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On the construction of efficient estimators in
semiparametric models

J. Forrester, W. Hooper, H. Peng, A. Schick

Summary: This paper deals with the construction of efficient estimators in semiparametric models
without the sample splitting technique. Schick (1987) gave sufficient conditions using the leave-
one-out technique for a construction without sample splitting. His conditions are stronger and more
cumbersome to verify than the necessary and sufficient conditions for the existence of efficient
estimators which suffice for the construction based on sample splitting. In this paper we use a
conditioning argument to weaken Schick’s conditions. We shall then show that in a large class
of semiparametric models and for properly chosen estimators of the score function the resulting
weaker conditions reduce to the minimal conditions for the construction with sample splitting. In
other words, in these models efficient estimators can be constructed without sample splitting under
the same conditions as those used for the construction with sample splitting. We demonstrate our re-
sults by constructing an efficient estimator using these ideas in a semiparametric additive regression
model.

1 Introduction
Bickel [2] used sample splitting techniques to give a general procedure for constructing
adaptive estimators in semiparametric models. His construction is essentially an existence
result as only a small part of the sample was used to construct the influence function. The
moderate sample behavior of his construction is not expected to be good. The sample split-
ting idea was further developed by Schick [11]. He used a symmetrization argument to give
a procedure for the construction of efficient estimators in semiparametric models using two
estimators of the efficient score function each based on about half the sample. This con-
struction works under minimal assumptions as shown by Klaassen [7] who demonstrated
that Schick’s sufficient conditions are also necessary. These conditions require the estimate
of the efficient score function to be consistent in theL2 norm and its “mean” to converge
to zero fast enough. Recently, Schick [21] has generalized the sample splitting approach to
semiparametric Markov chain models.
Schick [12] gave sufficient conditions for the construction of efficient estimates without
sample splitting. His conditions strengthen the consistency condition and impose addi-
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tional conditions that measure the influence of the individual observations on the estimator
of the efficient score function. The latter conditions which require dropping observations
from the estimator of the score function can be quite cumbersome to verify. One expects
procedures that avoid sample splitting to perform better in moderate sample sizes. This has
been substantiated by simulations. However, sample splitting has remained useful due to
the simpler conditions.
In this paper we shall use conditioning arguments to relax Schick’s [12] sufficient condi-
tions. Conditioning was already utilized by Schick [13, 14] to construct efficient estimators
in semiparametric regression models. He conditioned on the covariates to simplify the con-
ditions. Here we push this idea further and condition on transformations of the data which
are not necessarily observable anymore. We shall see that if the efficient score function is
of a certain type and its estimator is carefully selected, then the additional conditions asso-
ciated with dropping observations are automatically satisfied. We thus arrive at conditions
which are essentially those used in the constructions using sample splitting. Van der Vaart
[22] has shown that for a class of semiparametric models with a special structure efficient
estimates can be constructed without sample splitting under almost minimal conditions.
Our results improve on those of van der Vaart [22] and are applicable to a considerably
larger class of models.
We shall formulate our results more generally for the construction of estimators with a de-
sired influence function. If the desired influence function is the efficient influence function,
then our construction yields an efficient estimator. However, in some cases one might be
interested in influence functions other than the efficient one, say for robustness reasons,
and then our construction results in a robust estimator.
Let us now illustrate the idea behind our approach. At the heart of constructing efficient
estimators is the following problem. Given independent and identically distributedq-
dimensional random vectorsXn1, . . . , Xnn, provide conditions on the functionhn from
R(n+1)q into Rm that imply

Hn :=
1√
n

n∑
j=1

hn(Xnj, Xn1, . . . , Xnn) = op(1). (1.1)

In applications,hn(·, Xn1, . . . , Xnn) is the difference between the estimated and actual
score functions. Now suppose that we can write

hn(Xnj, Xn1, . . . , Xnn) =
K∑

k=1

gknj(Yknj, Zkn1, . . . , Zknn), j = 1, . . . , n,

where, for eachk, (Ykn1, Zkn1), . . . , (Yknn, Zknn) are independent random vectors of di-
mensionqk + pk andgkn1, . . . , gknn are measurable functions fromRqk × Rnpk into Rm.
Then we have

Hn = Gn1 + · · ·+GnK (1.2)

and can use the following basic lemma to treat the terms

Gnk =
1√
n

n∑
j=1

gknj(Yknj, Zkn1, . . . , Zknn).
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Basic Lemma. Let (Yn1, Zn1), . . . , (Ynn, Znn) be independent random vectors of dimen-
sion q + p and gn1, . . . , gnn be measurable functions from Rq × Rnp into Rm such that

1√
n

n∑
j=1

∫
gnj(y, Zn1, . . . , Znn)Fnj(dy) = op(1) (1.3)

and
1

n

n∑
j=1

∫
‖gnj(y, Zn1, . . . , Znn)‖2Fnj(dy) = op(1), (1.4)

where Fnj(dy) = Fn(dy | Znj) is the conditional distribution of Ynj given Znj . Then

1√
n

n∑
j=1

gnj(Ynj, Zn1, . . . , Znn) = op(1). (1.5)

Proof: Let Zn = (Zn1, . . . , Znn) andDnj = gnj(Ynj,Zn)−
∫
gnj(y,Zn)Fnj(dy). In view

of (1.3), it suffices to show that1√
n

∑n
j=1Dnj = op(1). By construction,E(DT

niDnj |
Zn) = 0 for i 6= j, so that

E(‖ 1√
n

n∑
j=1

Dnj‖2 | Zn) =
1

n

n∑
j=1

E(‖Dnj‖2 | Zn)

≤ 1

n

n∑
j=1

∫
‖gnj(y,Zn)‖2Fnj(dy) = op(1).

This gives the desired result. 2

In some applications we even have∫
gnj(y, Zn1, . . . , Znn)Fnj(dy) = 0, j = 1, . . . , n,

which, of course, implies (1.3). To obtain the representation (1.2) one needs a certain
structure for the score function and has to choose an appropriate estimator of the score
function.
Our paper is organized as follows. In Section 2 we give an overview of the various con-
structions used in the literature and present a new result which, with the aid of conditioning
arguments, relaxes the conditions given by Schick [12]. This result simplifies to the above
Basic Lemma under appropriate structural assumptions and properly chosen estimates of
the score function. In this case one no longer has to verify the conditions related to drop-
ping observations. This is addressed in Section 3, where we discuss two structures for the
score function for which this is possible. These structures contain the examples of Bickel
[2] and the class of models considered by van der Vaart [22]. In Section 4 we general-
ize these results to a more complicated but frequently occurring type of score function.
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There we need the full power of our new approach. In Section 5 we shall use these results
and construct an efficient estimator for a semiparametric additive regression model, the so
called partly linear model. The construction given there improves on various earlier con-
structions, by avoiding sample splitting and by working under minimal assumptions on the
error density. We only require this density to have finite Fisher information for location. A
preliminary estimator for the parameter of interest for this model is constructed in Section
6. There we generalize results of Zhao [23] on bandwidth-matched M-estimation for such
models. Section 7 gives a proof of Theorem 2.6, while Section 8 collects some technical
details for consistent estimation of the score function of the location model.

2 An overview of construction methods
Let (Ω,A) and(X,B) be two measurable spaces andξ1, . . . , ξn be measurable functions
from Ω into X. Furthermore, letΘ be an open subset ofRk andΓ be an arbitrary set.
For each(ϑ, γ) ∈ Θ × Γ, let Pϑ,γ be a probability measure onA for which ξ1, . . . , ξn
are independent and identically distributed with common distributionFϑ,γ, let Lϑ,γ be a
measurable function fromX into Rk such that∫

Lϑ,γ dFϑ,γ = 0 and
∫
‖Lϑ,γ‖2 dFϑ,γ <∞,

and letΛ(ϑ, γ) be ak × k matrix. Let (ϑ0, γ0) denote a fixed (but unknown) point in
Θ × Γ. To simplify notation we suppress dependence onϑ0 andγ0 whenever possible. In
particular, we setP = Pϑ0,γ0, Pϑ = Pϑ,γ0 , Fϑ = Fϑ,γ0 , Λ(ϑ) = Λ(ϑ, γ0), Lϑ = Lϑ,γ0 and
L(x, ϑ) = Lϑ(x). We writeEϑ for the expectation underPϑ. By a local sequence we mean
a sequence{ϑn} in Θ such thatn1/2(ϑn − ϑ0) is bounded.
We are interested in constructing functionstn from Xn to Rk such that the estimatorTn =
tn(ξ1, . . . , ξn) of the Euclidean parameter has influence functionΛ(ϑ0)Lϑ0 underPϑ0, i.e.,

Tn = ϑ0 +
1

n

n∑
j=1

Λ(ϑ0)L(ξj, ϑ0) + oP (n−1/2). (2.1)

We shall do so under the following additional assumptions.

Assumption 2.1 We have at our disposal an1/2-consistent estimator̃ϑn of the Euclidean
parameter, i.e.,̃ϑn = t̃n(ξ1, . . . , ξn) for some measurable functioñtn fromXn into Rk such
that

n1/2(ϑ̃n − ϑ0) = OP (1).

Moreover, this estimator isΘ-valued and discretized, i.e.,̃ϑn takes only values in the grid
{n−1/2lc : l ∈ {. . . ,−2,−1, 0, 1, 2, . . . }k} ∩Θ for some positivec.

Assumption 2.2 The sequences{F n
ϑn
} and{F n

ϑ0
} of product measures are mutually con-

tiguous for every local sequence{ϑn}.
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Assumption 2.3 The mapsϑ 7→ Λ(ϑ) andϑ 7→
∫
‖Lϑ‖2 dFϑ are continuous atϑ0.

Assumption 2.4 For every local sequence{ϑn}, we have

ϑn +
1

n

n∑
j=1

Λ(ϑn)L(ξj, ϑn) = ϑ0 +
1

n

n∑
j=1

Λ(ϑ0)L(ξj, ϑ0) + oP (n−1/2).

These assumptions are standard in the construction of efficient estimators in semiparamet-
ric models, see e.g. Bickel [2] and Schick [11, 12]. In this context,Lϑ,γ is the efficient
score function andΛ(ϑ, γ) is the inverse of the efficient information matrix

J(ϑ, γ) =

∫
Lϑ,γL

>
ϑ,γ dFϑ,γ. (2.2)

The idea of discretization goes back to Le Cam [8] and has now become a standard techni-
cal tool. Discretizedn1/2-consistent estimates can be treated as if they were non-stochastic
sequences in the proof. Combined with contiguity arguments this often leads to consider-
able simplifications in the proofs.
Under the above assumptions it suffices to construct measurable functionszn from Θ×Xn

into Rk andΛn from Θ× Xn into Rk×k, the set ofk × k matrices, such that

zn(ϑn, ξ1, . . . , ξn) =
1

n

n∑
j=1

L(ξj, ϑn) + oPϑn
(n−1/2) (2.3)

and
Λn(ϑn, ξ1, . . . , ξn) = Λ(ϑn) + oPϑn

(1) (2.4)

for every local sequence{ϑn}. As ϑ̃n is discrete andn1/2-consistent, we obtain from
Le Cam’s discretization argument thatTn defined by

Tn = ϑ̃n + Λn(ϑ̃n, ξ1, . . . , ξn)zn(ϑ̃n, ξ1, . . . , ξn)

satisfies the desired (2.1).
The requirement (2.4) can usually be established via the plug-in principle. Indeed, suppose
thatΓ is endowed with a metricδ and that(ϑ, γ) 7→ Λ(ϑ, γ) is continuous at(ϑ0, γ0), then
(2.4) holds withΛn(ϑn, ξ1, . . . , ξn) = Λ(ϑn, γ̂n) whenever̂γn = γn(ξ1, . . . , ξn) satisfies
δ(γ̂n, γ) = oPϑn

(1). In the case of efficient estimation,Λ(ϑ, γ) is the inverse ofJ(ϑ, γ)
defined in (2.2). Suppose now that

1

n

n∑
j=1

L(ξj, ϑn)L>(ξj, ϑn) = J(ϑn, γ0) + oPϑn
(1)

and that there are functionsLn from X×Θ× Xn to Rk such that

1

n

n∑
j=1

‖Ln(ξj, ϑn, ξ1, . . . , ξn)− L(ξj, ϑn)‖2 = oPϑn
(1).
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Then we have

1

n

n∑
j=1

Ln(ξj, ϑn, ξ1, . . . , ξn)L>n (ξj, ϑn, ξ1, . . . , ξn) = J(ϑn, γ0) + oPϑn
(1)

and obtain (2.4) from the continuity of matrix inversion.
The more difficult part is of course (2.3). Bickel [2] was the first to tackle this problem in
generality. Motivated by earlier work of H́ajek, he employed a sample splitting scheme in
which only a small initial part of the sample was used to estimate the score functionLϑ,γ

and the other observations were reserved for averaging this estimator. More precisely, his
zn is of the form

zn(ϑ, ξ1, . . . , ξn) =
1

n−m

n∑
j=m+1

Lm(ξj, ϑ, ξ1, . . . , ξm)

wherem increases withn in such a way thatm→∞ andm/n→ 0. Let

L̂n(x, ϑ) = Ln(x, ϑ, ξ1, . . . , ξn).

Bickel proved (2.3) under the following assumptions:∫
L̂n(x, ϑn) dFϑn(x) = 0 (B1)∫

‖L̂n(x, ϑn)− L(x, ϑn)‖2 dFϑn(x) = oPϑn
(1). (B2)

Schick [11] symmetrized the above construction. His construction calls for two estimates
of the score function each based on about half the sample and uses the corresponding other
half for averaging. More precisely, hiszn is of the form

zn(ϑ, ξ1, . . . , ξn) =
1

n

(
n1∑

j=1

Ln2(ξj, ϑ, ξn1+1, . . . , ξn) +
n∑

j=n1+1

Ln1(ξj, ϑ, ξ1, . . . , ξn1)

)

wheren1 + n2 = n andn1/n→ 1/2. He proved (2.3) under a weaker set of assumptions,
namely under (B2) and ∫

L̂n(x, ϑn) dFϑn(x) = oPϑn
(n−1/2). (S1)

It was shown by Klaassen [7] that these two conditions are also necessary.
While sample splitting works from a theoretical point of view, it is undesirable from a
practical point of view in moderate samples. Schick [12] has shown that sample splitting
can be avoided under additional assumptions. He consideredzn of the form

zn(ϑ, ξ1, . . . , ξn) =
1

n

n∑
j=1

L̂n(ξj, ϑ) (2.5)
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and proved (2.3) under (S1), under the following strengthening of (B2):

Eϑn

[ ∫
‖L̂n(x, ϑn)− L(x, ϑn)‖2 dFϑn(x)

]
= o(1), (S2)

and under the following two additional conditions:

1

n

n∑
j=1

(
L̂n(ξj, ϑn)− L̂n,−j(ξj, ϑn)

)
= oPϑn

(n−1/2), (S3)

n∑
j=1

Eϑn

[ ∫
‖L̂n(x, ϑn)− L̂n,−j(x, ϑn)‖2 dFϑn(x)

]
= o(1), (S4)

where
L̂n,−j(x, ϑn) = Eϑn(L̂n(x, ϑn) | ξ1, . . . , ξj−1, ξj+1, . . . , ξn).

Thus it takes extra effort [(S2)–(S4) rather than (B2)] to avoid sample splitting. For this
reason sample splitting has remained useful. See Bhattacharya and Zhao [1], Remark 10,
for a comment on this.
Weaker conditions, however, can be derived by conditioning. This was already recognized
in Schick [12] and pursued in Schick [13, 14] in the context of regression models by condi-
tioning on the covariates. Let us now formulate a theorem that pushes this idea further. The
key is that we can condition not only on observable random variables such as covariates,
but generally on random quantities that may even depend on the parameters. This results
in weaker versions of (S2)–(S4). We shall see that the weaker versions become automatic
in important cases if appropriate estimates are chosen.

Assumption 2.5 Let (Y ,C) be another measurable space andη be a function fromX ×
Θ × Γ into Y measurable in the first argument and such that the conditional distribution
of ξ1 givenη(ξ1, ϑ, γ) underPϑ,γ has a regular versionMϑ,γ(dx | η(ξ1, ϑ, γ)) for each
(ϑ, γ) ∈ Θ× Γ.

We then setηnj = η(ξj, ϑn, γ0), abbreviateMϑn,γ0(dx | ηnj) byMnj(dx) and writeE∗
ϑn

for
the conditional expectation givenηn1, . . . , ηnn calculated underPϑn.

Theorem 2.6 Suppose Assumptions 2.1 to 2.5 hold. Then the following conditions are
sufficient for the estimator (2.5) to satisfy (2.3):

1

n

n∑
j=1

∫
(L̂n(x, ϑn)− L(x, ϑn))Mnj(dx) = oPϑn

(n−1/2), (C1)

1

n

n∑
j=1

E∗
ϑn

(∫
‖L̂n(x, ϑn)− L(x, ϑn)‖2Mnj(dx)

)
= oPϑn

(1), (C2)

1

n

n∑
j=1

(
L̂n(ξj, ϑn)− L̂nj(ξj, ϑn)

)
= oPϑn

(n−1/2), (C3)
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1

n

∑∑
i6=j

E∗
ϑn

(∫
‖L̂n(x, ϑn)− L̂ni(x, ϑn)‖2Mnj(dx)

)
= oPϑn

(1), (C4)

n∑
j=1

∫
‖L̂n(x, ϑn)− L̂nj(x, ϑn)‖2Mnj(dx) = oPϑn

(1), (C5)

where

L̂nj(x, ϑn) =

∫
Ln(x, ϑn, ξ1, . . . , ξj−1, y, ξj+1, . . . , ξn)Mnj(dy).

A proof of this theorem is in Section 7. The approach outlined in Theorem 2.6 has
been implemented to construct efficient estimates in homoscedastic regression by Schick
[13, 15, 19] and in heteroscedastic regression by Schick [14, 17] by conditioning on the
covariates. The ideas behind this approach have also proved useful in constructing efficient
estimates in some time series models (Schick [16, 18, 20]). Let us now comment on the
conditions.

Remark 2.7 Note that the conditions (S1)–(S4) follow from (C1)–(C5) upon takingη to
be a constant. For this choice ofη, Mnj(dx) reduces toFϑn(dx) and (C1)–(C4) become
(S1)–(S4), while (C4) implies (C5).

Remark 2.8 The condition (C5) can be omitted if we slightly change (C1). More pre-
cisely, (C1) and (C5) can be replaced by

1

n

n∑
j=1

∫
(L̂nj(x, ϑn)− L(x, ϑn))Mnj(dx) = oPϑn

(n−1/2). (C1’)

This follows from the fact that we use (C1) and (C5) in the proof only to conclude (C1’).
It is easy to see that (C1) and (C5) yield (C1’). Indeed, it follows from (C5) and the
Cauchy-Schwarz inequality that

1

n

n∑
j=1

∫
(L̂n(x, ϑn)− L̂nj(x, ϑn))Mnj(dx) = oPϑn

(n−1/2).

This and (C1) yield (C1’).

Remark 2.9 A sufficient condition for (C5) is of course

n∑
j=1

E∗
ϑn

(∫
‖L̂n(x, ϑn)− L̂nj(x, ϑn)‖2Mnj(dx)

)
= oPϑn

(1). (C5’)

Sufficient conditions for (C3)-(C5) are obtained if one replaces in (C3),(C4) and (C5’) the
quantityL̂nj by a quantityL̂∗nj of the form

L̂∗nj(x, ϑn) = Lnj(x, ϑn, ξ1, . . . , ξj−1, ηnj, ξj+1, . . . , ξn).
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Refer to these conditions as (C3)∗, (C4)∗ and (C5’)∗. To see that they are sufficient, note
that the left-hand sides of (C4) and (C5’) are bounded by the left hand sides of (C4)∗ and
(C5’)∗, respectively, and that (C3) follows from (C3)∗ and

1

n

n∑
j=1

(
L̂∗nj(ξj, ϑn)− L̂nj(ξj, ϑn)

)
= oPϑn

(n−1/2).

The latter follows as the conditional expectation of the squared norm of this expression
givenηn1, . . . , ηnn is bounded by the left-hand side of (C5’)∗. For this note that

Eϑn [‖L̂nj(x, ϑn)− L̂∗nj(x, ϑn)‖2] ≤ Eϑn [‖L̂n(x, ϑn)− L̂∗nj(x, ϑn)‖2].

These sufficient conditions are useful when it is cumbersome to calculateL̂nj.

Remark 2.10 A sufficient condition for (C4) and (C5) is

n∑
j=1

max
1≤i≤n

E∗
ϑn

(∫
‖L̂n(x, ϑn)− L̂ni(x, ϑn)‖2Mnj(dx)

)
= oPϑn

(1),

while a sufficient condition for (C3)–(C5) is

max
1≤j≤n

E∗
ϑn

(
sup
x∈X

‖L̂n(x, ϑn)− L̂nj(x, ϑn)‖
)

= oPϑn
(n−1/2).

In these sufficient conditions we can replaceL̂nj by L̂∗nj of the previous remark.

Let us now mention another choice forzn, namely the leave-one-out estimator

zn(ϑ, ξ1, . . . , ξn) =
1

n

n∑
j=1

L̃nj(ξj, ϑ) (2.6)

with
L̃nj(x, ϑ) = Ln−1(x, ϑ, ξ1, . . . , ξj−1, ξj+1, . . . , ξn).

Such an estimator was used by van der Vaart [22]. The reason for a leave-one-out estimator
is technical. Sinceξj is not used to construct̃Lnj(·, ϑ), the estimator̃Lnj(·, ϑ) of L(·, ϑ) is
independent ofξj. For the leave-one-out estimator only analogues of (C1), (C2) and (C4)
are needed. More precisely, we have the following result.

Theorem 2.11 Suppose Assumptions 2.1 to 2.5 hold. Then the following conditions are
sufficient for the leave-one-out estimator (2.6) to satisfy (2.3):

1

n

n∑
j=1

∫
(L̃nj(x, ϑn)− L(x, ϑn))Mnj(dx) = oPϑn

(n−1/2), (D1)

1

n

n∑
j=1

E∗
ϑn

(∫
‖L̃nj(x, ϑn)− L(x, ϑn)‖2Mnj(dx)

)
= oPϑn

(1), (D2)
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1

n

∑∑
i6=j

E∗
ϑn

(∫
‖L̃nj(x, ϑn)− L̃nji(x, ϑn)‖2Mnj(dx)

)
= oPϑn

(1), (D3)

whereL̃nji(x, ϑn) = Eϑn(L̃nj(x, ϑn) | ξ1, . . . , ξi−1, ηni, ξi+1, . . . , ξn).

Remark 2.12 Instead of the conditional expectationL̃nji(x, ϑn) we could take in (D3) any
other estimator̃Lnji(x, ϑn) based onηnj and the variablesξk, k 6= i, j. This again is helpful
when the conditional expectation is difficult to calculate.

Remark 2.13 Each of the above theorems can be generalized to the case when

L(x, ϑ, γ) = A[1](ϑ, γ)L[1](x, ϑ, γ) + · · ·+ A[m](ϑ, γ)L[m](x, ϑ, γ)

whereA[i](ϑ, γ) is ank × ki matrix andLi is a function similar toL but into Rki. Let
A[i](ϑ) = A[i](ϑ, γ0) andLi(x, ϑ) = Li(x, ϑ, γ0) and assume thatϑ 7→ A[i](ϑ) andϑ 7→∫
‖Li(x, ϑ)‖2 dFϑ(x) are continuous atϑ0. In this case one takes

L̂n(x, ϑ) = Â[1]
n (ϑ)L[1]

n (x, ϑ) + · · ·+ Â[m]
n (ϑ)L[m]

n (x, ϑ)

whereÂ[i]
n (ϑ) = Ani(ξ1, . . . , ξn) estimatesA[i](ϑ) and L̂[i]

n (x, ϑ) = Lni(x, ϑ, ξ1, . . . , ξn)
estimatesL[i](x, ϑ) underPϑ. To get (2.3) for the full estimate it suffices to show that, for
i = 1, . . . ,m,

Â[i]
n (ϑn) = A[i](ϑn) + oPϑn

(1), (2.7)

and
1

n

n∑
j=1

L̂[i]
n (ξj, ϑn) =

1

n

n∑
j=1

L[i](ξj, ϑn) + oPϑn
(n−1/2). (2.8)

To obtain (2.8) we can apply Theorem 2.6 with anη which may depend oni.

3 The main idea and a first application
In the previous section we have reviewed methods of constructing estimators with a pre-
scribed influence function and have seen that avoiding sample splitting comes with a price
of additional conditions. The conditions (C1) and (C2) for the full estimate (2.5), and
(D1) and (D2) for the leave-one-out estimator (2.6), are close to the necessary conditions
(S1) and (S2). In most instances they are not more difficult to verify than (S1) and (S2).
However, (C3)–(C5) for the full estimator, and (D3) for the leave-one-out estimator, can
be cumbersome to verify. We shall now discuss situations in which these latter condi-
tions are automatically satisfied. The basis for this is the following simple, but important
observation.
Suppose the estimatêLn can be expressed as

L̂n(x, ϑn) = L̄n(x, ϑn, ηn1, . . . , ηnn) (3.1)
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underPϑn for some measurable function̄Ln from X×Θ×Yn into Rk. ThenL̂ni(·, ϑn) =
L̂n(·, ϑn) underPϑn and the conditions (C3)–(C5) are automatically satisfied. Similarly, if
the estimatẽLnj can be expressed as

L̃nj(x, ϑn) = L̄n−1(x, ϑn, ηn1, . . . , ηn,j−1, ηn,j+1, . . . , ηnn), (3.2)

underPϑn for some measurable function̄Ln−1 from X × Θ × Yn−1 into Rk, then (D3) is
automatically satisfied. Thus we have the following result which can also be viewed as a
simple consequence of our Basic Lemma.

Theorem 3.1 Suppose Assumptions 2.1 to 2.5 hold. If (3.1) holds, then the full estima-
tor (2.5) satisfies (2.3) under (C1) and (C2) alone. If (3.2) holds, then the leave-one-out
estimator (2.6) satisfies (2.3) under (D1) and (D2) alone.

Thus by choosing the estimates ofLϑ,γ carefully and conditioning properly, there is poten-
tial for considerable simplifications. In the remainder of this section we shall discuss two
simple situations where this idea is easy to implement. Generalizations of this idea to a
more complex situation are discussed in the next section.
A first situation where the above idea can be put to good use is when, for everyϑ ∈ Θ and
γ ∈ Γ,

L(x, ϑ, γ) = uϑ(x)hγ(vϑ(x)), x ∈ X, (3.3)

with hγ a measurable function fromR to R, vϑ a measurable function fromX into R, uϑ a
measurable function fromX into Rk such that

Eϑ,γ(uϑ(ξ1) | vϑ(ξ1)) = 0. (3.4)

Let Unj = uϑn(ξj) andVnj = vϑn(ξj). UnderPϑn, we estimateh = hγ0 from the observa-
tionsVn1, . . . , Vnn alone, say by

ĥn(v, ϑn) = h̃n(v, Vn1, . . . , Vnn), v ∈ R. (3.5)

The corresponding leave-one-out estimator is

ĥnj(v, ϑn) = h̃n−1(v, Vn1, . . . , Vn,j−1, Vn,j+1, . . . , Vnn), v ∈ R.

Given this structure, we can use

L̂n(ξj, ϑn) = Unj ĥn(Vnj, ϑn),

for the full estimator, and

L̃nj(ξj, ϑn) = Unj ĥnj(Vnj, ϑn),

for the leave-one-out estimator. The latter estimator was studied by van der Vaart [22] in
this context.
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We apply Theorem 3.1 withη(x, ϑ, γ) = vϑ(x) so thatηnj = Vnj. In view of (3.4), (C1)
and (D1) are immediate. Consequently, one needs to verify (C2) for the full estimator,
which is equivalent to

1

n

n∑
j=1

τnj

[
ĥn(Vnj, ϑn)− h(Vnj)

]2
= oPϑn

(1) (3.6)

with τnj = Eϑn(‖Unj‖2 | Vnj). If

max
1≤j≤n

τnj = OPϑn
(1), (3.7)

then (3.6) is implied by

1

n

n∑
j=1

[
ĥn(Vnj, ϑn)− h(Vnj)

]2
= oPϑn

(1). (3.8)

For the leave-one-out estimator one needs to verify (D2), which is

1

n

n∑
j=1

τnj

[
ĥnj(Vnj, ϑn)− h(Vnj)

]2
= oPϑn

(1). (3.9)

This improves upon the result of van der Vaart [22] who requires that the expected value
of the left-hand side of (3.9) tends to zero:

Eϑn

[
τn1

[
ĥn1(Vn1, ϑn)− h(Vn1)

]2]
= o(1). (3.10)

We conclude with a closely related situation. It does not quite fit into the setting of Theo-
rem 3.1, but can be treated with a little extra effort. It builds a bridge to what we do in the
next section.
Suppose now that for allϑ ∈ Θ andγ ∈ Γ,

L(x, ϑ, γ) =
[
uϑ(x)−

∫
uϑ dFϑ,γ

]
hγ(vϑ(x)), x ∈ X, (3.11)

with hγ a measurable function fromR to R, vϑ a measurable function fromX into R anduϑ

a measurable function fromX into Rk such thatuϑ(ξ1) andvϑ(ξ1) are independent under
Pϑ,γ and

Eϑ,γ[hγ(vϑ,γ(ξ1))] = 0. (3.12)

Let h, Unj and Vnj be as before. We require thatEϑn [‖Un1‖2] andEϑn [h2(Vn1)] are
bounded. UnderPϑn we estimateh as before only from the observationsVn1, . . . , Vnn,
namely bŷhn(v, ϑn) as in (3.5), and take

L̂n(ξj, ϑn) = [Unj − Ūn] ĥn(Vnj, ϑn) where Ūn =
1

n

n∑
i=1

Uni.
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Let us now show that (3.8) implies

1

n

n∑
j=1

L̂n(ξj, ϑn) =
1

n

n∑
j=1

L(ξj, ϑn) + oPϑn
(n−1/2).

For this write
1

n

n∑
j=1

[L̂n(ξj, ϑn)− L(ξj, ϑn)] = Tn −Rn,

with

Tn =
1

n

n∑
j=1

[
Unj − Eϑn [Unj]

][
ĥn(Vnj, ϑn)− h(Vnj)

]
and

Rn =
1

n

n∑
i=1

[
Uni − Eϑn [Uni]

] 1

n

n∑
j=1

ĥn(Vnj, ϑn).

We can apply Theorem 3.1 withηnj = Vnj to conclude thatTn = oPϑn
(n−1/2). Indeed, the

left-hand side of (C1) is zero and the left-hand side of (C2) equalsEϑn [‖Un1‖2] times the
left hand side of (3.8). Finally, we haveRn = oPϑn

(n−1/2) because

1

n

n∑
j=1

[
Unj − Eϑn [Unj]

]
= OPϑn

(n−1/2) and
1

n

n∑
j=1

ĥn(Vnj, ϑn) = oPϑn
(1),

the former sinceEϑn [‖Un1‖2] is bounded, the latter by (3.8) andEϑn [h(Vn1)] = 0 and since
Eϑn [h2(Vn1)] is bounded.

4 A second application
Let us now generalize the ideas in the previous example. For this we make the following
assumption.

Assumption 4.1 For every(ϑ, γ) in Θ× Γ, Lϑ,γ is of the form

L(x, ϑ, γ) =
[
uϑ(x)− µϑ,γ(vϑ(x))

]
hϑ,γ(vϑ(x), wϑ,γ(x)) (4.1)

for a measurable functionhϑ,γ from Rm × R into R and measurable functionsuϑ, vϑ and
wϑ,γ from X to Rk, Rm and R, respectively, such that(uϑ(ξ1), vϑ(ξ1)) andwϑ,γ(ξ1) are
independent underPϑ,γ and where

µϑ,γ(vϑ(ξ1)) = Eϑ,γ(uϑ(ξ1) | vϑ(ξ1))

and
Eϑ,γ(hϑ,γ(vϑ(ξ1), wϑ,γ(ξ1)) | vϑ(ξ1)) = 0. (4.2)
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This structure arises in various regression models withwϑ,γ(ξ1) the error variable anduϑ

andvϑ functions of the covariates only. One such model is the partly linear model which
will be treated in detail in the next section. Single index models also have this structure.
Let us setUnj = uϑn(ξj), Vnj = vϑn(ξj) andWnj = wϑn(ξj). Also, seth(v, w, ϑ) =
hϑ,γ0(v, w) andµ(v, ϑ) = µϑ,γ0(v). Given the form (4.1), we should strive to use The-
orem 3.1 withηnj = (Vnj,Wnj). Consequently, we should estimatehϑn(v, w) by an
expression̂hn(v, w, ϑn) which can be written as a function of the variables(Vnj,Wnj),
j = 1, . . . , n, underPϑn. It is natural to estimateµ(v, ϑn) by a linear smoother, namely

µ̂n(v, ϑn) =
n∑

i=1

sni(v, Vn1, . . . , Vnn)Uni, v ∈ Rm,

wheresn1, . . . , snn are measurable functions from(Rm)n+1 into Rk. This then leads us to
the estimator

L̂n(ξj, ϑn) =
[
Unj − µ̂n(Vnj, ϑn)

]
ĥn(Vnj,Wnj, ϑn),

whereĥn is expressible as

ĥn(v, w, ϑn) = hn(v, w, ϑn, Vn1,Wn1, . . . , Vn1,Wn1)

underPϑn, although it needs to be constructed without the knowledge ofγ0. Here Theo-
rem 3.1 is not directly applicable. Instead we proceed as follows. We write

1

n

n∑
j=1

L̂n(ξj, ϑn)− 1

n

n∑
j=1

L(ξj, ϑn) = Tn0 − Tn1 − Tn2 − Tn3,

where

Tn0 =
1

n

n∑
j=1

[
Unj − µ(Vnj, ϑn)

]
∆nj,

Tn1 =
1

n

n∑
j=1

[
µ̂n(Vnj, ϑn)− µ̄n(Vnj, ϑn)

]
∆nj,

Tn2 =
1

n

n∑
j=1

[
µ̄n(Vnj, ϑn)− µ(Vnj, ϑn)

]
∆nj,

Tn3 =
1

n

n∑
j=1

[
µ̂n(Vnj, ϑn)− µ(Vnj, ϑn)

]
h(Vnj,Wnj, ϑn),

with

µ̄n(v, ϑn) =
n∑

i=1

sni(v, Vn1, . . . , Vnn)µ(Vni, ϑn), v ∈ Rm,

and
∆nj = ĥn(Vnj,Wnj, ϑn)− h(Vnj,Wnj, ϑn).
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To get the desired

1

n

n∑
j=1

L̂n(ξj, ϑn) =
1

n

n∑
j=1

L(ξj, ϑn) + oPϑn
(n−1/2), (4.3)

we need to show that, fori = 0, 1, 2, 3,

Tni = oPϑn
(n−1/2). (4.4)

We can use Theorem 3.1 or the Basic Lemma to give sufficient conditions for the cases
i = 0, 1, 3.
A sufficient condition for (4.4) withi = 0 is

1

n

n∑
j=1

σ2
nj∆

2
nj = oPϑn

(1), (4.5)

where
σ2

nj = Eϑn(‖Unj − µ(Vnj, ϑn)‖2 | Vnj).

This follows from Theorem 3.1 applied withηnj = (Vnj,Wnj). Indeed, in this case, the
left-hand side of (C1) equals 0 and (C2) is equivalent to (4.5).
A sufficient condition for (4.4) withi = 3 is

1

n

n∑
j=1

‖µ̂n(Vnj, ϑn)− µ(Vnj, ϑn)‖2Eϑn(h2(Vnj,Wnj, ϑn)|Vnj) = oPϑn
(1). (4.6)

To see this apply Theorem 3.1 withηnj = (Unj, Vnj) and use (4.2). To get a sufficient con-
dition for (4.4) withi = 1, write Tn1 as a double sum and change the order of summation
to arrive at

Tn1 =
1

n

n∑
i=1

[
Uni − µ(Vni)

]
∆̄ni

with

∆̄ni =
n∑

j=1

sni(Vnj, Vn1, . . . , Vnn)∆nj,

a function of(Vn1,Wn1, . . . , Vnn,Wnn). By conditioning on these variables, we obtain
from Theorem 3.1 or the Basic Lemma that (4.4) withi = 1 is implied by

1

n

n∑
i=1

σ2
ni∆̄

2
ni = oPϑn

(1). (4.7)

Indeed, for this application the left-hand side of (C1) is 0 and (C2) is equivalent to (4.7).
In most applications the smoothing matrixSn with (i, j)-entry

Snij = sni(Vnj, Vn1, . . . , Vnn)
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will have a stochastically bounded operator norm:

sup
x∈Rn:‖x‖=1

‖Snx‖ = OPϑn
(1). (4.8)

Then (4.7) is implied by (4.5). Let us now summarize our findings.

Theorem 4.2 Suppose Assumption 4.1 holds and the smoothing matrix satisfies (4.8).
Then (4.3) is implied by (4.5), (4.6) and

1

n

n∑
j=1

[
µ̄n(Vnj, ϑn)− µ(Vnj, ϑn)

]
∆nj = oPϑn

(n−1/2). (4.9)

Remark 4.3 Note that the squared norm of the left hand side of (4.9) can be bounded via
the Cauchy-Schwarz inequality by

1

n

n∑
j=1

∆2
nj

1

n

n∑
j=1

‖µ̄n(Vnj, ϑn)− µ(Vnj, ϑn)‖2.

From this bound we can derive sufficient conditions for (4.9). Of course, we can also use
Theorem 2.6 to verify (4.9) directly.

Simple sufficient conditions can be given if the quantitiesEϑn(h2(Vnj,Wnj, ϑn)|Vnj) and
σ2

nj are bounded.

Theorem 4.4 Suppose Assumption 4.1 holds, the smoothing matrix satisfies (4.8),

max
1≤j≤n

σ2
nj = OPϑn

(1) and max
1≤j≤n

Eϑn(h2(Vnj,Wnj, ϑn)|Vnj) = OPϑn
(1).

Then (4.3) follows from

1

n

n∑
j=1

[
ĥn(Vnj,Wnj, ϑn)− h(Vnj,Wnj, ϑn)

]2
= oPϑn

(1), (4.10)

1

n

n∑
j=1

[
µ̂n(Vnj, ϑn)− µ(Vnj, ϑn)

]2
= oPϑn

(1) (4.11)

and
1

n

n∑
j=1

‖µ̄n(Vnj, ϑn)− µ(Vnj, ϑn)‖2 = OPϑn
(n−1). (4.12)

Remark 4.5 Of course, we could replace (4.12) by (4.9). We have chosen the stronger
(4.12) as it is easier to interpret. Moreover, it can typically be satisfied via under-smoothing
as we shall show in the next section.
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5 Efficient estimation in a partly linear regression model
In this section we shall apply the results of the previous section to construct efficient esti-
mates for a partly linear regression model. In this modelξj = (Yj, Uj, Vj) is assumed to
take values inR× Rk × [0, 1] and satisfies underPϑ0 the structural relation

Yj = ϑ>0 Uj + ρ(Vj) + εj, j = 1, . . . , n,

whereϑ0 is an unknown vector inRk, ρ is an unknown Lipschitz-continuous function on
[0, 1], the unobserved error variableεj has unknown densityf with finite Fisher information
J and is independent of the covariate(Uj, Vj) which has distributionQ. The nuisance
parameterγ0 is the triple(ρ, f,Q). We impose the following additional assumptions on the
covariate distribution.

Assumption 5.1 If (U, V ) has distributionQ, thenE[‖U‖4] < ∞, there is a Lipschitz
continuous functionµ such thatµ(V ) = E(U |V ), the matrixW = E[(U − µ(V ))(U −
µ(V ))>] is positive definite, and the marginal distributionG of V has a densityg that is
bounded and bounded away from0 on the interval[0, 1].

An estimatorϑ̂n is efficient in this model if

ϑ̂n = ϑ0 +
1

n

n∑
j=1

(JW )−1(Uj − µ(Vj))`(Yj − ϑ>0 Uj − ρ(Vj)) + oP (n−1/2),

where` = −f ′/f is the score function for location. Such estimators have been constructed
by Cuzick [3] and Schick [13] under the additional assumption that the error densityf has
mean zero and finite variance. Cuzick used Bickel’s [2] sample splitting scheme, while
Schick avoided sample splitting by conditioning on the covariates. Bhattacharya and Zhao
[1] constructed efficient estimates without these moment assumptions, but required the
error densityf to be symmetric with a bounded derivative and positive in a neighborhood of
0. Their construction utilized the sample splitting scheme of Schick [11]. In their Remark
10, they explain thatintractable calculationsassociated with the verification of the leave-
one-out type of conditions for their M-type regression estimate forced them to use sample
splitting. Because this model satisfies Assumption 4.1 as we shall see below, the approach
described in the previous section will avoid the verification of these conditions.
We shall show that efficient estimates exist without the moment or symmetry assumptions
of these papers. We shall, however, require the identifiability condition∫

ψ(x)f(x) dx = 0

for some bounded odd functionψ with a positive and bounded derivative. A possible
choice is

ψ(x) = arctan(x), x ∈ R.
The efficient score function for this case is given by

L(ξj, ϑ) = (Uj − µ(Vj))`(εj(ϑ)), where εj(ϑ) = Yj − ϑ>Uj − ρ(Vj).
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Thus Assumption 4.1 holds with

uϑ(ξj) = Uj, vϑ(ξj) = Vj and wϑ,γ0(ξj) = εj(ϑ) = Yj − ϑ>Uj − ρ(Vj).

Note that (4.2) follows from
∫
`(x)f(x) dx = 0.

Let nowφ be a symmetric continuously differentiable density with support[−1, 1] and set

φc(x) =
1

c
φ
(x
c

)
, x ∈ R, c > 0.

Modifying the arguments of Zhao [23] slightly we can show that an1/2-consistent estimator
of ϑ0 is given as a minimizer of

Dn(t) :=
2

n(n− 1)

∑∑
1≤i<j≤n

|Yi − Yj − t>(Ui − Uj)|φc̃n(Vi − Vj),

provided the bandwidth̃cn is chosen such thatnc̃n →∞ andn1/2c̃2n → 0. Details are given
in Section 6. Thus Assumption 2.1 holds with̃ϑn a discretized version of this estimator.
Assumptions 2.2 to 2.4 are verified in Schick [13].
For v ∈ [0, 1], we estimateρ(v) by ρ̂n(v, ϑ̃n) which is the solutiont to the equation
Ψn(t, v, ϑ̃n) = 0, where

Ψn(t, v, ϑ̃n) =
1

n

n∑
j=1

φcn(v − Vj)ψ(Yj − ϑ̃>nUj − t),

andcn ∼ n−1/3(log n)1/3. One can show that this estimator satisfies

sup
0≤v≤1

|ρ̂n(v, ϑn)− ρ(v)| = OPϑn
(n−1/3(log n)1/3). (5.1)

This result is in the spirit of Ḧardle and Luckhaus [5] and Härdle et al. [4]. It does not
immediately follow from their results, but needs some modifications. Here are the details.
Sinces 7→ Ψn(s, v, ϑn) is increasing, we see that|ρ̂n(v, ϑn) − ρ(v)| > cn(L + t) if either
Ψn(ρ(v) + cn(L + t), v, ϑn) < 0 or Ψn(ρ(v) − cn(L + t), v, ϑn) > 0 for all positive t
andL the Lipschitz constant ofρ. Furthermore, sinceφ has support[−1, 1], we have the
inequalities

Ψn(ρ(v) + cn(L+ t), v, ϑn) ≥ Ψ̃n(cnt, v)

and
Ψn(ρ(v)− cn(L+ t), v, ϑn) ≤ Ψ̃n(−cnt, v),

where

Ψ̃n(t, v) =
1

n

n∑
j=1

φcn(v − Vj)ψ(Yj − ϑ>nUj − ρ(Vj) + t).

This shows that fort > 0,

πn(L+ t) = Pϑn

(
sup

0≤v≤1
|ρ̂n(v, ϑn)− ρ(v)| > cn(L+ t)

)
≤ Pϑn

(
inf

0≤v≤1
Ψ̃n(cnt, v) < 0

)
+ Pϑn

(
sup

0≤v≤1
Ψ̃n(−cnt, v) > 0

)
.
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A standard argument involving the Bernstein inequality yields now that

Ψ∗
n = sup

0≤v≤1
sup
|t|<1

|Ψ̃n(t, v)− Eϑn [Ψ̃n(t, v)]| = OPϑn
(cn). (5.2)

It is easy to check that

Eϑn [Ψ̃n(t, v)] =

∫
ψ(y + t)f(y) dy

∫
g(v − cnw)φ(w) dw.

Thus, fort > 0,

inf
0≤v≤1

c−1
n Eϑn [Ψ̃n(cnt, v)] ≥

1

2
inf

0≤v≤1
g(v)c−1

n

∫
ψ(y + cnt)f(y) dy

and

sup
0≤v≤1

c−1
n Eϑn [Ψ̃n(−cnt, v)] ≤ sup

0≤v≤1
g(v)c−1

n

∫
ψ(y − cnt)f(y) dy.

By the assumption onψ, the mapτ(s) =
∫
ψ(y + s)f(y) dy satisfiesτ(0) = 0 and has

a continuous positive derivative. Combining the above we see that there are positive con-
stantsd1 andd2 such that, for eacht > 0,

πn(L+ t) ≤ Pϑn(d1t− c−1
n Ψ∗

n < 0) + Pϑn(−d2t+ c−1
n Ψ∗

n > 0).

From this and (5.2), the desired (5.1) is immediate.
We use the residuals

ε̂j(ϑ̃n) = Yj − ϑ̃>nUj − ρ̂n(Vj, ϑ̃n), j = 1, . . . , n,

to estimatè by

ˆ̀
n(x, ϑ̃n) =

1
n

∑n
j=1K

′
n(x− ε̂j(ϑ̃n))

bn + 1
n

∑n
j=1Kn(x− ε̂j(ϑ̃n))

, x ∈ R.

Herean and bn are sequences of positive numbers that converge to zero at a rate to be
determined later andKn(x) = K(x/an)/an for a positive, bounded symmetric density
K that is twice continuously differentiable with|K ′|/K and |K ′′|/K bounded. At this
moment, we only assume thatµ̂n is a linear smoother

µ̂n(v) =
n∑

j=1

snj(v, V1, . . . , Vn)Uj

with a smoothing matrixSn that satisfies (4.8). This allows us to discuss various choices
later. Finally, our candidate for an efficient estimator ofϑ0 is

ϑ̃n +
1

n

n∑
j=1

(ŴnĴn(ϑ̃n))−1(Uj − µ̂n(Vj))ˆ̀n(ε̂j(ϑ̃n), ϑ̃n),
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where

Ŵn =
1

n

n∑
j=1

(Uj − µ̂n(Vj))(Uj − µ̂n(Vj))
> and Ĵn(ϑ̃n) =

1

n

n∑
j=1

ˆ̀2
n(ε̂j(ϑ̃n), ϑ̃n).

In view of Theorem 4.4, this estimator is efficient if the following three conditions are true.

1

n

n∑
j=1

[ˆ̀n(ε̂j(ϑn), ϑn)− `(εj(ϑn))]2 = oPϑn
(1), (5.3)

1

n

n∑
j=1

‖µ̂n(Vj)− µ(Vj)‖2 = oPϑn
(1), (5.4)

1

n

n∑
j=1

‖µ̄n(Vj)− µ(Vj)‖2 = OPϑn
(n−1), (5.5)

where

µ̄n(v) =
n∑

j=1

snj(v, V1, . . . , Vn)µ(Vj).

It follows from Lemma 8.1 that (5.3) holds ifna3
nbn → ∞ andn2/3a4

n/(log n)2/3 → ∞,
e.g.,an ∼ n−1/7 andbn ∼ n−1/2 work. Finally, (5.4) and (5.5) are satisfied by under-
smoothed kernel estimates. Indeed, for a kernel estimate with bandwidthdn and kernelφ
as above, the left hand side of (5.4) is of orderOPϑn

(d2
n +n−1d−1

n ), while the left hand side
of (5.5) is of orderO(d2

n). Keep in mind that we assumedµ to be Lipschitz. Thus if we
takedn ∼ n−1/2, we obtain both (5.4) and (5.5). Of course, the corresponding smoothing
matrix satisfies (4.8).
Instead of kernel estimators we could have also used locally linear smoothers. Larger
bandwidths are possible under additional smoothness assumptions.

6 Bandwidth-matched M-estimation in partly linear mo-
dels

In this section we utilize the fact that our error density has finite Fisher information to relax
some of the conditions used by Zhao [23] to obtain then1/2-consistency and asymptotic
normality of his bandwidth-matched M-estimator for partly linear regression models. In
particular, we allow the random variable appearing in the linear part to be unbounded and
relax the smoothness assumptions on his loss function.
We consider again the partly linear model in which the observationsξj = (Yj, Uj, Vj) take
values inR× Rk × [0, 1] and satisfy the structural relation

Yj = ϑ>0 Uj + ρ(Vj) + εj, j = 1, . . . , n,
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for someϑ0 in Rk and some Lipschitz-continuous functionρ on [0, 1]. The error variable
ε1 has densityf with finite Fisher information and is independent of the covariate(U1, V1)
whose distributionQ fulfills Assumption 5.1.
Let τ be an even, convex and Lipschitz continuous function fromR to [0,∞). The cor-
responding bandwidth-matched M-estimator ofϑ0 is then a minimizer of the convex U-
process

Dn(t) =
2

n(n− 1)

∑∑
1≤i<j≤n

τ(Yi − Yj − t>(Ui − Uj))φcn(Vi − Vj)

whereφc is as in Section 5 with a bounded symmetric densityφ with support[−1, 1].
Zhao’s [23] version also includes the weight factorsH(Vi)H(Vj). To keep our notation
simple, we have not included these here.
Sinceτ is Lipschitz, it is absolutely continuous with a bounded almost everywhere deriva-
tive ψ, say |ψ| ≤ B. Sinceτ is convex and even, this derivative can be taken to be
non-decreasing and odd. Now define functionsψ1 andψ2 by

ψ1(t) = E[ψ(t− ε1)] =

∫
ψ(t− y)f(y) dy, t ∈ R,

and

ψ2(t) = E[ψ(t+ ε1 − ε2)] =

∫∫
ψ(t+ x− y)f(x) dxf(y) dy, t ∈ R.

Sinceψ is bounded andf has finite Fisher information, the functionψ1 is differentiable
with bounded and uniformly continuous derivative

ψ′1(t) =

∫
ψ(t− y)f ′(y) dy, t ∈ R.

Indeed, the almost everywhere derivativef ′ of f is integrable with

‖f ′‖1 =

∫
|`(y)|f(y) dy ≤ J1/2.

Thusψ′1 is bounded byB‖f ′‖1 and uniformly continuous as

|ψ′1(s+ t)− ψ′1(s)| =
∣∣∣ ∫ ψ(s− y)(f ′(y − t)− f ′(y)) dy

∣∣∣
≤ B

∫
|f ′(y − t)− f ′(y)| dy

and
∫
|f ′(y− t)− f ′(y)| dy → 0 ast→ 0 by the translation continuity inL1, see Theorem

9.5 in Rudin [10]. Thatψ′1 is the derivative ofψ1 is easy to check. Similarly, one can
show thatψ2 has a bounded and uniformly continuous first and second order derivatives
ψ′2 andψ′′2 , namelyψ′2(t) =

∫∫
ψ(t+ x− y)f(x)f ′(y) dx dy andψ′′2(t) = −

∫∫
ψ(t+ x−

y)f ′(x)f ′(y) dx dy.
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Theorem 6.1 Supposef has finite Fisher information,Q satisfies Assumption 5.1,τ is an
even, convex and Lipschitz continuous function fromR to R, and

ψ′2(0) =

∫∫
ψ(x− y)f(x)f ′(y) dx dy > 0. (6.1)

Suppose also thatncn →∞ andn1/2c2n → 0. Let ϑ̄n be a minimizer ofDn(t). Then

ϑ̄n = ϑ0 +
1

n

n∑
i=1

A−1(Ui − µ(Vi))ψ1(εi)g(Vi) + oP (n−1/2)

whereA = ψ′2(0)E[g(V1)(U1 − µ(V1))(U1 − µ(V1))
>].

The above theorem relaxes some of the conditions of Zhao [23]. We do not need the
variable‖U1‖ to be bounded, but require it instead to have finite fourth moment. We
remove Zhao’s smoothness assumption (A2)(a) on the joint lawQ and weaken Zhao’s
assumption (A4)(b).
If τ(x) = |x|, thenψ(x) = sign(x), ψ1(t) = 2F (t)−1, ψ2(t) =

∫
(2F (t+x)−1)f(x) dx,

andψ′2(0) = 2
∫
f 2(x) dx > 0.

Proof: We follow the proof of Zhao [23] who utilizes Pollard’s [9] convexity lemma; see
also Hjort and Pollard [6]. Let

Sn(t) =
2

n(n− 1)

∑∑
1≤i<j≤n

(Uj−Ui)ψ(εi−εj+ρ(Vi)−ρ(Vj)+n
−1/2t>(Uj−Ui))φcn(Vi−Vj).

We shall prove that, for each fixedt ∈ Rk,

n
[
Dn(ϑ0 + n−1/2t)−Dn(ϑ0)− n−1/2t>Sn(0)

]
= t>At+ op(1) (6.2)

and that

Sn(0) = − 1

n

n∑
i=1

2(Ui − µ(Vi))ψ1(εi)g(Vi) + op(n
−1/2). (6.3)

It then follows from the convexity lemma thatn1/2(ϑ̄n − ϑ0) = −1

2
A−1n1/2Sn(0) + op(1)

from which the desired result follows.
To verify (6.2) and (6.3) we need the following simple fact about U-statistics. Let

Hn =
2

n(n− 1)

∑∑
1≤i<j≤n

hn(ξi, ξj)

be a U-statistic with a symmetric square-integrable kernelhn. Let h̄n(x) = E[hn(x, ξ1)].
Suppose thatE[‖hn(ξ1, ξ2)‖2] = o(n), thatE[‖h̄n(ξ1) − h̄(ξ1)‖2] → 0 for some function
h̄ with E[‖h̄(ξ1)‖2] <∞, and that

√
nE[Hn] → a, then

n1/2(Hn −
1

n

n∑
i=1

2[h̄(ξi)− E[h(ξi)]]) = a+ op(1).
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This is an easy consequence of the Hoeffding decomposition

Hn = E[Hn] +
1

n

n∑
i=1

2(h̄n(ξi)− E[h̄n(ξi)]) +Rn,

wheren(n− 1)E[‖Rn‖2] ≤ 2E[‖hn(ξ1, ξ2)‖2].
To prove (6.3) we use this with

hn(ξ1, ξ2) = (U2 − U1)ψ(ε1 − ε2 + ρ(V1)− ρ(V2))φcn(V1 − V2)

and
h̄(ξ1) = −(U1 − µ(V1))ψ1(ε1)g(V1).

Since

gcn(v) = E[φcn(v − V2)] =

∫
g(v − cns)φ(s) ds

is bounded, we immediately obtain that

E[‖hn(ξ1, ξ2)‖2] ≤ 2B2E[(‖U1‖2 + ‖U2‖2)φ2
cn

(V1 − V2)]

≤ 4B2‖φcn‖∞E[‖U1‖2φcn(V1 − V2)] = O(c−1
n ) = o(n).

It is well known that
∫
|gcn(v)− g(v)| dv → 0. Sinceg is bounded, this gives

∫
|gcn(v)−

g(v)|g(v) dv → 0. From the latter we derive thatgcn(V1) → g(V1) in probability. Note that

h̄n(ξ1) = −
∫

(U1 − µ(V1 + cnv))ψ1(ε1 + ρ(V1)− ρ(V1 + cnv))g(V1 + cnv)φ(v) dv.

Sinceψ1, ρ andµ are continuous andψ1 andg are bounded, one finds thatE[‖h̄n(ξ1) −
h̄(ξ1)‖2] → 0. Sinceψ is odd andε1 − ε2 has an even density, we see thatψ2(0) = 0.
Thus|ψ2(t)| ≤ B‖f ′‖1|t|. Sinceρ andµ are Lipschitz andg is bounded, we get that the
expectationE[hn(ξ1, ξ2)], which equals

E[

∫
(µ(V1 + cnv)− µ(V1))ψ2(ρ(V1)− ρ(V1 + cnv))g(V1 + cnv)φ(v) dv],

is of ordero(c2n) = o(n−1/2). This shows that (6.3) holds.
To prove (6.2) we first note that its left hand side can be expressed asn1/2Hn with

Hn =

∫ 1

0

t>(Sn(ut)− Sn(0)) du,

a U-statistic with kernel

hn(ξ1, ξ2) = t>(U2 − U1)φcn(V1 − V2)

∫ 1

0

[ψ(η + n−1/2ut>(U2 − U1))− ψ(η)] du

with η = ε1 − ε2 + ρ(V1)− ρ(V2). We have as above that

E[h2
n(ξ1, ξ2)] ≤ 4B‖t‖2E[‖U2 − U1‖2φ2

cn
(V1 − V2)] = O(c−1

n ) = o(n).
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Sinceψ1 is Lipschitz with Lipschitz constantB‖f ′‖1, we get

E[h̄2
n(ξ1)] ≤ B2‖f ′‖2

1‖t‖4n−1‖‖E[‖U2 − U1‖4φ2
cn

(V1 − V2)] = O(c−1
n n−1) = o(1).

Finally, sinceψ′2 is Lipschitz andρ andµ are continuous, we have, with∆ = ρ(V1)−ρ(V2)
andΥ = (U2 − U1)φcn(V1 − V2) and

n1/2E[Hn] = n1/2E
[
t>Υ

∫ 1

0

(
ψ2(∆ + n−1/2ut>(U2 − U1))− ψ2(∆)

)
du
]

=
1

2
E
[
|t>(U2 − U1)|2φcn(V1 − V2)ψ

′
2(∆)

]
+ o(1)

=
1

2
ψ′2(0)E

[
|t>(U2 − U1)|2φcn(V1 − V2)

]
+ o(1)

=
1

2
ψ′2(0)E

[[
|t>(U2 − µ(V2))|2 + |t>(U1 − µQ(V1))|2

]
φcn(V1 − V2)

]
+ o(1)

= ψ′2(0)E
[
σ2(V1)gcn(V1)

]
+ o(1),

whereσ2(V1) = E(|t>(U1 − µ(V1))|2 | V1). Sincegcn(V1) → g(V1) in probability, we
obtain that

n1/2E[Hn] → ψ′2(0)E[σ2(V1)g(V1)] = t>At.

This completes the proof of (6.2). 2

7 Proof of Theorem 2.6
Let us now give the proof of Theorem 2.6. We have already seen in Remark 2.8 that (C1)
and (C5) imply (C1’). Thus we only have to show that (C1’) and (C2)–(C4) imply (2.3).
To simplify the notation, we abbreviate the conditional expectationE∗

ϑn
appearing in the

lemma byEn, the conditional expectation given(ξ1, . . . , ξj−1, ηnj, ξj+1, . . . , ξn) underPϑn

by Enj. We set

Tnj = L̂nj(ξj, ϑn)− L(ξj, ϑn)

=

∫
Ln(ξj, ϑn, ξ1, . . . , ξj−1, y, ξj+1, . . . , ξn)Mnj(dy)− L(ξj, ϑn)

and

T ∗nj = Enj(Tnj) =

∫
(L̂nj(x, ϑn)− L(x, ϑn))Mnj(dx).

Then (C1’) can be written as1
n

∑n
j=1 T

∗
nj = oPϑn

(n−1/2). LetDnj = Tnj − T ∗nj. In view of
(C1’) and (C3), it suffices to show that̄Dn = 1

n

∑n
j=1Dnj = oPϑn

(n−1/2). But this follows
if we show thatEn(n‖D̄n‖2) = oPϑn

(1). Let us now establish this.
We haveEnj(‖Dnj||2) ≤ Enj(‖Tnj‖2) and

Enj(‖Tnj‖2) =

∫
‖Enj(L̂n(x, ϑn))− L(x, ϑn, γ)‖2Mnj(dx)

≤
∫

Enj(‖L̂n(x, ϑn)− L(x, ϑn, γ)‖2)Mnj(dx),
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so that (C2) implies
1

n

n∑
j=1

En(‖Dnj‖2) = oPn(1). (7.1)

For i 6= j, we haveEni(T
∗
nj) = Enj(Eni(Tnj)) and thus

Enj(‖Dnj − Eni(Dnj)‖2) = Enj(‖Tnj − Eni(Tnj)− Enj(Tnj − Eni(Tnj))‖2)

≤ Enj(‖Tnj − Eni(Tnj)‖2),

and furthermore

Enj(‖Tnj − Eni(Tnj)‖2) =

∫
‖Enj(L̂n(x, ϑn))− Enj(Eni(L̂n(x, ϑn)))‖2Mnj(dx)

≤
∫

Enj(‖L̂n(x, ϑn)− Eni(L̂n(x, ϑn))‖2)Mnj(dx).

Thus (C4) implies

1

n

∑∑
i6=j

En(‖Dnj − Eni(Dnj)‖2) = oPn(1). (7.2)

As Eni(Dni) = Eni(Tni − T ∗ni) = T ∗ni − T ∗ni = 0, we have, fori 6= j,

En(D>
niEni(Dnj)) = En(Eni(D

>
niEni(Dnj))) = En(Eni(D

>
ni)Eni(Dnj)) = 0.

Similarly, one obtainsEn(Enj(D
>
ni)Dnj) = 0 andEn(Enj(D

>
ni)Eni(Dnj)) = 0. This shows

that
En(D>

niDnj) = En((Dni − Enj(Dni))
>(Dnj − Eni(Dnj))), i 6= j.

From this and an application of the Cauchy-Schwarz inequality we obtain that∣∣∣∣∣ 1n∑∑
i6=j

En(D>
niDnj)

∣∣∣∣∣ ≤ 1

n

∑∑
i6=j

En(‖Dnj − Eni(Dnj)‖2) = oPn(1).

From the above we obtain that

En(n‖D̄n‖2) =
1

n

n∑
j=1

En(‖Dnj‖2) +
1

n

∑∑
i6=j

En(D>
niDnj) = oPn(1),

which is the desired result.

8 Some technical details
In this section we shall give some properties of the estimator of the score function`
of a densityf with finite Fisher information. Throughout this section we assume that
εn1, . . . , εnn are independent random variables with this densityf and thatδn1, . . . , δnn are
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other random variables. We setε̃nj = εnj + δnj. LetK be a positive, bounded symmetric
density that is twice continuously differentiable with|K ′|/K and |K ′′|/K bounded. Let
an andbn be sequences of positive numbers that converge to zero at a rate to be determined
later. Forx ∈ R, letKn(x) = K(x/an)/an and set

l̃n(x) =
−f̃ ′n(x)

bn + f̃n(x)
, l̂n(x) =

−f̂ ′n(x)

bn + f̂n(x)
, l̄n(x) =

−f̄ ′n(x)

bn + f̄n(x)
,

where

f̃n(x) =
1

n

n∑
j=1

Kn(x− ε̃nj), f̂n(x) =
1

n

n∑
j=1

Kn(x− εnj),

and

f̄n(x) =

∫
f(x− anu)K(u) du = E[f̂n(x)].

Note also thatf̄ ′n(x) = E[f̂ ′n(x)]. Elaborating on arguments of Bickel [2], Schick [12]
showed that ∫

|l̄n(x)− `(x)|2f(x) dx→ 0

wheneveran → 0 andbn → 0. We now improve upon his (3.16). Arguing as there one
gets the bound

|l̂n(x)− l̄n(x)| ≤ |l̂n(x)| |f̂n(x)− f̄n(x)|
bn + f̄n(x)

+
|f̂ ′n(x)− f̄ ′n(x)|
bn + f̄n(x)

.

Using the boundsnanV ar(f̂n(x)) ≤ cf̄n(x), na3
nV ar(f̂

′
n(x)) ≤ cf̄n(x) and|l̂n(x)| ≤ c/an

used in Schick [12] one gets

sup
x∈R

E[|l̂n(x)− l̄n(x)|2] ≤ C/(na3
nbn)

for a constantC. This shows that

E
[ ∫

(l̂n(x)− `(x))2f(x) dx
]

= o(1) +O((na3
nbn)−1).

Define now functionsln from R× Rn × (0,∞)× (0,∞) by

ln(x, y, a, b) = −
∑n

i=1 a
−2K ′(a−1(x− yi))

nb+
∑n

i=1 a
−1K(a−1(x− yi))

,

for x ∈ R, a, b > 0 andy = (y1, . . . , yn) ∈ Rn. Then we can express

l̃n(x) = ln(x, (ε̃n1, . . . , ε̃nn), an, bn)

and
l̂n(x) = ln(x, (εn1, . . . , εnn), an, bn), x ∈ R.
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SinceK ′(0) = 0, it is easy to see that

ln(yj, y, a, b) = ln−1(yj, (y1, . . . , yj−1, yj+1, . . . , yn), a, (nb+K(0)/a)/(n− 1)),

From this and the above we now immediately obtain

E
( 1

n

n∑
j=1

(l̂n(εnj)− `(εnj))
2
)

= o(1) +O((na3
nbn)−1).

Fory, z ∈ Rn andν = 1, 2, we have

n∑
j=1

|zjK
(ν)
n (yj)| ≤ ca−ν

n max
1≤i≤n

|zi|
n∑

j=1

Kn(yj)

for some constantc. So we can bound the derivative of the mapgj(t) = ln(yj + tzj, y +
tz, an, bn) by a constant timesa−2

n max1≤i≤n |zi|. This shows that

1

n

n∑
j=1

|l̃n(ε̃nj)− l̂n(εnj)|2 = Op(a
−4
n max

1≤j≤n
δ2
nj).

Let us now summarize our findings.

Lemma 8.1 Supposena3
nbn →∞ andmax1≤j≤n δ

2
nj = op(a

4
n). Then

1

n

n∑
j=1

|l̃n(ε̃nj)− `(εnj)|2 = op(1).

Moreover,

1

n

n∑
j=1

|l̃n(ε̃nj)− l̄n(εnj)|2 = Op(a
−4
n max

1≤j≤n
δ2
nj + (na3

nbn)−1).
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