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On the construction of efficient estimators in
semiparametric models

J. Forrester, W. Hooper, H. Peng, A. Schick

Summary: This paper deals with the construction of efficient estimators in semiparametric models
without the sample splitting technique. Schick (1987) gave sufficient conditions using the leave-
one-out technique for a construction without sample splitting. His conditions are stronger and more
cumbersome to verify than the necessary and sufficient conditions for the existence of efficient
estimators which suffice for the construction based on sample splitting. In this paper we use a
conditioning argument to weaken Schick’s conditions. We shall then show that in a large class
of semiparametric models and for properly chosen estimators of the score function the resulting
weaker conditions reduce to the minimal conditions for the construction with sample splitting. In
other words, in these models efficient estimators can be constructed without sample splitting under
the same conditions as those used for the construction with sample splitting. We demonstrate our re-
sults by constructing an efficient estimator using these ideas in a semiparametric additive regression
model.

1 Introduction

Bickel [2] used sample splitting techniques to give a general procedure for constructing
adaptive estimators in semiparametric models. His construction is essentially an existence
result as only a small part of the sample was used to construct the influence function. The
moderate sample behavior of his construction is not expected to be good. The sample split-
ting idea was further developed by Schick [11]. He used a symmetrization argument to give
a procedure for the construction of efficient estimators in semiparametric models using two
estimators of the efficient score function each based on about half the sample. This con-
struction works under minimal assumptions as shown by Klaassen [7] who demonstrated
that Schick’s sufficient conditions are also necessary. These conditions require the estimate
of the efficient score function to be consistent in fenorm and its “mean” to converge

to zero fast enough. Recently, Schick [21] has generalized the sample splitting approach to
semiparametric Markov chain models.

Schick [12] gave sufficient conditions for the construction of efficient estimates without
sample splitting. His conditions strengthen the consistency condition and impose addi-
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tional conditions that measure the influence of the individual observations on the estimator
of the efficient score function. The latter conditions which require dropping observations
from the estimator of the score function can be quite cumbersome to verify. One expects
procedures that avoid sample splitting to perform better in moderate sample sizes. This has
been substantiated by simulations. However, sample splitting has remained useful due to
the simpler conditions.

In this paper we shall use conditioning arguments to relax Schick’s [12] sufficient condi-
tions. Conditioning was already utilized by Schick [13, 14] to construct efficient estimators
in semiparametric regression models. He conditioned on the covariates to simplify the con-
ditions. Here we push this idea further and condition on transformations of the data which
are not necessarily observable anymore. We shall see that if the efficient score function is
of a certain type and its estimator is carefully selected, then the additional conditions asso-
ciated with dropping observations are automatically satisfied. We thus arrive at conditions
which are essentially those used in the constructions using sample splitting. Van der Vaart
[22] has shown that for a class of semiparametric models with a special structure efficient
estimates can be constructed without sample splitting under almost minimal conditions.
Our results improve on those of van der Vaart [22] and are applicable to a considerably
larger class of models.

We shall formulate our results more generally for the construction of estimators with a de-
sired influence function. If the desired influence function is the efficient influence function,
then our construction yields an efficient estimator. However, in some cases one might be
interested in influence functions other than the efficient one, say for robustness reasons,
and then our construction results in a robust estimator.

Let us now illustrate the idea behind our approach. At the heart of constructing efficient
estimators is the following problem. Given independent and identically distribpted
dimensional random vectorX,,q, ..., X,,, provide conditions on the functioh, from

R™+1)4 into R™ that imply

1 n
Hy = =S hn(Xjs Xt o Xom) = 0p(1). (1.1)
\/ﬁ; J 1 p( )

In applications,h,, (-, X1, - .., Xu,) is the difference between the estimated and actual
score functions. Now suppose that we can write

K
hn(an7Xn17 cee 7Xnn) = ngnj<yknj7 Zk:nl; ) ann); .] = 17 ceey T
k=1
where, for eactk, (Yin1, Zkn1), - - -» Yenn, Zknn) @re independent random vectors of di-
mensiong, + pr and ge,1, . - ., grnn are measurable functions froRf: x R™+ into R™.
Then we have

and can use the following basic lemma to treat the terms

n

Z Gknj (Yknj7 Zknty - - ann)-

1
Gnk = =
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Basic Lemma. Let (Y1, Zn1), - - - s (Yan, Znn) be independent random vectors of dimen-
sion ¢ + p and gy, . . . , gnn, be measurable functions from R? x R" into R™ such that
1 < /
— Z Gnj(Ys Zn1s - -y Zyn) Frj(dy) = 0,(1) (1.3)
and
1 n
- / 1905 (U Znt, -+ Zoun) 1P Fuj(dy) = 0p(1), (1.4)
j=1
where F,,;(dy) = F,(dy | Z,;) is the conditional distribution of Y,,; given Z,;. Then
1 n
%Zgnj(ynj,znl,...,zm) = 0,(1). (1.5)
j=1

Proof: LetZ, = (Zu1, ..., Znn) @ndDyj = ¢4;(Yoj, Zn) — | 9nj(y, Zy) Fj(dy). In view
of (1.3), it suffices to show tha{—n > i1 Dnj = 0,(1). By construction,E(D;;D,; |
Z,) = 0fori # j, sothat

||¢—22Dm||2 | Z,) ZE (1Dws1* | Z)

< 52 [ 9002 PE ) = o,(1).

This gives the desired result. O

In some applications we even have

/gn](yvznla>Znn)Fn](dy):07 7=1,...,n,

which, of course, implies (1.3). To obtain the representation (1.2) one needs a certain
structure for the score function and has to choose an appropriate estimator of the score
function.

Our paper is organized as follows. In Section 2 we give an overview of the various con-
structions used in the literature and present a new result which, with the aid of conditioning
arguments, relaxes the conditions given by Schick [12]. This result simplifies to the above
Basic Lemma under appropriate structural assumptions and properly chosen estimates of
the score function. In this case one no longer has to verify the conditions related to drop-
ping observations. This is addressed in Section 3, where we discuss two structures for the
score function for which this is possible. These structures contain the examples of Bickel
[2] and the class of models considered by van der Vaart [22]. In Section 4 we general-
ize these results to a more complicated but frequently occurring type of score function.
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There we need the full power of our new approach. In Section 5 we shall use these results
and construct an efficient estimator for a semiparametric additive regression model, the so
called partly linear model. The construction given there improves on various earlier con-
structions, by avoiding sample splitting and by working under minimal assumptions on the
error density. We only require this density to have finite Fisher information for location. A
preliminary estimator for the parameter of interest for this model is constructed in Section
6. There we generalize results of Zhao [23] on bandwidth-matched M-estimation for such
models. Section 7 gives a proof of Theorem 2.6, while Section 8 collects some technical
details for consistent estimation of the score function of the location model.

2 An overview of construction methods

Let (£2,2) and (X, *B) be two measurable spaces and. .., ¢, be measurable functions
from Q into X. Furthermore, le® be an open subset @* andI" be an arbitrary set.
For each(v,v) € © x T, let Py, be a probability measure di for which &, ...,¢,
are independent and identically distributed with common distribufipn, let L, , be a
measurable function from into R* such that

/Lg77 dFﬂ,’y =0 and / ||ng77||2d17197,y < 00,

and letA(v,~) be ak x k matrix. Let (¥, o) denote a fixed (but unknown) point in
O x I'. To simplify notation we suppress dependencelpand~, whenever possible. In
particular, we sef’> = Py, ., Py = Py, Fy = Fy ., A(V) = A(Y, ), Ly = Ly, and
L(z,9) = Ly(x). We write Ey for the expectation undédty. By a local sequence we mean
a sequencéd,, } in © such that'/2(,, — 1) is bounded.

We are interested in constructing functiapgfrom X" to R* such that the estimatdt, =

tn(&1, ..., &) Of the Euclidean parameter has influence functién,) Ly, underpPy,, i.e.,
1 n

T, =+~ 2 A(Wo)L(&;,00) + op(n~Y?). (2.1)
]:

We shall do so under the following additional assumptions.

Assumption 2.1 We have at our disposal'/2-consistent estimatat,, of the Euclidean
parameter, i.e.y), = t,(&1, . .., &,) for some measurable functidp from X" into R* such
that

n1/2(1§n — 190) = Op(l)
Moreover, this estimator i®-valued and discretized, i.e,, takes only values in the grid
{(n=Y2lc:1€{...,-2,—-1,0,1,2,... }*} N © for some positive.

Assumption 2.2 The sequencegF } and{F; } of product measures are mutually con-
tiguous for every local sequengé,, }.
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Assumption 2.3 The maps) — A(9) andd — [ || Ly||? dFy are continuous ath.

Assumption 2.4 For every local sequencg’,, }, we have
O+ — ZA L(&,0,) = 9o + — ZA Do) L(&j,00) + op(n~V?).

These assumptions are standard in the construction of efficient estimators in semiparamet-
ric models, see e.g. Bickel [2] and Schick [11, 12]. In this contéxt, is the efficient
score function and (1, v) is the inverse of the efficient information matrix

J(0,7) = / Ly Ly dFy.,. (2.2)

The idea of discretization goes back to Le Cam [8] and has now become a standard techni-
cal tool. Discretized:!/?-consistent estimates can be treated as if they were non-stochastic
sequences in the proof. Combined with contiguity arguments this often leads to consider-
able simplifications in the proofs.

Under the above assumptions it suffices to construct measurable fungtifsam © x X"

into R* andA,, from © x X" into R***, the set ofc x k matrices, such that

2 (Ons €1, En ZL@, )+ op, (n~112) (2.3)

and
An(ﬁna 517 ce 7571) = A(ﬁn) + OPﬁn (1) (24)

for every local sequencéd,}. As J,, is discrete anch!/2-consistent, we obtain from
Le Cam’s discretization argument tHgt defined by

Tn = @n + An({grwgh s >€n)zn(1§n7€17 s agn)

satisfies the desired (2.1).

The requirement (2.4) can usually be established via the plug-in principle. Indeed, suppose
thatI" is endowed with a metrié¢ and that(v, ) — A(?, ) is continuous atd,, o), then

(2.4) holds withA,,(9,,&1, ..., &) = A(Vn, 3,) Whenevery, = v,(&, ..., &,) satisfies
6(4m,7v) = op,, (1). Inthe case of efficient estimation (v, v) is the inverse of/ (v, v)
defined in (2.2). Suppose now that

= ZL & 0n) LT (&,90) = T (U, 70) + 0p,, (1)
and that there are functiors, from X x © x X" to R* such that

1 n
ﬁ Z HLn(gjvﬁmgl’ s 7571) - L(€j719n>‘|2 = OPﬁn(l)'
j=1
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Then we have
1 n
E Z Ln(ﬁ]a 1971751’ s 7£n)L1—1r(€j719n7£1) cee 7671) = J(ﬂ”H’yO) + OPﬁn(l)
7=1

and obtain (2.4) from the continuity of matrix inversion.

The more difficult part is of course (2.3). Bickel [2] was the first to tackle this problem in
generality. Motivated by earlier work oféjek, he employed a sample splitting scheme in
which only a small initial part of the sample was used to estimate the score fudgtion

and the other observations were reserved for averaging this estimator. More precisely, his
2, Is of the form

n

Z Lm(fjvﬁvfla <o 7§m)

j=m+1

1

n—m

Zn(197517 s 7571) =

wherem increases with: in such a way that, — oo andm/n — 0. Let

Lo(x,0) = Ly(2,9,&,...,&).

Bickel proved (2.3) under the following assumptions:

/ Ly(z,9,)dFy, (z) =0 (B1)

/ Vo, 90) — Lz, 0,) | dFy, () = op,, (1), (B2)

Schick [11] symmetrized the above construction. His construction calls for two estimates
of the score function each based on about half the sample and uses the corresponding other
half for averaging. More precisely, hts is of the form

Zn(ﬁvflv'”vfn):%(ZLnQ(gja&gm—i—lw”afn)+ Z Ln1(§j=197§1>--'a€n1))
j=1

j=ni+1

wheren; + ny = n andn; /n — 1/2. He proved (2.3) under a weaker set of assumptions,
namely under (B2) and

/ Lo(z, 0,) dFy, () = op, (n~). (S1)

It was shown by Klaassen [7] that these two conditions are also necessary.

While sample splitting works from a theoretical point of view, it is undesirable from a
practical point of view in moderate samples. Schick [12] has shown that sample splitting
can be avoided under additional assumptions. He considgreftthe form

(0,61, 6n) = %Zﬁn(@,ﬁ) (2.5)
j=1
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and proved (2.3) under (S1), under the following strengthening of (B2):

B, | [ Whate2) = L0 dFs, )] = ol0) (2)

and under the following two additional conditions:

_Z< (&> Un) = La, j(fjﬂ%)> = op, (n'/?), (S3)

ZEwn [ [ 120(002) = Lo ) P dEs, ()] = ol (s4)

where ) )
Ln,*j(:a 7’9”) = Eﬁn(Ln(ﬂf,ﬁn) ’ 517 oo 7£j717€j+17 v 7511)

Thus it takes extra effort [(S2)—(S4) rather than (B2)] to avoid sample splitting. For this
reason sample splitting has remained useful. See Bhattacharya and Zhao [1], Remark 10,
for a comment on this.

Weaker conditions, however, can be derived by conditioning. This was already recognized
in Schick [12] and pursued in Schick [13, 14] in the context of regression models by condi-
tioning on the covariates. Let us now formulate a theorem that pushes this idea further. The
key is that we can condition not only on observable random variables such as covariates,
but generally on random quantities that may even depend on the parameters. This results
in weaker versions of (S2)—(S4). We shall see that the weaker versions become automatic
in important cases if appropriate estimates are chosen.

Assumption 2.5 Let (), €) be another measurable space andbe a function fromx x

© x I'into Y measurable in the first argument and such that the conditional distribution
of & givenn(&, 9, v) under Py, has a regular versionVly . (dz | n(&:,9,)) for each
(¥,7) e © xT.

We then set),; = 1(&;, Un, Y0), abbreviateéVly, ., (dz | n,;) by M, ;(dx) and writeS}; for
the conditional expectation givep, . . ., n,, calculated undepy, .

Theorem 2.6 Suppose Assumptions 2.1 to 2.5 hold. Then the following conditions are
sufficient for the estimator (2.5) to satisfy (2.3):

23 [ (Lo t) = L 0)Mys(d) = 0, (07, 1)
RN 7 2
S B ([ 1w 0) - L 0P Moy(d)) =on, (). (€2)

n Z < (&+0n) = Lni (& W) = op,, (n"'/?), (C3)
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1 . . .
PSS EL( [ Mt 0a) - Lo 0P Mog(d0)) =0m, (1), (€4)
i#£]
S [ 1w 02) = Lyt 0| M) = om,, (1), ()
j=1
where
ﬁn]($7 ﬁn) = /Ln(il], 19”7 gla s 75]'*17 y7£j+17 S an)M’rLj<dy)

A proof of this theorem is in Section 7. The approach outlined in Theorem 2.6 has
been implemented to construct efficient estimates in homoscedastic regression by Schick
[13, 15, 19] and in heteroscedastic regression by Schick [14, 17] by conditioning on the

covariates. The ideas behind this approach have also proved useful in constructing efficient
estimates in some time series models (Schick [16, 18, 20]). Let us now comment on the
conditions.

Remark 2.7 Note that the conditions (S1)—(S4) follow from (C1)—(C5) upon takjrtg
be a constant. For this choice of M,,;(dx) reduces taFy, (dx) and (C1)—(C4) become
(S1)—(S4), while (C4) implies (C5).

Remark 2.8 The condition (C5) can be omitted if we slightly change (C1). More pre-
cisely, (C1) and (C5) can be replaced by

53 [ s 90) = L ) M) = o1, (071, 1)

This follows from the fact that we use (C1) and (C5) in the proof only to conclude (C1).
It is easy to see that (C1) and (C5) yield (C1’). Indeed, it follows from (C5) and the
Cauchy-Schwarz inequality that

1 ¢ A . _
ﬁ Z /(L"<x7 79”) - Lnj(l’, ﬁn))MnJ(dx) = 0py, (n 1/2)'
j=1
This and (C1) yield (C1’).
Remark 2.9 A sufficient condition for (C5) is of course

3B ([ Ve 02) = Lus(o 00) M) = om,, (1. (C5)

Sufficient conditions for (C3)-(C5) are obtained if one replaces in (C3),(C4) and (C5’) the
quantity L,,; by a quantityL;,; of the form

-i/:,](x779n) = Lnj($719n,§17 S 7§j—17nnj7§j+17 s 75”)



Construction efficient estimators 9

Refer to these conditions as (C3JC4)* and (C5’Y. To see that they are sufficient, note
that the left-hand sides of (C4) and (C5’) are bounded by the left hand sides 6fgia)
(C5")*, respectively, and that (C3) follows from (C3nd

- Z ( (&5,00) — Lnj (&5, 19”)> = op,, (n~1/2).

The latter follows as the conditional expectation of the squared norm of this expression
givenn,i, ..., n., is bounded by the left-hand side of (C5’For this note that

By, | Luj(@,0n) = Ly (2, 90) %] < Bo, | Lu(@, 90) = Ly (2, 90)|1).
These sufficient conditions are useful when it is cumbersome to caldujate

Remark 2.10 A sufficient condition for (C4) and (C5) is
mx B3, ([ 1 0) = Lui(o, 02) M) = o, (1)

while a sufficient condition for (C3)—(C5) is

max 55, (50 1L, 92) = Loy, )] = or, (0.

1<j<n

In these sufficient conditions we can repldgg by L, of the previous remark.

Let us now mention another choice fgy, namely the leave-one-out estimator
R
2nd, €1, &) = = Lug(§5,9) (2.6)
7j=1

with )

Lnj<l’,’l9) = Ln_l([E, 19751, PN 7€j—1)§j+17 Ce 7571)
Such an estimator was used by van der Vaart [22]. The reason for a leave-one-out estimator
is technical. Sincg; is not used to construdt, (-, v), the estimator,,;(-,9) of L(-, ) is
independent of;. For the leave-one-out estimator only analogues of (C1), (C2) and (C4)
are needed. More precisely, we have the following result.

Theorem 2.11 Suppose Assumptions 2.1 to 2.5 hold. Then the following conditions are
sufficient for the leave-one-out estimator (2.6) to satisfy (2.3):

>3 / (Luj (2, 9n) — L(, 0)) Myy () = 0, (n~"2), (D1)

S EL( [ 1L 0) = Ll 0) P M(dn)) = or, (), (DD
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—Z SE;, /HLM £.9,) = Logu(.0,) [PMyy(d)) = op, (1), (D3)

7]
Wheref/nji(ma ﬁn) = Eﬁn (Enj(x7 ﬁn) ’ 617 s 75@'717 M s £i+17 s 7€n)

Remark 2.12 Instead of the conditional expectatiﬁgji(:c, v,,) we could take in (D3) any
other estimator., ;;(x, 9,,) based om,; and the variableg;, k # i, j. This again is helpful
when the conditional expectation is difficult to calculate.

Remark 2.13 Each of the above theorems can be generalized to the case when
L(x,9,7) = AU, y) LW (2,0, 5) + - - + A0, ) L") (2,9, 7)

where Al (Y, v) is ank x k; matrix andL; is a function similar toL but into R*:. Let
All(9) = Al (19 Y) and L;(z,9) = L;(x,9, ) and assume that — All(¥) andy —
JIILi(z,9)||* dFy(x) are continuous aty. In this case one takes

Lo(x,9) = AV @O) L (@, 0) + - + A7) LI (,9)

where AN(9) = A,;(&1,..., &) estimatesd(9) and LI (z,9) = Lui(z,9.61,...,&)
estimated.”(z, ) underP;. To get (2.3) for the full estimate it suffices to show that, for
1=1,...,m,

All(,) = AN®,,) + op, (1), (2.7)

and

n -

LS it o, ZLM £, 0,) + oy (1), (2.8)
7j=1

To obtain (2.8) we can apply Theorem 2.6 withrawhich may depend on

3 The main idea and a first application

In the previous section we have reviewed methods of constructing estimators with a pre-
scribed influence function and have seen that avoiding sample splitting comes with a price
of additional conditions. The conditions (C1) and (C2) for the full estimate (2.5), and
(D1) and (D2) for the leave-one-out estimator (2.6), are close to the necessary conditions
(S1) and (S2). In most instances they are not more difficult to verify than (S1) and (S2).
However, (C3)—(C5) for the full estimator, and (D3) for the leave-one-out estimator, can
be cumbersome to verify. We shall now discuss situations in which these latter condi-
tions are automatically satisfied. The basis for this is the following simple, but important
observation.

Suppose the estimafe, can be expressed as

Ln(x; ﬂn) - -Z/n(x; 19717 Tniy - - 7T]nn) (31)
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gnderPﬂn for some measurable functidp, from X x © x Y™ into R”. Thenim(~,19n) =
Ln(+,9,) underPy, and the conditions (C3)—(C5) are automatically satisfied. Similarly, if
the estimatd.,,; can be expressed as

Enj(xa 19n) = I_/n—l(xv 1971) Mty 5 Mngi—15Tng+1y - - - 7777171)7 (32)

underPy for some measurable functidn,_; from X x © x Y" ! into R*, then (D3) is
automatically satisfied. Thus we have the following result which can also be viewed as a
simple consequence of our Basic Lemma.

Theorem 3.1 Suppose Assumptions 2.1 to 2.5 hold. If (3.1) holds, then the full estima-
tor (2.5) satisfies (2.3) under (C1) and (C2) alone. If (3.2) holds, then the leave-one-out
estimator (2.6) satisfies (2.3) under (D1) and (D2) alone.

Thus by choosing the estimatesiof , carefully and conditioning properly, there is poten-
tial for considerable simplifications. In the remainder of this section we shall discuss two
simple situations where this idea is easy to implement. Generalizations of this idea to a
more complex situation are discussed in the next section.
A first situation where the above idea can be put to good use is when, for#&wefy and
vel,

L(QS, 197’7) = uﬂ(z)h’Y(Uﬂ(x))v r € X, (3.3)

with h., a measurable function frof to R, vy a measurable function frod into R, vy a
measurable function fro into R* such that

By (up(61) | vo(&1)) = 0. (3.4)

LetU,; = uy,(§;) andV,; = vy, (§;). UnderPy, , we estimaté: = h., from the observa-
tionsV,, ..., V,, alone, say by

B (0,92) = (0, Vit .. Vi), v €R. (3.5)
The corresponding leave-one-out estimator is
P (0,90) = h 10, Vits oo, Vi1, Vijits -+ Van), v € R,
Given this structure, we can use
L(&5,0n) = Unj b (Vg 00),
for the full estimator, and
Lo (&5, 00) = Unj hny (Vi 9),

for the leave-one-out estimator. The latter estimator was studied by van der Vaart [22] in
this context.
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We apply Theorem 3.1 with(z, ¥, v) = vyg(x) so thatn,; = V,,. In view of (3.4), (C1)
and (D1) are immediate. Consequently, one needs to verify (C2) for the full estimator,
which is equivalent to

%Zn: T [ (Vi 00) — h(Viy)]* = op,, (1) (3.6)
j=1
with 7,,; = Ey, (|Un;]1? | Vaj). If
121%}% Tnj = Op, (1), (3.7)
then (3.6) is implied by
LS DV )~ h(V2)]* = 01, (1), (3.9
j=1

For the leave-one-out estimator one needs to verify (D2), which is
1 < R 5
- > Ti [ (Vg ) = (Vi)™ = o, (1). (3.9)
j=1

This improves upon the result of van der Vaart [22] who requires that the expected value
of the left-hand side of (3.9) tends to zero:

Ey. [Tm [ (Vi 9) — h(vn1>]2] = o(1). (3.10)

We conclude with a closely related situation. It does not quite fit into the setting of Theo-
rem 3.1, but can be treated with a little extra effort. It builds a bridge to what we do in the
next section.

Suppose now that for all € © andy € T,

L(z,9,v) = [uﬁ(x) — /Uﬂ quM} hy(vy(z)), =€ X, (3.11)

with %, a measurable function frofiR to R, vy a measurable function frofd into R anduy
a measurable function frodi into R* such thatu,y(¢;) andvy(&;) are independent under
Py, and

Ey by (va(&1))] = 0. (3.12)
Let », U,; andV,,; be as before. We require thaty,[||U,.:1]/*] and Ey, [h*(V,1)] are
bounded. Undel; we estimateh as before only from the observations, ..., V,,,

namely byﬁn(v, Y,) asin (3.5), and take

. . _ 1 <&
Ln(&5,0,) = [Unj — Up) hn(Viny, 9,)  where U, = - ; U,;.
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n ' J n J n

For this write

j=1
with
1 & >
= > (U = Eo, [0 )] [ (Vas, 90) = h(V2j)]
j=1
and

n

1
ﬁ lz:; ni E19 nzH

We can apply Theorem 3.1 witf,; = V,,; to conclude thaf}, = op, (n~'/?). Indeed, the
left-hand side of (C1) is zero and the left-hand side of (C2) eqlig)$||U,.1 ||| times the
left hand side of (3.8). Finally, we hav&, = op, (n~'/?) because

n

> o (Vag, ).

j=1

S|

1 n
EZ[UM—E%[UM]] = Op, (n"?) and Zh (Vg Un) = 0p, (1),
j=1

the former since?y, [||U,.1 ||?] is bounded, the latter by (3.8) ait), [1(V,;)] = 0 and since
Ey, [h*(Vy,1)] is bounded.

4 A second application

Let us now generalize the ideas in the previous example. For this we make the following
assumption.

Assumption 4.1 For every(¥,~v) in © x I, Ly, is of the form

L(@,9,7) = [us(w) = o (09(@)) | o (09(@), w0, () (4.1)

for a measurable functioh, , fromR™ x R into R and measurable functions, vy and
wy ., from X to R¥, R™ and R, respectively, such thdtuy (&), vs(&1)) and wy (&) are
independent undef; , and where

o (vo(§1)) = By (ug(&1) | va(61))

and
By (ho(v9(&1), wo,(€1)) [ v9(&1)) = 0. (4.2)
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This structure arises in various regression models with(¢;) the error variable and,
andv, functions of the covariates only. One such model is the partly linear model which
will be treated in detail in the next section. Single index models also have this structure.
Let us setl,,; = wy, (&), Voj = v, (&) andW,,; = wy, (&;). Also, seth(v,w,d) =

hy A (v, w) and p(v,¥) = pg~,(v). Given the form (4.1), we should strive to use The-
orem 3.1 withn,; = (V,;,W,;). Consequently, we should estimdig, (v, w) by an
expressiorﬁn(v,w,ﬂn) which can be written as a function of the variabl@$;, W),
j=1,...,n,underP,, . Itis natural to estimatg(v, ¥,,) by a linear smoother, namely

ﬂn(vaﬁn> = ani<vavnl>~--7vnn)Uni7 (S Rm7
i=1

wheres,, . .., s,, are measurable functions frof®™)"*! into R*. This then leads us to
the estimator

~

En(fﬂﬁ 1971) = [Unj - ﬂn(vnjv ﬁn) hn(vnj7 ana 1971)7
whereh,, is expressible as

hn(’l), w, ’l?n) = hn(U, w, 19717 an, Wnl; ceey an, Wnl)

under Py, , although it needs to be constructed without the knowledgg.oHere Theo-
rem 3.1 is not directly applicable. Instead we proceed as follows. We write

R 1<
- Ln ‘aﬂn - L '719n = Tn _Tn _Tn _Tn )
n; (5] ) n; (5] ) 0 1 2 3

where
1 n
TnO = E ]Zl |:Unj - M(ana 1971)] Anj7
Tnl = % Z [ﬂn(vny 1971) - ﬁn(vnjy ﬁn)i| Anj7
j=1
T = % Z [ﬁn(vnﬁ 19”) - M(ana 1971)] Anj7
j=1
Tn3 = % Z |:,an(vm7 1971) - M(anv 19%)] h(an, an? 7971)7
j=1
with .
(0, 00) =Y 5010, Var, o Ve (Vi 0), - 0 € R™,
=1
and

Anj = n(vnjv ana 19%) - h(vnjﬂ W”j7 19”)
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To get the desired

n n

%Zin(fj,ﬁn) - %ZL(gj’ﬁn) +0Pgn(n_1/2)> (43)

j=1 i=1
we need to show that, far= 0, 1, 2, 3,
Toi = op,, (n71/?). (4.4)

We can use Theorem 3.1 or the Basic Lemma to give sufficient conditions for the cases
i=0,1,3.
A sufficient condition for (4.4) with = 0 is

1 n
- > on AL =op, (1), (4.5)
7j=1

where
0'121j = El%(HUn] - M(an779n>"2 ‘ V”J)

This follows from Theorem 3.1 applied with,; = (V,,;, W,,;). Indeed, in this case, the
left-hand side of (C1) equals 0 and (C2) is equivalent to (4.5).
A sufficient condition for (4.4) with = 3 is

1
- > Nitn(Vags 0n) = (Ve 0)l1* B, (0 (Vg Wi 0)[Vag) = 0p, (1), (4.6)
j=1

To see this apply Theorem 3.1 with, = (U,,;, V»,;) and use (4.2). To get a sufficient con-
dition for (4.4) withi = 1, write T,,; as a double sum and change the order of summation
to arrive at

n

T = 1 Z [Um - M(Vm'>i| A

n 4
=1
with .
Am’ = Z Sm‘(vnja an SR Vnn)Anj>
j=1
a function of (V,,1, Wa1, . .., Vi, Wi). By conditioning on these variables, we obtain

from Theorem 3.1 or the Basic Lemma that (4.4) with 1 is implied by
1<, «
= o2 AL =op, (1). 4.7
n n
=1

Indeed, for this application the left-hand side of (C1) is 0 and (C2) is equivalent to (4.7).
In most applications the smoothing matfx with (i, j)-entry

Snz'j = 37Li<vnj7 ana SR Vnn)
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will have a stochastically bounded operator norm:

sup  [Suall = O, (D). (4.8)

z€R™:||z||=1
Then (4.7) is implied by (4.5). Let us now summarize our findings.

Theorem 4.2 Suppose Assumption 4.1 holds and the smoothing matrix satisfies (4.8).
Then (4.3) is implied by (4.5), (4.6) and

- Z (Vs Un) = Vs 02| By = g, (n7172). (4.9)

Remark 4.3 Note that the squared norm of the left hand side of (4.9) can be bounded via
the Cauchy-Schwarz inequality by

1 B
=A% S in(Vags 0n) = Vi, 00) 2
i=1 j=1

From this bound we can derive sufficient conditions for (4.9). Of course, we can also use
Theorem 2.6 to verify (4.9) directly.

Simple sufficient conditions can be given if the quantities (2?(V,,;, W,;, 9,)|V,;) and
o7, are bounded.

Theorem 4.4 Suppose Assumption 4.1 holds, the smoothing matrix satisfies (4.8),

max a =0Op, (1) and max Ep, (0 (Vi Wi, 90)|Vaj) = Op, (1).

1<5<n 1<j<n

Then (4.3) follows from

1 e~ 2
-y [hn(vnj, Wi ) — h(Vigs Wi, 19n)] — op, (1), (4.10)
1. 2
=3 (Vi 90) = Voo 90| = o, (1) (4.12)
j=1
and
I, _
- > (Vi 0n) = (Ve 0) I = Op, (n71). (4.12)
=1

Remark 4.5 Of course, we could replace (4.12) by (4.9). We have chosen the stronger
(4.12) as itis easier to interpret. Moreover, it can typically be satisfied via under-smoothing
as we shall show in the next section.
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5 Efficient estimation in a partly linear regression model

In this section we shall apply the results of the previous section to construct efficient esti-
mates for a partly linear regression model. In this magek (Y;, U;,V;) is assumed to
take values iR x R* x [0, 1] and satisfies unde?,, the structural relation

}/j:ﬁng+p(1/j)+5j, j=1,...,n,

whered, is an unknown vector ifR*, p is an unknown Lipschitz-continuous function on
[0, 1], the unobserved error variaklghas unknown density with finite Fisher information

J and is independent of the covarigt€;, V;) which has distributiony). The nuisance
parametery, is the triple(p, f, Q). We impose the following additional assumptions on the
covariate distribution.

Assumption 5.1 If (U, V) has distribution@, then E[||U||*] < oo, there is a Lipschitz
continuous function: such thatu (V) = E(U|V), the matrixWW = E[(U — u(V))(U —
(V)] is positive definite, and the marginal distributiéhof V' has a density that is
bounded and bounded away frénon the interval0, 1].

An estimatory,, is efficient in this model if

n

G = o+ S CTW) T, — V)Y, — 950 — plV;)) + op(n™ 7).

J=1

where/ = — f’/ f is the score function for location. Such estimators have been constructed
by Cuzick [3] and Schick [13] under the additional assumption that the error deghiség

mean zero and finite variance. Cuzick used Bickel's [2] sample splitting scheme, while
Schick avoided sample splitting by conditioning on the covariates. Bhattacharya and Zhao
[1] constructed efficient estimates without these moment assumptions, but required the
error densityf to be symmetric with a bounded derivative and positive in a neighborhood of
0. Their construction utilized the sample splitting scheme of Schick [11]. In their Remark
10, they explain thantractable calculationsassociated with the verification of the leave-
one-out type of conditions for their M-type regression estimate forced them to use sample
splitting. Because this model satisfies Assumption 4.1 as we shall see below, the approach
described in the previous section will avoid the verification of these conditions.

We shall show that efficient estimates exist without the moment or symmetry assumptions
of these papers. We shall, however, require the identifiability condition

[ @)@ =0

for some bounded odd function with a positive and bounded derivative. A possible
choice is
Y(z) = arctan(x), z € R.

The efficient score function for this case is given by

L(&,9) = (U; — p(Vy))(g;(0)), where &;(d9) =Y; —d"U; — p(V;).
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Thus Assumption 4.1 holds with
us(&) = Uy, vp(§) =V; and wy,o (&) = €;(9) = Y; — 0" U; — p(V)).

Note that (4.2) follows frony ¢(z) f(x) dx = 0.
Let now¢ be a symmetric continuously differentiable density with suppett 1] and set

() = %qb(%) reR,c>0.

Modifying the arguments of Zhao [23] slightly we can show that/&-consistent estimator
of ¥, is given as a minimizer of

T 0 DY = (U= U, (V= V),

( 1<z<j<n

D,(t) :=

provided the bandwidth, is chosen such that,, — oo andn'/2¢2 — 0. Details are given
in Section 6. Thus Assumption 2.1 holds with a discretized version of this estimator.
Assumptions 2.2 to 2.4 are verified in Schick [13].

Forv e [0,1], we estimatep(v) by j,(v,7,) which is the solutiort to the equation
W, (t,v,9,) = 0, where

andc, ~ n~'/3(logn)'/3. One can show that this estimator satisfies
sup |pn (v, 0) = p(v)| = Ok, (n™"*(logn)'"*). (5.1)
0<v<1

This result is in the spirit of Hrdle and Luckhaus [5] and&tidle et al. [4]. It does not
immediately follow from their results, but needs some modifications. Here are the details.
Sinces — ¥, (s,v,d,) is increasing, we see thgt, (v, v,,) — p(v)| > ¢, (L + t) if either
U, (p(v) + co(L + t),v,9,) < 0o0or ¥, (p(v) — c,(L + t),v,9,) > 0 for all positivet
and L the Lipschitz constant gf. Furthermore, sinceé has suppori—1, 1], we have the
inequalities

U, (p(v) 4 cu(L+1),0,9,) > U, (cut,v)

and

an(ﬂ(v) - Cn(L + t)7 v, 1971) S \Pn(_cntv U)a
where

Zgbcn Y ﬁTU p(V]) +t)
This shows that fot > 0,

TulL+1) = P, sup |pa(v, 9) = p(0)| > calL +1))

0<v<1

< Pﬁn< inf W, (cut,v) < O) + Pﬁ"( sup W, (—cpt,v) > 0).
0

0<v<1 <w<1
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A standard argument involving the Bernstein inequality yields now that

U = sup sup |V, (t,v) — Ey, [V, (t,0)]] = Op,, (cn). (5.2)

0<v<1 Jt|<1

It is easy to check that

By, [0, (t,v)] = / By + ) f(y) dy / 9(v — cxw)$(w) dw.

Thus, fort > 0,

- 1
. -1 Lo -1
it 6 B [alent,0)] 2 5 int o), [0+ cat) () dy

and
sup ;' By, [V, (—cpt, v)] < sup g(v)c;lfw(y—cnt)f(y) dy.

0<v<1 0<v<1

By the assumption om, the mapr(s) = [(y + s)f(y) dy satisfiesr(0) = 0 and has
a continuous positive derivative. Combining the above we see that there are positive con-
stantsd; andd, such that, for each> 0,

To(L 4 1t) < Py, (dit — ;' UF < 0) + Py, (—dot +c;' V" > 0).

From this and (5.2), the desired (5.1) is immediate.
We use the residuals

Ei(0,) =Y, =0 U; — pu(V3,0), j=1,....n,

to estimate’ by

io(e.9,) = IS K (x—&5(0,))
SR b+ 230 Koz — €5(9,))

Herea, andb, are sequences of positive numbers that converge to zero at a rate to be
determined later an&’,(z) = K(z/ay)/a, for a positive, bounded symmetric density

K that is twice continuously differentiable witlk”|/K and|K"”|/K bounded. At this
moment, we only assume that is a linear smoother

r € R.

fn(v) = Z snj(v, Vi, ..., Vi)U;
j=1

with a smoothing matrixs,, that satisfies (4.8). This allows us to discuss various choices
later. Finally, our candidate for an efficient estimatorgis

a5 S OWda(0a) (U = o (V)5 (01), ),
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n n

W= S0~ (V)0 — V)T and (B = - 37 B(E,(0), 7).

j=1 j=1

In view of Theorem 4.4, this estimator is efficient if the following three conditions are true.

- Z [0n(& — U(;(9))]? = op,, (1), (5.3)
=3 (Vi) = VI = o, (1), (5.4
—Z 17 (V;) = m(V)IP = O, (n7"), (5.5)

where

fn, (v Zsmvvl,..., W) (V5).

J=1

It follows from Lemma 8.1 that (5.3) holds ifa3b,, — oo andn?/3a? /(logn)?/? — oo,
e.g.,a, ~ n /" andb, ~ n~'/2 work. Finally, (5.4) and (5.5) are satisfied by under-
smoothed kernel estimates. Indeed, for a kernel estimate with bandvyidtind kernek)

as above, the left hand side of (5.4) is of or@gr, (d2 +n~'d;;"), while the left hand side

of (5.5) is of orderO(d?). Keep in mind that we assumedto be Lipschitz. Thus if we
taked, ~ n~'/2, we obtain both (5.4) and (5.5). Of course, the corresponding smoothing
matrix satisfies (4.8).

Instead of kernel estimators we could have also used locally linear smoothers. Larger
bandwidths are possible under additional smoothness assumptions.

6 Bandwidth-matched M-estimation in partly linear mo-
dels

In this section we utilize the fact that our error density has finite Fisher information to relax
some of the conditions used by Zhao [23] to obtain th&-consistency and asymptotic
normality of his bandwidth-matched M-estimator for partly linear regression models. In
particular, we allow the random variable appearing in the linear part to be unbounded and
relax the smoothness assumptions on his loss function.

We consider again the partly linear model in which the observatiprs(Y;, U;, V;) take
values inR x R* x [0, 1] and satisfy the structural relation

Yj:ﬁng—kp(Vj)—i—ej, 1=1,...,n,
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for somed, in R* and some Lipschitz-continuous functipron [0, 1]. The error variable
e1 has densityf with finite Fisher information and is independent of the covariate ;)
whose distributiorf) fulfills Assumption 5.1.

Let 7 be an even, convex and Lipschitz continuous function firno [0, o). The cor-
responding bandwidth-matched M-estimatordgfis then a minimizer of the convex U-
process

Dult) = oo ZZTY Y —t"(Ui = Uj))¢e, (Vi = V)

1<z<]<n

where ¢, is as in Section 5 with a bounded symmetric densitwith support[—1,1].
Zhao's [23] version also includes the weight factéféV;) H(V;). To keep our notation
simple, we have not included these here.

Sincer is Lipschitz, it is absolutely continuous with a bounded almost everywhere deriva-
tive ¢, say || < B. Sincer is convex and even, this derivative can be taken to be
non-decreasing and odd. Now define functign@andz, by

Uy (t) = E[Y(t — )] /¢t— y)dy, teR,
and
Pa(t) = E[Yp(t + 1 — &2)] //wt+x— (z)dxf(y)dy, teR.

Since is bounded and has finite Fisher information, the functiaf is differentiable
with bounded and uniformly continuous derivative

/w (t—y)f'(y)dy, teR.
Indeed, the almost everywhere derivatjeof f is integrable with
£ = [ Vel rwdy < 77

Thusy| is bounded by3|| /||, and uniformly continuous as
s+ ) = 010 = | [0 =) -0 - £ dy
<5 [1f-0-rwldy

and[ |f'(y—t)— f'(y)| dy — 0 ast — 0 by the translation continuity if.;, see Theorem
9.5 in Rudin [10]. Thaty] is the derivative ofi; is easy to check. Similarly, one can
show thaty; has a bounded and uniformly continuous first and second order derivatives

Yy andyy, namelyyy(t) = [[(t +x —y) f(z)f'(y) dedy andyl(t) = — [[(t +x —
y) f'(2) f'(y) dz dy.
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Theorem 6.1 Supposé has finite Fisher informatior) satisfies Assumption 5.1 js an
even, convex and Lipschitz continuous function fRoto R, and

/ Wz —y)f(z)f'(y) dedy > 0. (6.1)

Suppose also thatc, — oo andn'/?c2 — 0. Letd,, be a minimizer oD, (). Then
T = o + ~ ZA (V)1 (21)9(Vi) + op(n™"2)

whereA = v4(0) E[g(Vi)(Us — p(Vi))(Uy — u(VA))T].

The above theorem relaxes some of the conditions of Zhao [23]. We do not need the
variable ||U; || to be bounded, but require it instead to have finite fourth moment. We
remove Zhao's smoothness assumption (A2)(a) on the jointdaand weaken Zhao's
assumption (A4)(b).

If 7(x) = ||, theny(z) = sign(z), Y1 (t) = 2F(t) — 1, ¢(t) = [(2F(t+2)—1)f(x) dx,
andy4(0) =2 [ f2(z) dz > 0.

Proof: We follow the proof of Zhao [23] who utilizes Pollard’s [9] convexity lemma; see
also Hjort and Pollard [6]. Let

Sn(t) Vb (ei—e+p(Vi)—p(Vy)+n" 2t T (U;—Uy)) e, (Vi V).

1<z<]<n

We shall prove that, for each fixed= R”,

n [ano 4+ Y2%) — D, (0) — n_1/2tTSn(O)] — tT At + 0,(1) (6.2)
and that .
50(0) = = 37 2(U: — (V) (=g (Vi) + o(n~ 7). (6.9

=1

It then follows from the convexity lemma that/?(J,, — 0y) = —%A—lnl/ZSn(O) + 0,(1)

from which the desired result follows.
To verify (6.2) and (6.3) we need the following simple fact about U-statistics. Let

&5)

1<7,<]<TL

be a U-statistic with a symmetric square-integrable ketnelLet h,,(z) = Elhy(x,&)].
Suppose thak[||h, (&1, &) [I°] = o(n), that E[||h, (&) — h(&)]]?] — 0 for some function
h with E[||h(&)]|?] < oo, and that/nFE[H,] — a, then

n

W2 (H, ~ ST 20R(E) — BIRE)]) = a + 0,(1)

=1
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This is an easy consequence of the Hoeffding decomposition
1=, - .
Hy = E[H] + ~ > 2(ha(&) = Elhn(&)]) + R,
=1

wheren(n — 1) E[|| R[] < 2E(||hn (81, &)I]-
To prove (6.3) we use this with

ha(81,82) = (U2 = Uh)(e1 — €2 + p(V1) = p(V2))@e, (V1 = V2)

and B
h(&1) = —(Ur — u(V1))¥i(e1)g(V1).

Since
e, (0) = Elo, (0= Vo)l = [ g(0 = co5)0(5)ds
is bounded, we immediately obtain that

El|ha (&1, &)I°] < 2B*E[(|U[I* + 1U:2%) ¢z, (Vi = Va)]
< 48?6, | E[|UL][*¢c, (Vi = V2)] = O(c;, ") = o(n).

n

It is well known that[ |g., (v) — g(v)| dv — 0. Sinceg is bounded, this give§ |g., (v) —
g(v)|g(v) dv — 0. From the latter we derive that, (V1) — g(V41) in probability. Note that

In(62) = = [ (U = Vi + ea))n 1+ p(V2) = (Vi +eat)g(Vi + o)) do
Sincey, p andy are continuous ang, andg are bounded, one finds thaY|| 2, (&) —
h(£)]|?] — 0. Since is odd ands; — ¢, has an even density, we see thiat0) = 0.

Thus|ys(t)| < Bl f'||1|t|. Sincep andyu are Lipschitz and; is bounded, we get that the
expectationF[h, (&1, &)], which equals

B[ (002 -+ o) = 1(V)p(12) = (Vi + cat))g (Vi + ca0)o(0) do,

is of ordero(c?) = o(n~'/?). This shows that (6.3) holds.
To prove (6.2) we first note that its left hand side can be expressed’d$, with

H, = /01 t7(Sp(ut) — S,(0)) du,
a U-statistic with kernel
ha(€1,6) =" (Us = U)o, (Vi — V5) /01[1/1(77 +nPut T (Uy — Uh)) = ¢(n)] du
withn = e; — g9 + p(V1) — p(V3). We have as above that

Elhyy(&1,6)] < 4B|tPE[|U> — Ui[P¢z, (Vi = V2)] = O(c;,") = o(n).

n
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Sincey; is Lipschitz with Lipschitz constanB|| f'||1, we get

Elhy(&0] < BIF IR BT — ULl 62, (Vi = Vo)l = O(e,'n ™) = o(1).
Finally, sincey), is Lipschitz ang» andp are continuous, we have, with = p(V;) — p(13)
andY = (Uy — Uy)¢., (V1 — V) and

n2EH,] = n'/2E [tTT / 1 (%(A V2T (U — Uh)) — sz(A)) du}

0

&

(187 (Us = U) P, (Vi = Va)eh()] + o(1)
O)B[[t7(Us = U1) e, (Vi = Va)] +o(1)

()| [[t7(Uz = (V2D + It (U1 = (Vi) ] 6, (Vi = Va) | + (1)
(0)E[0*(V)ge, (A)] + (1),

wherec?(Vy) = E(|t"(U; — u(V1))|? | V1). Sinceg., (Vi) — ¢(V4) in probability, we
obtain that

N~

wl»—*wl»—[\ph—t
= =
o~

I
-
o

n'2E[H,] — ¢4(0)E[0*(Vi)g(V1)] = " At.
This completes the proof of (6.2). O

7 Proof of Theorem 2.6

Let us now give the proof of Theorem 2.6. We have already seen in Remark 2.8 that (C1)
and (C5) imply (C1’). Thus we only have to show that (C1’) and (C2)—(C4) imply (2.3).
To simplify the notation, we abbreviate the conditional expectatign appearing in the
lemma byE,, the conditional expectation give,, . .., &—1, M, {1, - - -, &) UNderPy,

by E,;. We set

T = Lnj(&,90) — L(&,90)
[ a0 G 6 Maldy) - LG 50)
and
T3y = Bui(T) = [ (Logl,00) = Lo, 02)) My ).

Then (C1’) can be written a5 Y7, T7x; = op, (n~'/?). Let D,,; = T,,; — Ty;. In view of
(C1) and (C3), it suffices to show th&t, = = >~" | D,,; = op,, (n~1/2). But this follows
if we show thatE, (n||D,||*) = op,, (1). Let us now establish this.

We havek,,; (|| Dyl[*) < En; (|| T541*) and

Enj (1T0s1%) /HEm Un)) = L@, O, 7)||* My (dz)

< / By (1 (11, 9) — L, 00, 7)|[2) My (di),
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so that (C2) implies
1 n
- > EalIDull?) = 0p, (1) (7.1)
7=1
Fori # j, we haveE,;(T,;;) = E,;(E,;(T,;)) and thus

Eoj (I Drj = Boni (Drj)1?) = B (| Tj — B (Tj) — B (T — Ei(Tj))11?)
B (1T — Bons (1) 1),

IN

and furthermore
oy Ty = B To)|) = [ [Eas (L. 92) = By (Bus (L 9| Moy )

/ (o, 9) — B (L, 9,))|I2) Moy ().

IN

Thus (C4) implies
1
EZ > En(||Dnj = Bni(Dnj)|1*) = 0, (1). (7.2)
i#j
ASE,;(D,;) =E, (T, —Tr)=Tr — T = 0, we have, for # j,
Ev(DyiEni(Dnj)) = En(Eni(DpiEui(Dnj))) = En(Eni( Dyi)Eni(Dnj)) = 0.

Similarly, one obtain&, (E,;(D,.)D,;) = 0 andE, (E,;(D,;,)E,;(D,;)) = 0. This shows
that
En(D,);Dnj) = En((Dri — B (Dni)) ' (Dnj — Eni(Dyj))), i # 5.

From this and an application of the Cauchy-Schwarz inequality we obtain that

S S EADLDw)| < 0 S E(IDss — B D)) = 05, (1),

i#£j i#j
From the above we obtain that
E,(n]|Dyl|?) ZE (1Dws 1) ZZE i) =op,(1),
i#£]

which is the desired result.

8 Some technical details

In this section we shall give some properties of the estimator of the score furfction
of a densityf with finite Fisher information. Throughout this section we assume that
Enl, - - ., Enn are independent random variables with this dengiand thab,,., .. ., 6, are
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other random variables. We sgt;, = ¢,,; + J,,;. Let K be a positive, bounded symmetric
density that is twice continuously differentiable with’|/ K and|K"”|/K bounded. Let

a, andb,, be sequences of positive numbers that converge to zero at a rate to be determined
later. Forz € R, let K,,(z) = K(z/a,)/a, and set

e = L —fu@) gy oh® R
7 My s M o)
where " n
D= Y K-, A= Y K- e)
and

Faw) = [ & = au) K w) du = Elfy (2]

Note also thatf! (r) = E[f;t(x)]. Elaborating on arguments of Bickel [2], Schick [12]
showed that

/m@wwwmﬂmM—w

wheneveru,, — 0 andb, — 0. We now improve upon his (3.16). Arguing as there one
gets the bound

’M@_%@N§|(”v;ihwﬁmg@flzgey

Using the boundsa, Var(f,(z)) < cfu(z), na®Var(f.(z)) < cfo(x) and|l,(z)| < ¢/an
used in Schick [12] one gets

sup B[l () — 1,(2)|’] < C/(najby)

zeR

for a constant”. This shows that
E[ / (I () — £(2))2f (2) dx] = o(1) + O((na®b,)™).

Define now functiong, fromR x R™ x (0, 00) x (0, 00) by

> 02K (a7 (& — i)
nb+ >0 a ' K(a Y (z —y,))

forz € R,a,b > 0andy = (yi,...,y,) € R". Then we can express

ln($) == ln(zv (gnla cee 7§nn)a Ap, bn)

ln<x> y,a, b) = -

and
l(z) = la(x, (En1, - - - Enn), Ons bn), T € R,
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SinceK’(0) = 0, it is easy to see that

ln<yj7y7a’7 b) = ln*l(yjﬁ (yl; s 7?/j717yj+17 s ;Z/n)a% (nb + K(O)/CL)/(H - 1))7

From this and the above we now immediately obtain

n

B3 o) e))?) = 0(1) + O((nalha) ™).

J=1

Fory,z € R" andv = 1,2, we have

Z |25 Ky y] )| < ca, 1H<1?<)§L|Zz| Z_;Kn(yj)

for some constant. So we can bound the derivative of the mgft) = [,,(y; + tz;,y +
tz,an, b,) by a constant times, ? max;<;<, |z;|. This shows that

- Z |l Enj) 5ny)| = Op(a," max 53;)

1<j<n

Let us now summarize our findings.

Lemma 8.1 Supposewa’b, — co andmaxi<j<n 0n; = 0y(

at). Then

%Z 1 (Eng) — Lens) P = 0p(1).

Moreover,
! z": 10 (En;) = In(ens))? = Op(a;* max 62, + (na’b,)™)
e B A e ol
]:
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