhile, namely, to provide several completely monotonic
links that are of practical use in conducting real statistical inference; and to give a procedure as a guideline
for practitioners for finding possible optimal models.

In this article, we further develop these ideas and present a unified approach. We introduce a rich family
of parsimonious exchangeable binomials (i.e., parametric binomial mixtures) via completely monotonic
links, including the incomplete Beta-, Gamma-, Normal-, and Poisson- binomial. These mixtures are called
incomplete because their probability mass functions contain incomplete special functions. For example, the
incomplete Beta-binomial includes the incomplete Beta function. Since the Beta function is a special case
of the incomplete Beta function, the commonly used Beta-binomial is a special case of the incomplete
Beta-binomial. Further, the incomplete Beta-binomial includes the binomial as a special case, unlike the
Beta-binomial which does not include the binomial as a special case in its parameter domain. Indeed, the
introduced incomplete binomial mixtures include the binomial as a special case, while existing binomial
mixtures usually do not; for example, the random effects model for binary data by Conaway [5], the logistic
regression by nonparametric mixing by Follmann and Lambert [15], and the mixtures resulting from random
variables (see Section 2). Further, we demonstrate that the family is closed under convex linear combinations,
products and composites of links. These properties enormously enlarge the family. In addition, we present
the Markov property of the stochastic binomial mixture process. We give a stepwise forward model selection
procedure. A simulation is conducted to validate the inclusion of the binomial distribution. We apply the
proposed procedure to analyze the 2, 4, 5-T and E2 data and compare the results with existing models. Our
results indicate that the proposed procedure improves these models and, in particular, the Gamma-binomials
outperforms the other models in analyzing the 2, 4, 5-T data.

In addition to the aforementioned approaches, additional examples include the usual binomial, the
correlated binomial (Kupper and Haseman [11]), the additive Model (Altham [23]), and the generalized
logistic regression by nonparametric mixing (Follmann and Lambert [15]). The model by Conaway [5],
interestingly, turns out to be a special case of our incomplete Gamma Power binomial. Brooks et al. [24]
explored finite mixture models for proportions. These models can be recovered from the linear combinations
of the proposed family. From this standpoint, our work generalizes the results of Brooks et al. to conclude
that the products and composites of the CM links (see Section 2) are also included in the family (see Section
4).
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The rest of the article is organized as follows. The parsimonious distributions are introduced in Section
2, followed by a description of the methods for obtaining such distributions and the Markov property.
Section 3 provides examples of parsimonious distributions. Section 4 investigates the methods for obtaining
new parsimonious distributions from existing ones. The moments and correlations are also given. Section
5 is devoted to regression with a discussion of computational issues and model selection. We give a small
simulation and apply our proposed procedure to analyze two real datasets in Section 6. Technical details can
be found in the Appendix.

2. Exchangeable Binomials and the Markov Property

In this section, we first introduce the parsimonious exchangeable binomials, followed by the methods for
obtaining such distributions. The Markov property is given at the end of this section.

The marginal probabilities λ = {λi : i = 0, 1, ...,m} (λ0 = 1) in (1.1) form an (finite) completely monotonic
(CM) sequence as pointed out by George and Bowman [3], namely,

(−1)k∆kλi ≥ 0, i = 0, 1, ...,m, k + i ≤ m, (2.2)

where ∆ is the difference operator defined by ∆ai = ai+1 − ai, ∆2 = ∆(∆) and ∆0 the identity operator for
a sequence {ai}. A useful formula for checking complete monotonicity is

(−1)k∆kai =

k∑

r=0

(
k

r

)
(−1)rai+r. (2.3)

See Feller [25] (page 221) for a proof. Applying this formula with k = 1 and k = 2, we see 1 ≥ λ1 ≥ ... ≥
λm ≥ 0 (decreasing) and λi+2 − 2λi+1 + λi ≥ 0, i = 0, ...,m − 2, respectively. Conversely, for λ satisfying
(2.2), define

feb(y;λ) =

(
m

y

) m−y∑

k=0

(−1)k

(
m− y

k

)
λy+k, y = 0, 1, 2, ...,m. (2.4)

Then feb(y;λ) ≥ 0 for all y and
∑m

y=0 feb(y;λ) = 1, hence feb defines a probability distribution. This
definition is based upon finitely many completely monotone numbers {λ1, ..., λm}, while (1.1) is based upon
finitely many exchangeable events B1, ..., Bm. However, it follows from Kendall [2] that the two definitions
are equivalent. Because the probability in (1.1) involves only finitely many exchangeable events, a slightly
negative correlation is allowed in (1.1) or (2.4), while an infinite sequence of exchangeable binary random
variables has a nonnegative correlation, see Kingman [27].

The mean, variance and second order correlation are

E(Y ) = mλ1, Var(Y ) = m(λ1 − λ2) +m2(λ2 − λ2
1), φ = (λ2 − λ2

1)/λ1(1 − λ1). (2.5)

In terms of φ, we can rewrite Var(Y ) = σ2
ind{1 + (m− 1)φ}, where σ2

ind = mλ1(1− λ1) is the variance of the
binomial with parameters m and λ1. Typically φ ≥ 0; it follows Var(Y ) ≥ σ2

ind, manifesting that the EB can
be used to model overdispersed data. Williams’ model is, in fact, an approximation to the EB model because
the model variance is Var(Y ). Thus, Williams’ model can be viewed as a generalized estimating equation
resulting from the EB model. From the first equality in (2.5), we observe that Y/m is an unbiased estimate
of λ1. However, from the second equality in (2.5), we see that as the number m of trials tends to infinity,
Y/m does not converge in the second moment to λ1, unless λ2 = λ2

1, which corresponds to independent
binary events {Bi : i = 1, 2, ...}.

In teratological risk assessment, in addition to the marginal probability p of an affected fetus (which is
given by λ1) and the intra-litter correlation φ, the probability q = P (Y ≥ 1) of affected litters is also of
interest. Kuk [19] used q to assess and determine an acceptable low risk or safe dose level. From (2.4),

q = P(Y ≥ 1) = 1 − P(Y = 0) =

m∑

k=1

(−1)k−1

(
m

k

)
λk. (2.6)
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In the case of independence (i.e., λk = λk
1), equation (2.6) becomes the usual formula q = 1 − (1 − p)m.

Unlike the correlation φ, the probabilities of affected litters are observable from the data. Therefore, they
can be used as a criterion to compare different models. Models with expected probabilities closer to observed
ones are preferred. The use of the observed probability q of affected litters as a criterion is a better indicator
because it involves all marginal probabilities λ1, λ2, ..., λm, which contain the total distributional information.

Note that EB(λ) has m parameters and is the saturated model with a parameter space Λ = {λ ∈ R
m :

λ satisfies (2.2)}. Direct estimation of the parameters is challenging due to the high dimensionality and
complicated constraints of the parameter space. To overcome these difficulties, we consider parsimonious
models, motivated from George and Bowman [3], by mapping a lower d-dimensional subset Θ ⊂ R

d into the
saturated m-dimensional parameter space Λ. Consider such a map from Θ into Λ defined by λ = h(θ), where
θ ∈ Θ. Write h = (h1, ..., hm)⊤ so that λj = hj(θ), j = 1, ...,m. Substituting these expressions in (1.1), we
obtain a parsimonious model, which can be expressed as

f(y; θ) =

(
m

y

) m−y∑

k=0

(−1)k

(
m− y

k

)
hy+k(θ), θ ∈ Θ, y = 0, 1, ...,m, (2.7)

where h0(θ) = 1 for every θ ∈ Θ. In order to ensure that the above expression is a valid probability mass
function, these h1(θ), ..., hm(θ) must be completely monotone:

(−1)k∆khi(θ) ≥ 0, θ ∈ Θ, i = 0, 1, ...,m, i+ k ≤ m. (2.8)

We shall call such h a completely monotonic link (CM link) and write the resulting submodel as EB(θ,m;h)
(or simply EB(h)). The above approach turns the high dimensional parameter λ in the complicated
parameter space Λ to a low dimensional parameter θ in a simple parameter space Θ via a completely
monotonic link h(θ). The complete monotonicity of the link preserves the parameter structure and the choice
of a suitable link to a particular data set can yield an optimal model. With a low dimensional parameter θ,
the usual procedures for parameter estimation such as maximum likelihood estimation become feasible.

Each CM link h gives a parsimonious model. One trivial CM link is ht(θ) = θt for θ ∈ (0, 1), the
independence link, corresponding to independent binary responses (the binomial model). We can use (2.3)
for a direct verification of CM links. A sufficient condition for h to be completely monotone is that
hj(θ) = h̄(j; θ), j = 0, 1, ... with h̄(0; θ) = 1 for some completely monotonic function h̄(t; θ) defined on
t ∈ [0,∞) in the sense that h̄ has all order derivatives h̄(k)(t; θ) w.r.t. t satisfying

(−1)kh̄(k)(t; θ) ≥ 0, k = 0, 1, ..., θ ∈ Θ, t ∈ [0,∞). (2.9)

Henceforth, we shall assume the existence of such a CM function h̄ unless otherwise explicitly stated. This
assumption implies that any finite sequence of exchangeable binary random variables B1, ..., Bn that we
mention from now on is part of some infinite sequence of exchangeable binary random variables.

George and Bowman [3] mentioned this same sufficient condition. However, their proposed folded logistic
link

h̄t(θ) = 2/(1 + (1 + t)θ), θ ∈ (0,∞), (2.10)

is not completely monotone on θ ≥ 0, thus it is not a valid link. More specifically, it is CM only on 0 < θ ≤ 1
but not on θ > 1. As a counter example, let θ = 2. It is easily verified that the folded logistic link does not
satisfy (2.8) for i = 6 and k = 4. A proof can be found in the Appendix. We modify the link and refer to it
as the piecewise folded logistic (Piecewise Flogit) link,

h̄t(θ) =

{
2/(1 + (1 + t)θ), 0 < θ ≤ 1,
1/(1 + t/2)θ, θ > 1.

(2.11)

This is a simple link and has, indeed, demonstrated good behavior when used to fit two real datasets, see
Proposition 1 for the proof of complete monotonicity.

Remark 1. For h̄(θ) satisfying (2.9), let ht = h̄t0+t/h̄t0 for some t0 ≥ 0. Then {ht : t ≥ 0} is CM with
h0 = 1.
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6 X. DANG, S.L. KEETON AND H. PENG

We shall say that a completely monotonic sequence is normalized at t0. Therefore, every completely
monotonic function can be used to obtain a CM link. Moreover, CM links resulting from the same CM
function but normalized at different t0 lead to different models. We now provide several constructive methods
to obtain CM links. Examples of CM links are given in the next section.

CM Links from Laplace Transforms, MGFs and CHFs. It is well known that if a function is
completely monotone on [0,∞), then it is a Laplace transform. Specifically, we have the following useful
theorem from Feller [25].

Theorem 1. A function h̄ on [0,∞) is completely monotone with h̄(0) = 1 if and only if it is a Laplace
transform of some probability distribution H on [0,∞), i.e.,

h̄(t) =

∫
∞

0

exp(−tx) dH(x), t ∈ [0,∞). (2.12)

The distribution H is uniquely determined by h̄.

By the above theorem, we can obtain CM links from the existing tables of Laplace transforms and, in
particular, moment generating functions (mgf’s). Specifically, suppose that the mgf MH(t) of a distribution
H exists for all t ≤ t0 for some t0 ≥ 0, then

h̄(t) = MH(−t), t ∈ [0,∞) (2.13)

gives a CM link. Using the relationship between Laplace transforms and characteristic functions (chf’s), we
can also get CM links. Suppose that the chf of H is ϕH . Then it is easily seen that

h̄(t) = ϕH(it), t ∈ [0,∞), i =
√
−1 (2.14)

is a CM link.

CM Links from Moments. A substitution x = − log p in (2.12) yields a useful representation

h̄(t) =

∫ 1

0

pt dG(p), t ∈ [0,∞), (2.15)

where G is the induced probability distribution from H by the logarithm transform. Therefore, we can also
obtain CM links from the moments of a distribution G. Suppose that G has the jth moment EG(pj) for
j = 1, 2, ...,m. Then

hj = EG(pj), j = 0, 1, ...,m (2.16)

gives a CM link.
Substituting (2.15) in (2.7), we obtain

f(y; θ) =

(
m

y

) m−y∑

k=0

(−1)k

(
m− y

k

)∫ 1

0

py+k dG(p) =

∫ 1

0

(
m

y

)
py(1 − p)m−y dG(p). (2.17)

This demonstrates that the EB is a distribution of binomial mixtures. Alternatively, the EB can also be
viewed as a random effects model. Indeed, the random effects model for binary data by Conaway [5] is a special
parsimonious EB distribution. It is well established in the literature (e.g., de Finetti theorem) that ifB1, B2, ...
is an infinite sequence of exchangeable binary random variables, then the finite sum B1 + ... + Bn follows
a binomial mixture distribution with the mixing distribution G uniquely determined by the infinite binary
sequence. Conversely, we conclude that if B1, B2, ..., Bm are binary random variables for which the finite sum
B1 + ... + Bm has a binomial mixture with a mixing distribution G, then B1, B2, ..., Bm are exchangeable

with marginal probabilities λj =
∫ 1

0
pj dG(p) for j = 0, 1, ...,m. Thus, a binomial mixture implies finite

exchangeability. From our viewpoint, the difference among exchangeable models, mixture distributions, and
the random effects approach is more for presentation and interpretation and less for mathematical substance.

CM Links from Incomplete Integrals. If the mixing distribution G is parametric G = Gϑ with
parameter ϑ ∈ Θ, then the resulting CM link h̄(t;ϑ) is parametric. Additional parameters in a distribution

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
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ANALYZING EXCHANGEABLE BINARY DATA 7

lends itself to increased modeling flexibility. Analogous to the method of tolerance distributions for finding
link functions in generalized linear models, a CM link containing additional parameters can be obtained by
putting additional parameters in the limits of the above integrals (2.12) or (2.15). Specifically,

h̄(t; θ) =

∫ θ2

θ1

pt dGϑ(p), θ = (θ1, θ2, ϑ) ∈ [0, 1]2 × Θ. (2.18)

Or equivalently,

h̄(t; θ) =

∫ b

a

exp(−tx) dHϑ(x), θ = (a, b, ϑ) ∈ [0,∞)2 × Θ. (2.19)

From Remark 1 it follows that

ht(θ) = h̄(t+ t0; θ1, θ2, ϑ)/h̄(t0; θ1, θ2, ϑ), θ = (θ1, θ2, ϑ) ∈ [0, 1]2 × Θ (2.20)

is a CM link with h0(θ1, θ2, ϑ) = 1 for t0 ≥ 0. Observe that the above CM link is not defined when θ1 = θ2.
Nevertheless, it can be easily shown that the limit exists,

lim
θ2→θ1

ht(θ1, θ2, ϑ) = θt
1. (2.21)

Interestingly, this corresponds to the independence link (the binomial model). Thus, we can extend the
definition of ht(θ1, θ2, ϑ) to admit the equality θ1 = θ2 by defining the value of the function to be the limit,
i.e.,

ht(θ1, θ2, ϑ) = θt
1, θ1 = θ2. (2.22)

Then ht(θ) is well defined for all θ ∈ [0, 1]2 × Θ. Hereafter, we shall adopt this definition without explicitly
referring to it. We shall call such links incomplete links.

It is interesting to observe that even though the positivity of (2.18) or (2.19) requires θ1 < θ2, the above
definition renders the inequality constraint to unconstraint for the positivity of ht(θ1, θ2, ϑ). The unconstraint
is very useful both theoretically and computationally because, otherwise, the maximum likelihood estimation
of the parameters is a cumbersome inequality-constrained maximization. We sum up our findings in the
following theorem.

Theorem 2. Suppose {h̄(t;ϑ) : t ≥ 0} satisfies (2.9) for ϑ ∈ Θ. If (2.21) holds with ht given in (2.20), then
h(θ) = {hj(θ) : j = 0, 1, ...,m} with θ = (θ1, θ2, ϑ) ∈ [0, 1]2 ×Θ well defines a parsimonious EB(θ;h) model.
Moreover, the binomial distribution is recovered when θ1 = θ2.

CM Links from Random Variables. Here we describe another method to obtain CM links commonly
used in the literature. If a random variable ξ has a range of [0, 1], then its distribution is concentrated on
[0, 1] and can be taken as the mixing distribution to obtain a CM link. One convenient way to obtain such
a random variable ξ is from the composite ξ = F (η), where F is a nonnegative measurable function with
range [0, 1] and η is a random variable taking values in the domain of F . For example, equating F to the
distribution function Φ of the standard normal distribution and η to the standard normal random variable
Z gives the probit-normal mixing model ξ = Φ(µ + σZ), where µ and σ are location and scale parameters.
Setting ξ = 1/(1 + exp(−µ − σZ)) yields the logit-normal mixing model. These two mixing distributions
are widely used in practice such as in risk analysis in Finance. Such CM links result in the same models
as the random effects approach, see Prentice [26] and Stiratelli, Laird and Ware [12]. It is noteworthy to
mention that the resulting binomial mixtures usually do not include the binomial as a special case, whereas
the proposed incomplete binomial mixtures do. Here we shall not provide further details of this method due
to the computational difficulty. As pointed out in Frey and McNeil [1], the binomial mixture and the latent
random variables approach are closely related. The difference lies in the presentation and interpretation rather
mathematical content. The following Markov property describes the relationships among exchangeability, the
latent variables approach, and binomial mixtures.

Parsimonious Exchangeable Binomials as Markov Chains. Let Ym ∼ EB(θ,m;h) and consider the
stochastic process {Ym : m = 1, 2, ...}. Denote Gθ the probability measure concentrated on [0, 1] determined
by the infinite completely monotonic sequence h(θ) = {hj(θ) : j = 0, 1, ...} and write p ∼ Gθ the random
variable distributed as Gθ. We give a theorem below with the proof delayed in the Appendix.
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8 X. DANG, S.L. KEETON AND H. PENG

Theorem 3. Suppose that {h(θ) : θ = (θ1, θ2, ϑ) ∈ [0, 1]2 ×Θ} is completely monotone. Then for every θ in
the parameter space, the following holds.
(1) There exist binary random variables B̃1, ..., B̃m which, when conditioned on the latent random variable
p ∼ Gθ, are independent and have a common Bernoulli distribution with probability p of success, such that
Ym has a stochastic representation Ym = B̃1 + ...+ B̃m with

P(Ym = y|p) =

(
m

y

)
py(1 − p)m−y, y = 0, 1, ...,m.

(2) {Ym} forms a non-homogeneous Markov chain with transition probabilities given by

P(Ym+1 = y + 1|Ym = y, Ym−1 = ym−1, ..., Y1 = y1)

= P(Ym+1 = y + 1|Ym = y) = 1 − P(Ym+1 = y|Ym = y)

=

m−y∑

k=0

(−1)k

(
m− y

k

)
hy+k+1(θ)

/m−y∑

k=0

(−1)k

(
m− y

k

)
hy+k(θ).

(3) Cov(Ym, Yn) = mh1(θ)[1 − h1(θ)] +m(n− 1)[h2(θ) − h2
1(θ)] for n ≥ m.

(4) {Ym −mh1(θ) : m = 1, 2, ...} is a martingale.
(5) Ym/m converges in distribution to Qθ as m→ ∞.

The Random Generator. Based on Theorem 3, we have a recipe for generating exchangeable Bernoulli
variables B1, ..., Bm and hence Ym having a parsimonious EB(h). First generate λ from Gθ determined
by h(θ). Then generate B1, ..., Bm i.i.d. from the Bernoulli distribution with probability λ of success and
Ym = B1 + ... + Bm. Another approach to generate Ym is the usual method of simulating discrete random
variables using probability mass functions.

3. Examples of Parsimonious Exchangeable Binomials

In this section, we give various CM links using (2.12)-(2.16), (2.18), and (2.19). The CM links resulting from
(2.18) and (2.19) usually contain incomplete special functions and are thus referred to as incomplete CM
links. The CM links resulting from (2.12)-(2.16) are special cases of incomplete CM links and are referred to
as (complete) CM links.

Complete CM Links. By Theorem 1, each distribution concentrated on [0,∞) gives a CM link. An
explicit formula for a CM link may be found from an existing explicit formula of either a Laplace transform,
a moment generating function, or a characteristic function. For example, the Gamma binomial (Gamma-Bin)
link is obtained from (2.12) or (2.13) with H being the gamma distribution. It is interesting to note that the
Gamma-Bin link yields the model considered by Conaway [5]. As a special case of the Gamma binomial link,
taking H to be the exponential distribution in the Laplace transform, we get the simple Michaelis-Menten

Table I. Completely Monotonic Links. θ = θ or (θ1, θ2).

Name Link (j = 0, 1, ...) Domain of θ
Ind-Bin θj (0, 1)
MM-Bin θ/(θ + j) (0,∞)
Beta-Bin B(θ1 + j, θ2)/B(θ1, θ2) (0,∞)2

Gamma-Bin (1 + θ2j)
−θ1 (0,∞)2

Poisson-Bin exp(θ(e−j − 1)) (0,∞)
Normal-Bin 2 exp((θj)2/2)(1 − Φ(θj)) (0,∞)
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ANALYZING EXCHANGEABLE BINARY DATA 9

(MM-Bin) link, which is frequently used in biology. An explicit formula for a CM link can also be found from
(2.16). The binomial (Ind-Bin) is the special case of the exchangeable binomial with the mixing G being a
point mass. Taking G to be the Beta distribution yields the Beta binomial (Beta-Bin) link in Table I. The
Beta-binomial link yields the Beta-Binomial distribution. Even though the normal distribution with mean
zero is not concentrated on [0,∞), it is symmetric about zero, so that it can be folded to be concentrated on
[0,∞). The folded distribution resulting from a normal with mean zero and variance σ2 yields the normal
binomial (Normal-Bin) link given in Table I. In this way, any symmetric distribution yields a CM link. More
generally, any distribution can be used to produce a CM link. We list some of the CM links in Table I.
The links are referred to as XX-binomial link, where XX is the name of the mixing distribution such as
Gamma and Poisson. Additional CM links can be analogously derived, such as the Inverse-Gamma-Bin, the
Negative-Binomial-Bin, the Noncentral-χ2-Bin, the Discrete-Uniform-Bin, the Positive-Stable-Bin, and the
Weibull-Bin.

Incomplete CM Links. We now derive incomplete CM links from formulas (2.18) and (2.19). Our first
incomplete CM link is from the independence link ht(p) = pt, 0 < p < 1. Consider for given t the area

At(θ) under the polynomial y = pt−1 over [θ1, θ2], so that At(θ) =
∫ θ2

θ1
pt−1 dp = (θt

2 − θt
1)/t for t > 0 with

θ = (θ1, θ2). The kth derivative w.r.t. t is

A
(k)
t (θ) =

∫ θ2

θ1

(ln p)kpt−1 dp, t > 0, k = 1, 2, ..., θ ∈ [0, 1]2, (3.23)

so (−1)kA
(k)
t (θ) ≥ 0. This shows that At(θ) is completely monotone. Since limt→0At(θ) = ln(θ2/θ2),

normalizing at t0 = 0 in Remark 1, we immediately get a CM link of two parameters, referred to as the
Inc-A binomial link in Table II. From (3.23) it also follows that At(θ) is absolutely monotone (AM) for
1 < θ1 < θ2, i.e., dkφ(t)/dtk ≥ 0, k = 0, 1, ... for 1 < θ1 < θ2. AM functions can be used to construct new CM
links, see Theorem 4 in Section 4. Interestingly, the Inc-A binomial link is a special case of the incomplete
Beta-binomial link below.

Alternatively, we can also normalize at t0 = 1, we then get the CM link,

ht(θ) =
1

t+ 1
(θt

2 + θt−1
2 θ1 + ...+ θ2θ

t−1
1 + θt

1), t ≥ 0, θ ∈ [0, 1]2. (3.24)

This is a polynomial in θ1, θ2 while the Inc-A link contains a nonlinear log function. However, the range of
the second order correlation φ reduces from [0, 1/2] of the former link to [0, 1/3] of the latter. A detailed
discussion about the range of correlation can be found in the Section 4. Hereafter, we shall normalize at
t0 = 0.

Mixing with the beta distribution, dGϑ(λ) = λθ3−1(1− λ)θ4−1/B(θ3, θ4)dλ, λ ∈ (0, 1) for θ3 > 0, θ4 > 0 in
(2.18), we obtain a CM link, referred to as the incomplete Beta (Inc-Beta) binomial link in Table II. Here

Table II. Incomplete CM Links. θ = (θ1, θ2), or (θ1, θ2, θ3), etc.

Name Link (j = 0, 1, ...) Domain of θ

Inc-A-Bin 1
j

θj
2
−θj

1

ln θ2−ln θ1
[0, 1]2

Inc-MM-Bin θ3

θ3+j
θ

j+θ3
2

−θ
j+θ3
1

θ
θ3
2

−θ
θ3
1

(0,∞)3

Inc-Beta-Bin B(θ3+j;θ4)
B(θ3;θ4)

Fbeta(θ2;θ3+j,θ4)−Fbeta(θ1;θ3+j,θ4)
Fbeta(θ2;θ3,θ4)−Fbeta(θ1;θ3,θ4)

[0, 1]2 × (0,∞)2

Inc-Gamma-Bin 1
(1+θ4j)θ3

Γ((θ4j+1)θ2;θ3)−Γ((θ4j+1)θ1;θ3)
(Γ(θ2;θ3)−Γ(θ1;θ3))

(0,∞)4

Inc-Normal-Bin exp(j2θ23/2)Φ(θ2/θ3+θ3j)−Φ(θ1/θ3+θ3j)
Φ(θ2/θ3)−Φ(θ1/θ3)

(0,∞)3

B(x; θ1, θ2) =
∫ x

0
uθ1−1(1 − u)θ2−1 du is the incomplete Beta function and Fbeta is the distribution function

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
Prepared using simauth.cls



10 X. DANG, S.L. KEETON AND H. PENG

of the Beta distribution. The case (θ1, θ2) = (0, 1) recovers the (complete) Beta-Bin link, which yields the
Beta-binomial distribution. Mixing with the exponential distribution, dH(x) = θ3 exp(−θ3x)dx for θ3 > 0 in
(2.19), we obtain the Inc-MM binomial link. The case (θ1, θ2) = (0,∞) corresponds to the Michaelis-Menten
equation used frequently in biology and recovers the MM-Bin link.

Mixing with the Gamma distribution, dH(x) = (x/θ4)
θ3−1 exp(−(x/θ4))/θ4Γ(θ3)dx, x ≥ 0, θ3 ∈ (0,∞), we

get the incomplete Gamma (Inc-Gamma) binomial link. Here Γ(x, θ) =
∫
∞

x
zθ−1 exp(−z) dz is the incomplete

Gamma function. The case (θ1, θ2) = (0,∞) recovers the Gamma binomial link.

Displayed in Fig. 1 are the two-parameter probability curves with a typical litter size of 13. In each panel,
all five distributions share a common response probability p and intra-litter correlation φ. The choices of
(p, φ) are typical of those in toxicological experiments, corresponding to cases of low, medium and high
dose levels. From these plots, we observe the following phenomena. (1) The curves of the Gamma- and
Beta-binomials are similar with a slight difference in the situation where the response probability p and
intra-litter correlation φ are small. The Beta-binomial places a little bit more probability mass at zero than
the Gamma-binomial. This phenomenon explains why the Beta-binomial underestimates the probability of
affected-litters in the E2 data, see Section 6 for more discussion. (2) The P-power and Q-power, proposed
by Kuk [19], are not very suitable for modeling the situations where there are high response probabilities
and strong correlations, because they either put a bit too much probability mass at the extreme 0 or at the
extreme 13. (3) The Incomplete-A binomial link seems to have a very flexible shape. The Inc-A binomial
probability curves are close to (half) bell-shaped in all cases, especially for p = 0.5 and φ = 0.5, which is the
typical situation in toxicological experiments at high dose levels.

4. Linear combinations, Products and Composites

In this section, we demonstrate that the family of parsimonious distributions is closed under convex linear
combinations, products and composites of CM links. As an application, we show the complete monotonicity of
the links in Tables I and II. We now give a useful theorem, of which the first two results are the consequences
of Criteria 1, 2 of Feller [25] (page 441), and the third is from Widder [29].

Theorem 4. (LP) If ϕ,ψ are CM, then the convex linear combination αϕ+ (1− α)ψ for α ∈ [0, 1] and the
product ϕψ are also CM.
(C.I) If h is CM and ψ is a positive function with a CM derivative, then the composite h(ψ) of h and ψ is
CM.
(C.II) If h is CM and ϕ is absolutely monotone, then the composite ϕ(h) of ϕ and h is CM.

The following remark gives several useful functions, which satisfy Theorem 4 (C.I) and (C.II).

Remark 2. (1)The logarithm function ψ1(t; θ) = θ log(1 + t) with θ > 0, the power function ψ2(t; ν) = tν

with 0 ≤ ν ≤ 1, and ψ3(t) = 1 − exp(−t) are positive with CM derivatives.
(2) The positive polynomial ϕ1(t; θ) = θ1 + θ2t+ ...+ θkt

k for θ = (θ1, ..., θk)⊤ ∈ [0,∞)k and the exponential
function ϕ2(t; θ) = θt with θ > 1 are absolutely monotone.

Applying Theorem 4 (C.I) and (C.II) to the existing CM links, we can obtain numerous new CM links.
For example, the composite of hs(s) = exp(−s) and ψ2(t; θ) = tθ yields the CM link, which is called the
positive stable link, see Joe [8]. The composite of the logarithm ln(1 + t) and the Gamma-Bin link gives the
Gamma-Log-Bin link. Moreover, additional parameters can be introduced via the two types of composite of
CM links. The composite of the power tν and the independence binomial link h(t) = pt gives the P-power
link of Kuk [19]. The following remark applies to each link in Tables I and II.

Remark 3. If t in Tables I and II is replaced with the logarithm function ln(1+t) or power function tν , then
the resulting links are still CM and referred to as XX-Log-Bin links and XX-Power-Bin links respectively,
where XX is the name of the mixing distribution such as Gamma, Poisson, etc.
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Figure 1. Probability curves under a common response probability p and intralitter correlation φ.
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Moments and Correlations. There are convenient formulas for the means and variances of the
parsimonious exchangeable binomials.

Theorem 5. Suppose that g,h are two CM links. Then we have the following.
(1) The mgf of EB(h) is Mh(t) =

∑n
k=0(−1)k

(
n
k

)
hk(θ)(1− et)k. Hence, the mean is µ1,h = mh1(θ) and the

variance is σ2
h = m(h1(θ) − h2(θ)) +m2(h2(θ) − h2

1(θ)).
(2) The mgf of EB(α1g + α2h) is M(t) = α1Mg(t) + α2Mh(t), where α1, α2 ∈ [0, 1], α1 + α2 = 1. Hence,
the first and second moments are µ1 = α1µ1,g + α2µ1,h and µ2 = α1µ2,g + α2µ2,h.

The Range of the Correlation. The kth order correlation φk of the exchangeable binary random
variables B1, ..., Bm is an important quantity which was mentioned in Theorem 2.2 of George and Bowman
[3]. The second order correlation of the EB(θ;h) model is

φ(θ) = φ2(θ) = (h2(θ) − h2
1(θ))/(h1(θ) − h2

1(θ)), θ ∈ Θ. (4.25)

This is useful, for example, to test exchangeability. Specifically, φ(θ) = 0, if and only if, the sequence B1, B2, ...
is independent and identically distributed, see the simulation in Section 6. It is easily calculated that the
ranges of the correlation φ(θ) for Kuk’s power family, the MM-power-Bin, the Gamma-power-binomial, and
the A-power binomial are [0, 1], which is the full range of the correlation for an exchangeable binary sequence.
A parsimonious distribution with a full range [0, 1] can fit any possible correlation considered. The range of
correlation φ(θ1, θ2, 1) for the Gamma-power binomial is only [0, 1/2]. This corresponds to the Gamma link
normalized at t0 = 0 in Remark 1. If the Gamma link is normalized at t0 = 1 in Remark 1, then the range
of the correlation φ(θ1, θ2, 1) reduces to [0, 1/3].

5. Regression and Parameter Estimation

Suppose now that for a given litter size M , we have observation Y from an EB(θ,M ;h) distribution,
associated with a covariate X. Typically X is a vector of factors such as dose, weight, etc., whereas M is
often considered to be a random number such as in toxicity data, see Zhu, et al. [30]. In the simulation
study in the next section, we treat M as a random number. Let (Yi,Mi,Xi), i = 1, ..., n be independent
observations of (Y,M,X). We write θ as (θ, ϑ), where θ ∈ R is a parameter of interest, while ϑ is treated
as a nuisance parameter. Allowing θ to depend on the linear systematic part η = β⊤X gives θ = η, where
β ∈ B is a regression parameter for some nonempty open B. A common and equivalent expression is

λj = hj(β
⊤X;ϑ), j = 0, 1, ...,M.

These equations suggest two extensions of the proposed modeling from generalized linear models, namely,
the exchangeable binomials generalize the binomial and the completely monotonic links generalize the usual
Logistic, Probit or Log-Log links.

Relation to the Logistic Regression. By Theorem 2, the binomial model is a special case of the
proposed incomplete exchangeable binomial model. Thus, regression under the proposed model simplifies
to logistic regression via equality θ1 = θ2 when data are from binomial model. This property is useful in
modeling. We can always fit a dataset with the proposed incomplete exchangeable binomials. If the dataset
corresponds to independent binary responses (i.e., the binomial model), then the estimates of the parameters

θ̂1, θ̂2 of θ1, θ2 should be very close θ̂1 ≈ θ̂2, so that the fitted model is simplified to a logistic model. Our
simulations and applications in Section 6 validate this fact. Another approach is to make use of the convex
linear combination. A sample of independent binary responses should yield an estimator of the α that is
close to zero.

Estimation and the Exponential Technique. Parameter estimation is based upon maximum
likelihood. The usual MLE’s of parameters are the solutions of score equations and the numerical solutions
are found via the Newton-Raphson iteration. Under regularity assumptions, we have asymptotic normality
of the MLE’s, in particular, the asymptotic covariance matrix, which is used to calculate the standard errors
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of the MLE’s. Note that with CM links h(θ), the complicated complete monotonicity constraints on the high
dimensional parameter λ = (λ1, ..., λm) is reduced to simple box constraints. For example, the parameter θ
must be inside (0,∞] or (0, 1). For regression η = β⊤X, the box constraint requires the parameter β to be
linearly constrained. The usual procedure does not give an efficient method to control the linear constraint.
One way to find a constrained MLE is to use the subroutines such as nlpnra in SAS or constrOptim in R.
The standard errors of the parameters are obtained by inverting the Hessian matrix. Another method for
handling the constraints is to apply the following Exponential Technique. First, replace η with exp(η), then
the constrained maximization is simplified to an unconstrained one. Then the usual MLE procedure may
apply. This is a straightforward application of Remark 2 in Theorem 4. Interestingly, the MM link applied
with this exponential technique and normalized at t0 = 1 in Remark 1 gives the commonly used logistic link
used in generalized linear models.

Criteria for Model Comparison. We use the well-known Akaike and Bayesian information criteria
(AIC and BIC) for model comparison. Recall

AIC = −2 log L + 2 ∗ npr, BIC = −2 log L + npr ∗ log(nobs),

where npr and nobs are the number of parameters and number of observations respectively. Both criteria
reward goodness of fit and penalize the increasing number of parameters. The penalty discourages over-fitting
of the model. Although the BIC has a heavier penalty than AIC, the preferred model is the one with the
lowest AIC or BIC value. We also look at the response probability p and the affected-litter probability q.
Models where expected probabilities are closer to observed probabilities are preferred.

Model Selection. The Laplace transforms (including moment generating functions and characteristic
functions) together with convex linear combinations, products, and composites provide a vast family of
parsimonious parametric binomial mixtures, furnishing various choices and great flexibility for statistical
inference such as model fitting and regression. From a practitioner’s point of view, it is always helpful to
have some guidelines on how to obtain the best possible model from a family of distributions. Here we suggest
a procedure, referred to as the Forward Model Selection procedure. We borrow the idea from the forward
variable selection procedure commonly used in multiple linear regression. However, in our forward model
selection procedure, increasing the complexity of the model means increasing the number of parameters
rather than increasing the number of covariates.

We start from simple one-parameter links such as MM, MM-log, one-parameter Gamma, one-parameter
Gamma-log-bin, Poisson-log, and positive stable links. According to the criteria such as AIC or BIC, the best
two or three models are then selected. Next, consider two-parameter models which must include the previously
selected models as sub-models. At this step, we may look at models resulting from linear combinations, power
composites, and nonnegative polynomial composites of the previous selected links. We test the significance
between the large and reduced model by the asymptotic likelihood ratio test (LRT). If the hypothesis is
rejected, then more parameters are added to the models and the significance of additional parameters is
tested until the hypothesis is accepted or the model reaches four parameters. A model with more than four
parameters is of no practical interest due to its complexity. Using this procedure, we may find an optimal
model with considerably less computing time than the procedure that tries all possible models. The whole
procedure is easy to implement. The R codes of a relatively complete list of link functions are available at
the website http://www.olemiss.edu/∼xdang.

6. Simulations and Applications

In this section, we present a small simulation and a comprehensive study of the applications of the proposed
framework to the 2, 4, 5-T and E2 data. We fit the E2 data with various parsimonious EB distributions and
compare the results with existing models from the literature. We also conduct a regression analysis on the
2, 4, 5-T data based upon a variety of the parsimonious EB models and compare the results with existing
models.
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A Small Simulation. We conduct a small simulation to validate the inclusion of the binomial as a
special case of the parsimonious incomplete EB. Namely, given the cluster size m, if the observations are
resulted from independent binary responses (i.e., the binomial), then the incomplete EB will degenerate to
the binomial through the equality θ1 = θ2 in the EB model. To mimic the real situation of unequal cluster
sizes as in the CD1 mice data (see below), we first generate a cluster size M from a typical range, [5, 15],
of litter size. In fact, it is useful both in theory and application to treat litter size M as random, see, e.g.,
Stefanescu and Turnbull [21], Xu and Prorok [22], and Zhu, et al. [30]. Given M , we generate a sample of size
400 from the binomial with parameters p = 0.1 andM . Here we choose a small p = 0.1 because the estimation
for small p may become difficult. We calculate the MLE’s of the parameters (θ1, θ1) in the incomplete A-,

Beta- and Gamma-binomials. They are (θ̂1, θ̂2) = (0.0940, 0.0940), (0.0940, 0.0940), and (0.0941, 0.0944),

respectively, all exhibiting θ̂1 ≈ θ̂2. Moreover, they all have the same maximized log likelihood −488.69, the
same estimate 0.094 of the true probability (i.e. 0.1) from h1(θ), and the same estimate φ̂ ≈ 0 of the second
order correlation. These, again, indicate that the data are from the binomial model.

Table III. Fitting the E2 Data. The observed values of (p, q) = (0.110, 0.640).

Models (npr) p̂(s.d.) φ̂(s.d.) q̂ −2logL AIC BIC
Bin (1) 0.113(.006) 0.000 765.6 767.6 767.9
Correlated Bin (2) 0.131(.010) 0.073(.012) 720.5 724.5 731.2
Beta-Bin (2) 0.112(.009) 0.101(.017) 0.612 689.8 693.8 700.5
Two Bin (3) 0.111 0.114 682.4 688.4 698.5
Three Bin (5) 0.121 0.101 679.7 689.7 706.5
Beta-Bin with Bin (4) 0.135 0.189 680.2 688.2 701.6
Kuk’s Q-power (2) 0.119 0.209 0.648 687.1 691.1 697.8
Kuk’s P-power (2) 0.109 0.080 0.595 698.8 702.8 709.5
Gamma-Bin with θ2 = 1(1) 0.118(.0015) 0.191(.0009) 0.543 697.8 699.8 700.1
Gamma-Bin (2) 0.110(.0087) 0.093(.0181) 0.619 679.9 683.9 684.5
Inc. Gamma-Bin (4) 0.109(.0118) 0.101(.0301) 0.633 675.2 683.2 696.6
Piecewise-Flogit (1) 0.111(.0154) 0.112(.0362) 0.601 680.8 682.8 683.1
Piecewise-Flogit Power (2) 0.111(.0175) 0.112(.0411) 0.601 680.8 684.8 691.5
Inc. Beta-Bin (4) 0.110(.0055) 0.102(.0384) 0.632 676.4 684.4 697.8
Inc. A-Bin (2) 0.115(.0085) 0.096(.0172) 0.624 681.6 685.6 692.3

The estimated response probability p̂, intra-litter correction φ̂, probability q̂ of affected litters, along with negative twice log-
likelihood, AIC and BIC. The upper, middle, and lower table are from Brooks et al. [24] and Brooks [31], Kuk [19], and the
proposed framework, respectively. The standard errors are included in parentheses as they are available. The optimal models
are in bold.

Fitting the E2 Data. The E2 data (Brooks et al. [24]) records fetal control mortality in mouse litters.
There are 211 litters in total with litter sizes varying from as small as 3 to as large as 19, with mean litter
size of 12.9 and a standard deviation of 2.68. The proportion of dead fetuses is 0.110. Among the 211 litters,
there are 135 litters which have at least one fatal fetus.

We now fit the data and select an optimal model by the proposed forward model selection procedure. We
start with one-parameter models. The two-parameter Gamma-binomial link with θ2 = 1 and the Piecewise
Flogit link are the best two chosen by the principle of maximum log-likelihood. These two models fit the
data well in terms of the response probability, but the estimates of the intra-correlation are quite different.
The intra-correlation for the Gamma-binomial is 0.191, whereas the Piecewise Flogit model is 0.112. It seems
that it is very difficult to assess which model is more accurate since we do not know the true value of φ, as
the observed value of φ is difficult to obtain from the data. This raises the concern that too simple models
may not have additional parameters to flexibly model the correlation structure. This phenomenon was also
pointed out by Kuk [19].
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Next, we consider larger models which include the previously selected two models as sub-models. The
composite of the Piecewise Flogit with the power function yields the Piecewise Flogit Power link (specifically,
replace t in (2.11) with tν). The additional parameter ν, however, turns out to be 1 with the p-value close
to 1. This is a strong indication in favor of the reduced model. The results for the two-parameter Gamma-
binomial model are significantly different from the one-parameter Gamma-binomial model as indicated by
the p-value 0.00002 of the maximized log-likelihood ratio test. In Table III, we observe that there are not
only reductions in the values of the negative twice maximized log-likelihood, the AIC and BIC from the
two-parameter Gamma-Binomial model to the one-parameter Gamma-Binomial model, the two-parameter
Gamma-Binomial model also improves the estimates of the probability of affected litters over the one-
parameter Gamma-Binomial model, namely from q̂ = 0.543 of the latter to q̂ = 0.619 of the former in
estimating the observed q = 0.640.

We continue to consider larger models by including more parameters in the previously selected models.
Two additional parameters in the incomplete Gamma-binomial slightly reduces the values of the negative
twice maximized log-likelihood and the AIC from 679.9 and 683.9 of the Gamma-binomial to 675.2 and 683.2,
respectively, of the incomplete Gamma-binomial, whereas the value of the BIC is increased from 684.5 of
the Gamma-Bin to 696.6 of the incomplete Gamma-Bin. The p-value of the LRT is 0.095. All these indicate
no strong evidence to differentiate the incomplete Gamma-Binomial from the simpler complete Gamma-
Binomial. Thus the forward model selection procedure ends with three models: the Piecewise Flogit, the
Gamma-binomial, and the incomplete Gamma-binomial, selected by the criteria of AIC, BIC and -2 log L.
It is interesting to observe that the selected three models are related to the Gamma distribution.

As Zhu, et al. [30] pointed out, one of several respects unique in toxicity data is that the number M of
fetuses per litter is random. Another quantity of interest related the probability (2.6) of affected litters is the
number L of affected litters, which is also random. Under the “interpretability” assumption (see Stefanescu
and Turnbull [21]), the conditional expectation of L given M = m is

E(L|M = m) = L(m)q(m),

where q(m) is the conditional probability q in (2.6) of affected litters given M = m, and L(m) is the number
of affected litters among the litters with size m. Thus, the expected value of affected litters is

E(L) = E(L(M)q(M)) =
∑

m

L(m)q(m) =
∑

m

L(m)

[
1 −

m∑

k=0

(−1)k

(
m

k

)
λk

]
, (6.26)

where the summation runs over all possible values of m, and λk’s are the marginal probabilities. In the
E2 data, m ranges from 3 to 19. The observed overall probability of affected litters is the proportion of
the observed expected number of affected litters to the total number, 211, of the litters. This proportion
in the E2 data is q = 0.640. Unlike the response probability and second order correlation coefficient,
which are determined by λ1 and λ2 only, the probability of affected litters involves all the marginal
probabilities λ1,...,λm. Among all the models, the incomplete Gamma-Binomial model yields the closest
estimate, q̂ = 0.633, of the probability of affected litters. The estimate of the probability of affected litters
by the Piecewise Flogit model is 0.601, which underestimates the observed value of 0.640. This is perhaps
due to the fact that too simple models may not have enough flexibility to fit all the λi’s. Therefore, our
final preferred model is the Gamma-binomial type models, the Gamma-binomial and incomplete Gamma-
binomial, see Table III.

For comparison with the Beta-binomial model used by Brooks et al. [24] and Brooks [31], we have included
in Table III the incomplete Beta-binomial model, even though it is not selected by the forward model selection
procedure. Also included in Table III is the incomplete A-binomial for comparison with other incomplete
models. The additional two parameters in the incomplete Beta-binomial give more modeling flexibility than
the Beta-binomial. The negative twice maximized log-likelihood of the incomplete Beta-binomial is 676.4,
which is smaller than the negative twice maximized log-likelihood 689.8 of the Beta-binomial. The p-value
of the likelihood ratio test comparing the two models is 0.001, indicating the significance of the additional
two parameters. Even though the Beta-binomial and incomplete Beta-binomial yield similar estimates of
the fetal probability and intra-litter correlation, the incomplete Beta-binomial provides a better estimate
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Table IV. Summary of the CD1 Data.

Dose Litters(n) Implants(n) Littersize(avg) Littersize(std) Malfs(n) Malf(prop)
0 73 777 10.64 2.69 59 0.076

30 87 952 10.94 2.88 124 0.130
45 98 1124 11.47 2.93 338 0.301
60 76 806 10.61 2.99 390 0.484
75 44 482 10.95 2.23 372 0.772

of the probability of affected litters. Indeed, the incomplete Beta-binomial gives the estimate, 133.1, of the
expected number of affected litters, which agrees with the observed number, 135, of affected litters, whereas
the Beta-binomial underestimates this quantity with 129.1, out of a total 211 litters. One reason, as pointed
by Kuk [19], is due to the fact that the Beta-binomial overestimates the probability that none of litter mates
is affected and hence underestimates the number of the litters affected. The additional parameters in the
incomplete Beta-binomial provide more fitting flexibility and mitigate the problems of the Beta-binomial.
Another possible reason is that the fetal probability and intra-litter correlation are determined by up to two
marginal moments (i.e. λ1, λ2), whereas the expected number calculated by (6.26) of affected litters involves
all the marginal moments λi’s. It should be noted that among all the incomplete links, the incomplete A-link
is appealing because of its model simplicity, i.e., fewer number of parameters.

Reported in Table III are the MLE’s of the marginal response probability p, the intra-litter correlation
φ, the probability q of affected litters, -2*log-likelihood, AIC and BIC, along with the standard errors of p̂
and φ̂. The standard errors are computed by the Delta method based on the asymptotic normality of the
MLE. Comparing the results with Brook’s and Kuk’s models, all the proposed models adequately fit the
data in terms of the values of the likelihoods, AIC and BIC as well as the matching of the estimated response
probabilities with the observed ones. Note, however, that both Brook’s and Kuk’s models are special cases
of our proposed parsimonious EB’s.

Regression Analysis on the CD1 Data. We now apply the proposed regression procedure to analyze
a real dataset from a developmental toxicology study conducted at the National Center for Toxicological
Research. The study involves replicate experiments with 9 strains of female mice exposed to the herbicide
2,4,5-Trichlorophenoxyacetic acid. We use the data for the CD1 mice, which was analyzed by many authors,
e.g., George and Bowman [3] and Kuk [19]. As Gaylor and Razzaghi [32] point out, the classical approach
to bioassay presents a particular problem. The investigator in an animal study is usually interested in the
results for low doses, where typical human exposure occurs. In a bioassay, though, there will be few responses
in the treatment groups given low doses of the toxin. Thus, the parameter estimation for the dose-response
curve is greatly affected by what happens at the high doses. However, two different distributions that fit
the observed data adequately at the high doses may give very different estimates at the lower end of the
curve. Furthermore, many animals are unnecessarily sacrificed at high doses, where response rates are high.
This raises the question of animal allocation. Thus, we shall focus on the dose levels 0, 30, 45, 60, and 75
(mg/kg/day), excluding the high dose level 90 at which more than 95% of the fetuses were malformed. Table
IV reports a summary of the CD1 data.

We shall follow the proposed forward model selection procedure to select possible optimal models. Starting
from one-parameter links, we model parameter θ to linearly depend upon dose level D, i.e., θ = α+βD, where
α, β are regression parameters. Among the one-parameter links, by the criterion of maximal log-likelihood,
we select the Gamma-binomial link (1 + θ2t)

−θ1 and Gamma-log-binomial link (1 + θ2 ln(1 + t))−θ1 , both
with θ2 = 1, denoted by Link1 and Link2, respectively in Tables V and VI.

The Gamma-type models outperform others in modeling this data. This is also confirmed by the stronger
linearity demonstrated in the curves of the inverse link function of the observed probability of malformations
versus dose levels in the left panel of Fig. 2. Each one-parameter link evaluated at j = 1 gives an estimate
of the response probability p, namely, p = λ1 = h1(α + βD), so that α + βD = g(p), where g = h−1

1 is the
inverse link. The left panel in Fig. 2 can be used to check the linearity assumption of the parameter θ on
dose D. Here we look at four one-parameter models. From the curves, we observe that the linearity in the
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Figure 2. Left panel: The curves of the inverse links of the observed probability of malformations versus dose
levels for the CD1 data. Stronger linearity of the Gamma link than the MM link may serve as an indicator of its
better suitability. Right panel: The probability curves of malformations versus dose levels under different models
for the CD1 data. The curve of the proposed model closely matches the curve of the observed and outperforms
the others except a slight overestimation at dose level 30 mg/kg/day.

MM link is the weakest. The strongest linearity is demonstrated by the Gamma-binomial, followed by the
Gamma-log-binomial. The latter two models are the ones selected by the AIC or BIC.

Next, we consider larger models, Link3=(1+θ2t)
−θ1 , Link4=(1+θ2 ln(1+t))−θ1 , and the linear combination

of Link1 and Link2, a*Link1+(1-a)*Link2 with 0 ≤ a ≤ 1. They, of course, include the previous Link1 or
Link2 as sub-models. We test the null hypothesis θ2 = 1 in Link3 and Link4 by the LRT and find that θ2
is not significant in Link3 but significant in Link4 at an extremely high significant level p value ≈ 0. The
MLE of a is â = 0.678 with a standard error of 0.043. This value is not near 0 or 1, indicating a significant
difference between the large and reduced models. Again, this significance is also confirmed by the LRT.

The linear combination of Link3 and Link4 includes Link3 and Link4 as sub-models with an extra
parameter, a, and also reduces to the linear combination of Link1 and Link2 with additional parameter,
θ2 = 1. The MLE’s are θ̂2 = 0.491(0.062) and â = 0.443(0.033). The maximized log-likelihood of the large
model increases to −719.3. The LRT’s have a significance level of 0.007 for θ2 and reject a = 0 and a = 1 at the
p-values ≈ 0, respectively. The procedure is terminated at this step due to model complexity. By the forward
model selection procedure, we now conclude that the possible optimal link is the linear combination of the
Gamma-binomial and Gamma-log-binomial links. From Table VI and the right panel of Fig. 2, we observe
that the estimates from the proposed optimal model closely matches the observed values and outperforms
the others except a slight overestimation at dose level 30 mg/kg/day.

In addition to the linear combinations, we also suggest examining the product, since it sometimes yields
a better fit without introducing new parameters. In this case, we cannot directly use the LRT for model
comparison because they are not nested. But other criteria are possible, for example, the sum of the absolute
differences between the estimated and observed number of malformations, or the square root of the sum
of the squared differences, which will be introduced below. The product model of Link3 and Link4 is not
significantly different from the product of Link1 and Link2 by the LRT. These models together with the
modified (piecewise) folded logistic link are reported in Table V. We include the modified folded logistic here
not just for illustration but for its simplicity and relatively good behavior in fitting the data, even though it
neither constitutes nested-relation with other models nor is chosen by the criteria.

We now compare our proposed models with the existing ones: the binomial, the Beta-binomial, the
GEE approach, Williams’s procedure and Kuk’s power family. Reported in Table V are the MLE’s of the

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
Prepared using simauth.cls



18 X. DANG, S.L. KEETON AND H. PENG

Table V. The Estimates Under Various Models for the CD1 Data.

Model (npr) α(s.d.) β(s.d.) -2logL χ2 AIC BIC
Binomial (2) -3.235(.113) 5.430(.217) 2295.0 1514.2 2298.9 2306.8
Beta-Bin (4) 0.433(.081) 3.788(.194)

0.503(.064) -4.786(.118) 1464.8 336.43 1472.8 1488.5
GEE(Logit, Ex) (3) -3.323(.205) 5.580(.438) 411.43
Williams’ (3) -3.237(.231) 5.587(.442) 370.87
Kuk’s Q-power (3) 0.884(.071) -0.525(.115) 1459.6 298.95 1465.6 1471.3
Link1 (2) 3.838(.174) -4.712(.265) 1460.8 372.22 1464.8 1472.7
Link2 (2) 4.633(.259) -5.447(.411) 1472.2 247.64 1476.2 1484.1
Link3 (3) 3.340(.161) -4.082(.243) 1458.9 343.81 1464.9 1476.7
Link4 (3) 15.03(.759) -18.16(1.16) 1450.1 312.63 1456.1 1467.9
aLink1+(1 − a)Link2 (3) 4.116(.203) -4.975(.315) 1445.8 310.53 1451.8 1463.6
aLink3+(1 − a)Link4 (4) 7.884(.640) -9.571(.878) 1438.6 338.84 1446.6 1462.3
Link1*Link2 (2) 2.119(.105) -2.568(.161) 1459.4 309.66 1463.4 1471.3
Link3*Link4 (3) 2.404(.062) -2.927(.292) 1458.4 326.75 1464.5 1476.2
Piecewise-Flogit (2) 6.792(.265) -8.441(.393) 1501.8 510.81 1505.8 1513.7

Link1: (1 + j)−θ1 , Link2: (1 + ln(1 + j))−θ1 ,
Link3: (1 + θ2j)−θ1 (Gamma-Bin), Link4: (1 + θ2 ln(1 + j))−θ1 (Gamma-log-Bin).

Table VI. The Expected Number of Malformations of the CD1 Data.
di: difference of the expected & observed number of malformations in the ith dose group.

Dose level (mg/kg)

Models 0 30 45 60 75
∑ |di|

√∑
d2

i

Observed 59 124 338 390 372
Binomial (Logit) 29 159 351 408 336 132 62.56
Beta-binomial 80 189 323 359 387 147 77.96
GEE (Logit,ex) 27 154 346 408 339 121 58.32
Williams’ 27 153 345 408 339 119 57.68
Kuk’s Q-power 90 260 396 347 246 394 201.36
Link1 54 177 342 400 390 90 57.22
Link2 68 196 356 393 361 113 75.62
Link3 56 180 344 400 387 90 59.21
Link4 58 183 345 396 378 79 60.02
aLink1+(1 − a)Link2 59 182 342 393 377 70 58.43
aLink3+(1 − a)Link4 58 179 339 391 379 65 55.47
Link1*Link2 59 184 347 398 381 86 61.85
Link3*Link4 57 182 345 399 384 88 60.35
Piecewise-Flogit 50 169 333 400 405 102 57.61

Link1: (1 + j)−θ1 , Link2: (1 + ln(1 + j))−θ1 ,
Link3: (1 + θ2j)−θ1 (Gamma-Bin), Link4: (1 + θ2 ln(1 + j))−θ1 (Gamma-log-Bin).

parameters under various models: the Pearson χ2, the AIC and BIC for the goodness of fit and model

comparison. The Pearson χ2 statistic, defined as χ2 =
∑n

i=1(Yi − Ŷi)
2/V̂ar(Ŷi), is asymptotically distributed

as a Chisquare χ2(n− p), under mild regularity assumptions, where p is the number of fitted parameters.

The binomial model is a poor fit because it completely ignores the intra-litter correlation. The Pearson
χ2 value of the binomial model is 1514.2 in Table V, which is much greater than its expected value 376.
This indicates strong evidence of overdispersion in this data. The Beta-binomial model assumes, in each dose
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group, that the probability of malformation has a Beta binomial distribution with parameter θ1, θ2, which
are modeled as

θ1 = α1 + α2D, θ2 = β1 + β2D.

The MLE’s of α1, α2, β1, β2 constrained on θ1, θ2 > 0 are reported in Table V. For the GEE approach,
we use the R package geepack. We specify the logistic link on the mean response, and the correlation
structure as “exchangeable”. The estimate of the intra-litter correlation is 0.2647 with a standard deviation
of 0.1166. Williams [16] presented an iterative algorithm to estimate the extra-binomial variation, φ, which
was incorporated into the reweighed least squares procedure. Here we use the software Arc developed by
Cook and Weisberg [33] to get the results of Williams’ procedure. The overdispersion parameter in Williams’
procedure is 0.2997 with a standard deviation of 0.1231. It was estimated by equating the Pearson χ2 to its
degrees of freedom, so that the goodness of fit statistic in Williams’ procedure is no longer informative. As
anticipated, the GEE and Williams’ procedures produce similar results because both only model the first two
moments. With Kuk’s Q-power model, we directly model q = α+ βD, and treat ν as a nuisance parameter.
The MLE of ν is ν̂ = 0.608 with a standard deviation of 0.022 and the MLEs α̂, β̂ of α, β are reported
in Table V. Although Kuk’s Q-power can achieve a relatively high likelihood, it gives a poor estimate to
the number of malformations in each dose level; a severe over-estimation occurs at dose level 30 mg/kg
and a under-prediction at dose level 75 mg/kg. In this example, we have found that the AIC and BIC are
sometimes not reliable for model comparison. The AIC and BIC criteria should be used in conjunction with
other criteria.

We use two other criteria to assess the models. Both criteria consider overall discrepancy between the
estimated and observed numbers of malformations. The first is the sum of the absolute differences between
the estimated and observed numbers of malformations across all dose groups. From Table VI, we can see
that most results under the proposed models have superior estimates to the binomial, the Beta-binomial, the
GEE and Williams’ procedures. The second criterion is the square root of the sum of squared differences. The
proposed models still exhibit competitive performance among the existing models. In particular, the model
resulting from the linear combination of the Gamma-Bin and Gamma-log-Bin links, chosen by the forward
model selection procedure, demonstrates the best performance by the two criteria, the AIC and BIC.

7. Concluding Remarks

In this article, we have proposed a general approach to analyze exchangeable binary response data. First,
the proposed approach can be used to model correlated and over-dispersed binary response data. Our
viewpoint is based upon the relationships among infinite exchangeability, finite exchangeability, complete
monotonicity and binomial mixtures. Second, our approach unifies existing models including the binomial,
the beta-binomial, Kuk’s power family, Brook’s correlated binomial, random effects models, and others.
Our approach provides methods for finding new models either from existing Laplace transforms, moment
generating functions and characteristic functions, or from existing completely monotonic links via linear
combinations, products or composites. The incomplete parsimonious exchangeable binomials are new and
have demonstrated great modeling capability. Third, we have presented and demonstrated, with real data,
a forward model selection procedure, which may serve as a guideline to practitioners for building a possible
optimal model. Last, we have applied the proposed framework to two real datasets from developmental
toxicology and compared the results with commonly used procedures. Our proposed models exhibit great
modeling flexibility and superior performance, the Gamma-type models have particularly demonstrated well.
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Appendix: Technical Details

Here we collect some technical details. We first give the following proposition.
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Proposition 1. The folded logistic link (2.10) is completely monotone on 0 < θ ≤ 1 and not completely
monotone on θ > 1. The piecewise folded logistic link (2.11) is completely monotone on θ > 0.

Proof. Clearly for θ = 1, the folded logistic link is completely monotone. Suppose 0 < θ < 1. Then
ψ(t) = tθ is a positive function and its derivative ψ′(t) = θtθ−1 is obviously completely monotone. Let
h(t) = 1/(1 + t). Then h is completely monotone. From Theorem 4 (C.I) it follows that the composite
h(ψ(t + 1)) = 1/(1 + (t + 1)θ) is completely monotone. This shows that the folded logistic link is CM on
0 < θ ≤ 1. This also shows the complete monotonicity of the piecewise folded logistic link (2.11) on 0 < θ ≤ 1,
whereas on θ > 1, the link is the Gamma-binomial link. Suppose now θ > 1. By the Taylor expansion, we
have

hθ(t) = t−θ(1 + t−θ)−1 =

∞∑

k=1

(−1)k−1t−kθ, t ≥ 2, θ > 0.

Then (−1)nh
(n)
θ (t) =

∑
∞

k=1(−1)k−1an,k(t, θ), where an,k = (kθ)(kθ + 1)...(kθ + n − 1)t−kθ−n. Since
(kθ+ j)/((k+1)θ+ j) is decreasing in θ, it follows that for θ ≥ 1 and arbitrarily fixed t ≥ 0 and every k ≥ 1,

an,k(t, θ)

an,k+1(t, θ)
=

kθ

(k + 1)θ
· kθ + 1

(k + 1)θ + 1
· · · kθ + n− 1

(k + 1)θ + n− 1
tθ

≤ k

k + 1
· k + 1

k + 2
· · · k + n− 1

k + n
tθ =

k

k + n
tθ → 0, n→ ∞.

Thus (−1)nh
(n)
θ (t) < 0 for large n. This shows that the folded logistic link is not completely monotone on

θ > 1 and the proof is complete. 2

Proof of Theorem 3(1)–(4). Set dQθ(p) = 1[θ1, θ2]/h̄t0(θ)dQϑ(p) with θ = (θ1, θ2, ϑ) ∈ [0, 1]2 × Θ.

Then this determines a probability measure on [0, 1] and rewrites (2.18) as h̄(t; θ) =
∫ 1

0
pt dQθ(p) for

θ ∈ Θ. Note that the distribution Qθ is uniquely determined by the infinite completely monotonic sequence
h = {hk(θ), k = 1, 2, ...}. By Kendall [2], there exists a sequence of exchangeable events A1, A2, ... such
that h̄(k; θ) = Pθ(Ar1

∩ Ar2
... ∩ Ark

) and Pθ(Ar1
∩ Ar2

... ∩ Ark
|p) = pk almost surely, where p ∼ Gθ. Here

r1, ..., rk are different. Let B̃i = 1[Ai] be the indicator function of set Ai and Ỹm = B̃1 + ... + B̃m. Then
the distribution of Ỹm is given by (2.7), so that Ỹm and Ym have the same distribution. Abusing notation
to write B̃i = Bi, we obtain a stochastic representation Ym = B1 + ...+Bm, where B1, B2, ... is the infinite
sequence of exchangeable binary random variables given in the early part of Section 2. Further, conditional
on p ∼ Gθ, B1, ..., Bm are independent and have a common Bernoulli distribution with probability p of
success. Accordingly,

P(Ym = y|p) =

(
m

y

)
py(1 − py)m−y, y = 0, 1, ...,m, a.s.

The rest of the proof is straightforward verification analogous to Srivastava and Wu [34] except (5) which is
proved below. 2

Proof of Theorem 3 (5)(Asymptotic Distribution of the Mean Ym/m). By the de Finetti theorem,
we find the moment generating function of Ym/m,

MYm/m(t) =

∫ 1

0

(pet/m + 1 − p)m dQθ(p) →
∫ 1

0

ept dQθ(p) ≡MQθ
(t), say,

where, to claim the limit, we used the Taylor approximation et/m = 1 + t/m + o((t/m)2) and the limit
[1 + pt/m + o((t/m)2)]m → ept as m → ∞. Note that MQθ

is the mgf of Qθ. Hence, it follows from the
continuity theorem that Ym/m converges in distribution to the mixing distribution Qθ. 2
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