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Abstract
Statistical depth functions provide from the “deepest” point a “center-

outward ordering” of multi-dimensional data. In this sense, depth func-
tions can measure the “extremeness” or “outlyingness” of a data point
with respect to a given data set. Hence they can detect outliers – obser-
vations that appear extreme relative to the rest of the observations. Of
the various statistical depths, the spatial depth is especially appealing
because of its computational efficiency and mathematical tractability.
This chapter presents a survey of a novel statistical depth, the ker-
nelized spatial depth (KSD), and a novel outlier detection algorithm
based on the KSD. A significant portion of the chapter is built upon
the material from the articles we have written, in particular [11].

1 Introduction

In a variety of applications, e.g., network security [14, 20, 32], visual surveil-
lance [24], remote sensing [5], medical diagnostics [26], and image process-
ing [18], it is of great importance to identify observations that are “incon-
sistent” with the “normal” data. The research problem underlying these
applications is commonly referred to as outlier detection [6]. Outlier de-
tection has been investigated extensively over the last several decades by
researchers from statistics, data mining, and machine learning communities.
Next we review some of the related work. For a more comprehensive survey
of this subject, the reader is referred to Barnett and Lewis [6], Hawkins [23],
and Markou and Singh [33, 34].
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1.1 Statistical Methods

Outlier detection is recognized to be important in statistical analysis. If a
classical statistical method is blindly applied to data containing outliers, the
results can be misleading at best. Outliers themselves are actually informa-
tive and often of interest in many practical situations. They may provide
additional insights to the model under consideration. In the statistical litera-
ture, there are two commonly used approaches for multi-dimensional outlier
detection – distance-based methods and projection pursuit.

Distance-based methods aim to detect outliers by computing a distance
measure of a particular point to the centroid of a data. The point with such
“outlyingness” measure above a threshold is claimed as an outlier. The most
commonly used measure is perhaps the Mahalanobis distance (MD) which
is defined as

MD(x, Fn) =
√

(x − µ̂)T Σ̂−1(x − µ̂),

where Fn is the empirical distribution calculated from the data and µ̂, Σ̂
are location, scatter estimators, respectively. The Mahalanobis distance is a
more meaningful measure of distance than the Euclidean distance. It incor-
porates both the variability of each marginal direction and the correlation
structure of a data, and possesses the affine invariant property.

In the outlier detection context, the location and scale estimators must
be resistant to outliers, and can be obtained either by robust methods or
by forward search technique. Possessing many good properties and being
available a fast algorithm developed by Rousseeuw and van Driessen [46],
the minimum covariance determinant (MCD) estimator is perhaps the most
commonly used scale estimator. Other commonly used robust methods in-
clude M estimators [35] and S estimators [45, 48]. The sequentially forward
search [4, 19, 7] starts with a small subset of observations presumed to be
outlier-free, to which it iteratively adds points that have a small MD based
on µ̂ and Σ̂ of the current subset. Outlier region based on the MD is con-
strained to have elliptical contours, which do not follow the shape of the
distribution unless the underlying model is elliptically distributed.

The projection pursuit (PP) approach intents to reduce a multivari-
ate detection problem to a set of univariate problems through looking at
projections of the data onto some (univariate) directions. The techniques
for one-dimensional outlier identification are extensive [23, 6]. The refer-
ence [6] includes 47 tests for normal data, 23 tests for data having a gamma
distribution, and 17 tests for data having other distributions. The key
of the projection pursuit approach is to find the “interesting” directions.
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Gnanadesikan and Kettenring [17] proposed to obtain the principal compo-
nents (PCs) of the data and search for outliers in the first few PCs. Rao [41]
and Hawkins [22] argued that the last few PCs are likely to be more use-
ful than the first few in detecting outliers that are not apparent from the
original variables. Caussinus and Ruiz [13] introduced a metric weight and
examined the first few generalized PCs for outliers. Peńa and Prieto [38]
suggested the directions based on values of the kurtosis coefficients of the
projected data. The PP provides the correct solution when the outliers are
located close to the considered directions. Projection onto a low-dimensional
space may provide a graphical visualization for the behavior of outliers. It,
however, may fail to identify outliers in the general case.

Extensive attempts have been made to adopt the above two approaches
for outlier detection in structured data, for example, in regression analy-
sis, time series, and directional data. We refer keen readers to [47] for a
comprehensive survey.

1.2 Machine Learning Methods

From a machine learning perspective, outlier detection can be categorized
into a missing label problem and a one-class learning problem, depending on
the way in which the normal samples are defined in a training data set. In
a missing label problem, the data of interest consist of a mixture of normal
samples and outliers, in which the labels are missing. The goal is to identify
outliers from the data and, in some applications, to predict outliers from
unseen data. In a one-class learning problem, normal samples are given as
the training data. An outlier detector is built upon the normal samples
to detect observations that deviate markedly from the normal samples, i.e.,
outliers. This is closely related to the standard supervised learning problem
except that all the training samples have the same normal label.

1.2.1 Outlier Detection as a Missing Label Problem

Because only unlabeled samples are available in a missing label problem,
prior assumptions are needed in order to define and identify outliers. Frakt
et al. [15], proposed an anomaly detection framework for tomographic data
where an image is modeled as a superposition of background signal and
anomaly signal. Background signal is a zero mean, wide-sense stationary,
Gaussian random field with a known covariance. Anomaly signal is assumed
to be zero everywhere except over a square patch, with prior knowledge
of minimal and maximal possible size, where it is constant. As a result,
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anomaly detection is equivalent to determining whether or not an image re-
gion is identically zero, which is formulated as a multiscale hypothesis testing
problem. Reed and Yu [43] developed an anomaly detection algorithm for
detecting targets of an unknown spectral distribution against a background
with an unknown spectral covariance. The background is modeled as a
Gaussian distribution with zero mean and an unknown covariance matrix.
The target is described by a Gaussian distribution with the mean equal to
the known signature of the target and the covariance matrix identical to that
of the background. Kwon and Nasrabadi [29] introduced a nonlinear ver-
sion of Reed and Yu’s algorithm using feature mappings induced by positive
definite kernels. Kollios et al. [28] observed that the density of a data set
contains sufficient information to design sampling techniques for clustering
and outlier detection. In particular, when outliers mainly appear in regions
of low density, a random sampling method that is biased towards sparse
regions can recognize outliers with high probability.

All the aforementioned algorithms have one characteristic, the key com-
ponent of the method, in common: the estimation of probability density
functions. There are several algorithms in the literature that are developed
based upon the geometric aspects of a data set rather than upon distri-
butional assumptions, in particular, the distance-based algorithms. Knorr
and Ng [27] introduced the notion of distance-based outliers, the DB(p, d)-
outlier. A data point x in a given data set is a DB(p, d)-outlier if at least
p fraction of the data points in the data set lies more than d distance away
from x. The parameters p and d are to be specified by a user. Ramaswamy
et al. [40] extended the notion of distance-based outliers by ranking each
point on the basis of its distance to its k-th nearest neighbor and declaring
the top n points as outliers. Under the notions in [27] and [40], outliers
are defined based on a global view of the data set. Breunig et al. [8] pro-
posed the local outlier factor (LOF) that takes into consideration the local
structure of the data set. The LOF of a data point is computed using the
distances between the point and its “close” neighbors. Hence LOF describes
how isolated a data point is with respect to its surrounding neighbors. Tang
et al. [55] defined the connectivity-based outlier factor that compares favor-
ably with LOF at low density regions. Along the line of Breunig et al. [8],
Sun and Chawla [54] introduced a measure for spatial local outliers, which
takes into account both spatial autocorrelation and spatially non-uniform
variance of the data. Angiulli et al. [3] designed a distance-based method to
find outliers from a given data set and to predict if an unseen data point is an
outlier based on a carefully selected subset of the given data. Aggarwal and
Yu [2] investigated the influence of high dimensionality on distance-based
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outlier detection algorithms. It is observed that most of the above distance-
based approaches become less meaningful for sparse high dimensional data.
Therefore, projection methods are tested for outlier detection. Lazarevic
and Kumar [31] proposed a feature bagging approach to handle high dimen-
sionality. The method combines outputs of multiple outlier detectors, each
of which is built on a randomly selected subset of features.

1.2.2 Outlier Detection as a One-Class Learning Problem

When normal observations are given as a training data set, outlier detection
can be formulated as finding observations that significantly deviate from the
training data. A statistically natural tool for quantifying the deviation is the
probability density of the normal observations. Roberts and Tarassenko [44]
approximated the distribution of the training data by a Gaussian mixture
model. For every observation, an outlier score is defined as the maximum
of the likelihood that the observation is generated by each Gaussian com-
ponent. An observation is identified as an outlier if the score is less than
a threshold. Schweizer and Moura [51] modeled normal data, background
clutter in hyperspectral images, as a 3-dimensional Gauss-Markov random
field. Several methods are developed to estimate the random field parame-
ters. Miller and Browning [36] proposed a mixture model for a set of labeled
and unlabeled samples. The mixture model includes two types of mixture
components: predefined components and nonpredefined components. The
former generate data from known classes and assume class labels are miss-
ing at random. The latter only generate unlabeled data, corresponding to
the outliers in the unlabeled samples. Parra et al. [37] proposed a class
of volume conserving maps (i.e., those with unit determinant of Jacobian
matrix) that transforms an arbitrary distribution into a Gaussian. Given a
decision threshold, novelty detection is based on the corresponding contour
of the estimated Gaussian density, i.e., novelty lies outside the hypersphere
defined by the contour.

Instead of estimating the probability density of the normal observations,
Schölkopf et al. [50] introduced a technique to capture the support of the
probability density, i.e., a region in the input space where most of the normal
observations reside in. Hence outliers lie outside the boundary of the support
region. The problem is formulated as finding the smallest hypersphere to
enclose most of the training samples in a kernel induced feature space, which
can be converted to a quadratic program. Because of its similarity to support
vector machines (SVM) from an optimization viewpoint, the method is called
1-class SVM. Along the line of 1-class SVM, Campbell and Bennett [12]
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estimated the support region of a density using hyperplanes in a kernel
induced feature space. The “optimal” hyperplane is defined as one that puts
all normal observations on the same side of the hyperplane (the support
region) and as close to the hyperplane as possible. Such a hyperplane is
the solution of a linear program. Rätsch et al. [42] developed a boosting
algorithm for one-class classification based on connections between boosting
and SVMs. Banerjee et al. [5] applied 1-class SVM for anomaly detection
in hyperspectral images and demonstrated improved performance compared
with the method described in [43].

There is an abundance of prior work that applies standard supervised
learning techniques to tackle outlier detection [1, 21, 53]. These methods
generate a labeled data set by assigning one label to the given normal exam-
ples and the other label to a set of artificially generated outliers. Han and
Cho [21] use artificially generated intrusive sequences to train an evolution-
ary neural network for intrusion detection. Abe et al. [1] propose a selective
sampling method that chooses a small portion of artificial outliers in each
training iteration. In general, the performance of these algorithms depends
on the choice of the distribution of the artificial examples and the employed
sampling plan. Steinwart et al. [53] provide an interesting justification for
the above heuristic by converting outlier detection to a problem of finding
level sets of data generating density.

1.3 An Overview of the Chapter

In this Chapter, we present a survey of a novel outlier detection framework
based on the notion of statistical depths [11]. Outlier detection methods that
are based on statistical depths have been studied in statistics and computa-
tional geometry [39, 49]. These methods provide a center-outward ordering
of observations. Outliers are expected to appear more likely in outer layers
with small depth values than in inner layers with large depth values. Depth-
based methods are completely data-driven and avoid strong distributional
assumption. Moreover, they provide intuitive visualization of the data set
via depth contours for a low dimensional input space. However, most of the
current depth-based methods do not scale up with the dimensionality of the
input space.

Of the various depths the spatial depth is especially appealing because
of its computational efficiency and mathematical tractability [52]. Its com-
putational complexity is of magnitude O(�2), independent of dimension d.
Because each observation from a data set contributes equally to the value
of depth function, spatial depth takes a global view of the data set. Conse-
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quently the outliers can be called as “global” outliers. Nevertheless, many
data sets from real-world applications exhibit more delicate structures that
entail identification of outliers relative to their neighborhood, i.e., “local”
outliers. We survey an outlier detection framework that avoids the above
limitation of spatial depth.

The remainder of the chapter is organized as follows. Section 2 moti-
vates the spatial depth-based outlier detection via the connection between
the spatial depth and the L1 median. Section 3 introduces the kernelized
spatial depth. Section 4 presents several upper bounds on the false alarm
probability of the proposed kernelized spatial depth-based outlier detectors
for a one-class learning problem and a missing label problem. Experimental
results are reported in Section 5. We conclude in Section 6.

2 The Spatial Depth Function and Outlier Detec-

tion

As Barnett and Lewis described [6], “what characterizes the ‘outlier’ is its
impact on the observer (not only will it appear extreme but it will seem,
to some extent, surprisingly extreme)”. An intuitive way of measuring the
extremeness is to examine the relative location of an observation with respect
to the rest of the population. An observation that is far away from the center
of the distribution is more likely to be an outlier than observations that are
closer to the center. This suggests a simple outlier detection approach based
on the distance between an observation and the center of a distribution.

2.1 The Spatial Depth

Although both the sample mean and median of a data set are natural esti-
mates for the center of a distribution, the median is insensitive to extreme
observations while the mean is highly sensitive. A single contaminating
point to a data set can send the sample mean, in the worst case, to infinity,
whereas in order to have the same effect on the median, at least 50% of the
data points must be moved to infinity. Let x1, . . . ,x� be observations from a
univariate distribution F and x(1) ≤ . . . ≤ x(�) be the sorted observations in
an ascending order. The sample median is x((�+1)/2) when � is odd. When
� is even, any number in the interval [x(�/2),x((�+1)/2)] can be defined to

be the sample median. A convenient choice is the average x(�/2)+x((�+1)/2)

2 .
Next, we present an equivalent definition that can be naturally generalized
to a higher dimensional setting.
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Let s : � → {−1, 0, 1} be the sign function, i.e.,

s(x) =
{ x

|x| , x �= 0,
0, x = 0.

For x ∈ �, the difference between the numbers of observations on the left and
right of x is

∣∣∣∑�
i=1 s(xi − x)

∣∣∣. There are an equal number of observations
on both sides of the sample median, so that the sample median is

any x ∈ � that satisfies

∣∣∣∣∣
�∑

i=1

s(xi − x)

∣∣∣∣∣ = 0. (1)

Replacing the absolute value | · | with the 2-norm (Euclidean norm) ‖ · ‖,
the sign function is readily generalized to multidimensional data: the spatial
sign function [58] or the unit vector [9], which is a map S : �n → �

n given
by

S(x) =
{ x

‖x‖ , x �= 0,

0, x = 0

where ‖x‖ =
√

xTx and 0 is the zero vector in �
n . With the spatial sign

function, the multidimensional sample median for multidimensional data
{x1,x2, . . . ,x�} ⊂ �

n is a straightforward analogy of the univariate sample
median (1), i.e., it is

any x ∈ �
n that satisfies

∥∥∥∥∥
�∑

i=1

S(xi − x)

∥∥∥∥∥ = 0. (2)

The median defined in (2) is named as the spatial median [58] or the L1

median [57, 56].
The concept of spatial depth was formally introduced by Serfling [52]

based on the notion of the spatial quantiles proposed by Chaudhuri [10],
while a similar concept, the L1 depth, was described by Vardi and Zhang [56].
For a multivariate cumulative distribution function (cdf) F on �

n , the spa-
tial depth of a point x ∈ �

n with respect to the distribution F is defined
as

D(x, F ) = 1 −
∥∥∥∥
∫

S(y − x)dF (y)
∥∥∥∥ .

For an unknown cdf F , the spatial depth is unknown and can be approxi-
mated by the sample spatial depth:

D(x,X ) = 1 − 1
|X ∪ {x}| − 1

∥∥∥∥∥∥
∑
y∈X

S(y − x)

∥∥∥∥∥∥ (3)
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where X = {x1,x2, . . . ,x�} and |X ∪ {x}| denotes the cardinality of the
union X ∪{x}. Note that both D(x, F ) and its sample version have a range
[0, 1].

Observing (2) and (3), it is easy to see that the depth value at the spatial
median is one. In other words, the spatial median is a set of data points that
have the “deepest” depth value one. Indeed, the spatial depth provides from
the “deepest” point a “center-outward” ordering of a multidimensional data.
The depth attains the maximum value at the deepest point and decreases to
zero as the point x moves away from the deepest to infinity. Thus the depth
value of a point gives us a measure of the “extremeness” or “outlyingness”
of a data point, which can be used for outlier detection. From now on all
depths are referred to the sample depth.

2.2 Outlier Detection Using the Spatial Depth

Figure 1 shows a contour plot of the spatial depth D(x,X ) based on 100 ran-
dom observations (marked with ◦’s) generated from a 2-dimensional Gaus-
sian distribution with mean zero and a covariance matrix whose diagonal
and off-diagonal entries are 2.5 and −1.5, respectively. On each contour
the depth function is constant with the indicated value. The depth values
decrease outward from the “center” (i.e., the spatial median) of the cloud.
This suggests that a point with a low depth value is more likely to be an
outlier than a point with a high depth value. For example, the point on
the upper right corner on Figure 1 (marked with ∗) has a very low depth
value of 0.0539. It is isolated and far away from the rest of the data points.
This example motivates a simple outlier detection algorithm: Identify a data
point as an outlier if its depth value is less than a threshold.

In order to make this algorithm a practical method, the following two
issues need to be addressed:

1. The spatial depth function captures the structure of a data cloud.

2. A method to decide a threshold value.

We postpone the discussion on the second issue to Section 4 where we present
a framework to determine the threshold. The first issue is related to the
shape of depth contours. The depth contours of a spatial depth function tend
to be circular [25], especially at low depth values (e.g., the outer contour in
Figure 1). For a spherical symmetric distribution, such contours fit nicely
to the shape of the data cloud. It is therefore reasonable to consider a data
point as an outlier if its depth value is low because a lower depth implies a
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Figure 1: A contour plot of the sample spatial depth based on 100 random
observations (represented by ◦’s) from a 2-dimensional Gaussian distribu-
tion. The depth values are indicated on the contours. A possible outlier is
the observation (marked with ∗) on the upper left corner which has a very
low depth value 0.0539.

larger distance from the “center” of the data cloud, which is defined by the
spatial median. However, in general, the relationship between a depth value
and outlyingness in a data may not be as straightforward as is depicted in
Figure 1. For example, Figure 2 shows the contours of the spatial depth
function based on 100 random observations generated from a ring shaped
distribution. From the shape of the distribution, it is reasonable to view the
point (marked with ∗) in the center as an outlier. However, the depth value
at the location ∗ is 0.9544. A threshold larger than 0.9544 would classify all
of the 100 observations as outliers.

The above example demonstrates that the spatial depth function may
not capture the structure of a data cloud in the sense that a point isolated
from the rest of the population may have a large depth value. This is due
to the fact that the value of the depth function at a point depends only
upon the resultant vector of the unit vectors, each of which represents the
direction from the point to an observation. This definition, on one hand,
downplays the significance of distance hence reduces the impact of those
extreme observations whose extremity is measured in (Euclidean) distance,
so that it gains resistance against these extreme observations. On the other
hand, the acquirement of the robustness of the depth function trades off
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Figure 2: Contour plots of the sample spatial depths based on 100 random
observations (denoted by ◦’s) of a ring shaped distribution. The depth
values are indicated on the contours. The observation (denoted by ∗) at the
center of the plot represents a possible outlier. The depth values for the ∗
observation is 0.9544.

some distance measurement, resulting in certain loss of the measurement of
the similarity of the data points expressed in the Euclidean distance. The
distance of a point from the data cloud plays an important role in revealing
the structure of the data cloud. In [11], we proposed a method to tackle
this limitation of spatial depth by incorporating into the depth function
a distance metric (or a similarity measure) induced by a positive definite
kernel function.

3 The Kernelized Spatial Depth

In various applications of machine learning and pattern analysis, carefully
recoding the data can make “patterns” standing out. Positive definite ker-
nels provide a computationally efficient way to recode the data. A positive
definite kernel, κ : �n × �

n → �, implicitly defines an embedding map

φ : x ∈ �
n �−→ φ(x) ∈ �

via an inner product in the feature space �,

κ(x,y) = 〈φ(x), φ(y)〉, x,y ∈ �
n .
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For certain stationary kernels [16], e.g. the Gaussian kernel κ(x,y) =
exp

(‖x − y‖2/σ2
)
, κ(x,y) can be interpreted as a similarity between x

and y, hence it encodes a similarity measure.
The basic idea of the kernelized spatial depth is to evaluate the spatial

depth in a feature space induced by a positive definite kernel. Noticing that

‖x − y‖2 = 〈x,x〉 + 〈y,y〉 − 2〈x,y〉 = xTx + yTy − 2xT y,

with simple algebra, one rewrites the norm in (3) as∥∥∥∥∥∥
∑
y∈X

S(y − x)

∥∥∥∥∥∥
2

=
∑

y,z∈X

xTx + yTz − xTy − xTz
(xTx + yTy − 2xT y)1/2(xTx + zT z − 2xTz)1/2

.

Replacing the inner products with the values of kernel κ, we obtain the
(sample) kernelized spatial depth (KSD) function

Dκ(x,X ) = 1 − 1
|X ∪ {x}| − 1

√√√√ ∑
y,z∈X

κ(x,x) + κ(y, z) − κ(x,y) − κ(x, z)
δκ(x,y)δκ(x, z)

(4)
where δκ(x,y) =

√
κ(x,x) + κ(y,y) − 2κ(x,y). Analogous to the spatial

sign function at 0, we define

κ(x,x) + κ(y, z) − κ(x,y) − κ(x, z)
δκ(x,y)δκ(x, z)

= 0

for x = y or x = z.
The KSD (4) is defined for any positive definite kernels. Here we shall be

particularly interested in stationary kernels (e.g., the Gaussian kernel), be-
cause of their close relationship with similarity measures. Figure 3 shows the
two contour plots of the KSD based on 100 random observations generated
from the two distributions presented in Figure 2, the half-moon distribution
(Figure 3.a) and the ring-shaped distribution (Figure 3.b). The Gaussian
kernel with σ = 3 is used to kernelize the spatial depth. Interestingly, unlike
the spatial depth, we observe that the kernelized spatial depth captures the
shapes of the two data sets. Specifically, the contours of KSD follow closely
the respective shapes of the data clouds. Moreover, the depth values are
small for the possible outliers. The depth values at the locations (∗), which
can be viewed as outliers, are 0.2495 for the half-moon data and 0.2651 for
the ring-shaped data. Consequently a threshold of 0.25 (or 0.27) can sep-
arate the outliers from the rest of the half-moon data (or ring data). The
remaining question is how we determine the threshold. This is addressed in
the following section.
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Figure 3: The contour plots of the KSD functions based on 100 random
observations (marked with ◦’s) from (a) a triangular distribution and (b) a
ring-shaped distribution. The depth values are marked on the contours. The
depth is kernelized with the Gaussian kernel κ(x,y) = exp

(‖x − y‖2/σ2
)

with σ = 3. The observation (marked with ∗) at the center of each plot
represents a possible outlier. The depth values for the observation ∗ in (b)
is 0.2651.
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4 Bounds on the False Alarm Probability

The idea of selecting a threshold is rather simple, i.e., choose a value which
controls the false alarm probability (FAP) under a given significance level.
FAP is the probability that normal observations are classified as outliers. In
the following, we first derive probabilistic bounds on FAP formulated as a
one-class learning problem. We then extend the results to a missing label
problem. The proofs of the results in this section can be found in [11].

4.1 The One-Class Learning Problem

Outlier detection formulated as a one-class learning problem can be de-
scribed as follows. We have observations X = {x1,x2, . . . ,x�} ⊂ �

n from
an unknown cdf, Fgood. Based on the observations X , a given datum x is
classified as a normal observation or an outlier according to whether or not
it is generated from Fgood. Let g : �n → [0, 1] be an outlier detector where
g(x) = 1 indicates that x is an outlier. The FAP of an outlier detector
g, PFA(g), is the probability that an observation generated from Fgood is
classified by the detector g as an outlier, i.e.

PFA(g) =
∫
x∈Ro

dFgood(x)

where Ro = {x ∈ �
n : g(x) = 1} is the collection of all observations that

are classified as outliers. The FAP can be estimated by the false alarm rate,
P̂FA(g), which is computed by

P̂FA(g) =
|{x ∈ X : g(x) = 1|

|X | .

Consider a KSD-based outlier detector depicted in Figure 4 where t ∈ [0, 1]
is a threshold and b determines the rate of transition of output from 1 to
0. For a given data set X and kernel κ and b ∈ [0, 1], we define an outlier
detector gκ(x,X ) by

gκ(x,X ) =




1, if Dκ(x,X ) ≤ t,
t+b−Dκ(x,X )

b , if t < Dκ(x,X ) ≤ t + b,
0, otherwise.

(5)

An observation x is classified as an outlier according to gκ(x,X ) = 1. Denote
�F the expectation calculated under cdf F . We have the following theorem
for the bound of the FAP.
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1

0 1 depth

detector output

t t+b

Figure 4: A depth-based outlier detector. An output value of 1 indicates
an outlier, i.e., an observation with depth smaller than t is classified as an
outlier.

Theorem 1 Let X = {x1,x2, . . . ,x�} ⊂ �
n be an independent and iden-

tically distributed(i.i.d.) sample from cdf F . Let gκ(x,X ) be an outlier
detector defined in (5). Fix δ ∈ (0, 1). For a new random observation x
from F , the following inequality holds with probability at least 1 − δ:

�F [gκ(x,X )] ≤ 1
�

�∑
i=1

gκ(xi,X ) +
2
�b

+


1 +

√
1 +

(
1 +

4
b

)2

 √

ln(2/δ)
2�

.

(6)

It is worthwhile to note that there are two sources of randomness in the
above inequality: the random sample X and the random observation x. For
a specific X , the above bound is either true or false, i.e., it is not random. For
a random sample X , the probability that the bound is true is at least 1− δ.
For a one-class learning problem, we can let F = Fgood. It is not difficult to
show that PFA(gκ) ≤ �F [gκ(x,X )] and P̂FA(gκ) ≤ 1

�

∑�
i=1 gκ(xi,X ) where

the equalities hold when b = 0. This suggests that (6) provides us an upper
bound on the FAP.

Theorem 1 suggests that we can control the FAP by adjusting the t
parameter of the detector. Although t does not appear explicitly in (6), it
affects the value of 1

�

∑�
i=1 gκ(xi,X ), which is an upper bound on the false

alarm rate, the sample version of FAP. Note that the detector is constructed
and evaluated using the same set of observations X . A bound as such is
usually called a training set bound [30]. Next we show a test set bound where
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the detector is built upon a collection of observations, called a training data
set, and evaluated on a different collection of observations called a test set.

Theorem 2 Let X = {x1,x2, . . . ,x�train
} ⊂ �

n and Y = {y1,y2, . . . ,y�test} ⊂
�

n be i.i.d. samples from a distribution F on �
n . Let gκ(x,X ) be an outlier

detector defined in (5). Fix δ ∈ (0, 1). For a new random observation x
from cdf F , the following bound holds with probability at least 1 − δ:

�F [gκ(x,X )] ≤ 1
�test

�test∑
i=1

gκ(yi,X ) +

√
ln 1/δ
2�test

. (7)

It is not difficult to validate that 1
�test

∑�test
i=1 gκ(yi,X ) monotonically de-

creases when b approaches 0. Hence for a fixed threshold t, the test set bound
is the tightest at b = 0 (recall that EF [gκ(x,X )] = PFA(gκ) at b = 0). In
this scenario, the FAP is bounded by the false alarm rate, evaluated on the
test set, plus a term that shrinks in a rate proportional to the square root
of the size of the test set. This suggests that we can always set b = 0 if we
apply the above test set bound to select an outlier detector. For a given
desired FAP, we should choose the threshold to be the maximum value of t
such that the right-hand side of (7) does not exceed the desired FAP.

The training set bound in (6) is usually looser than the above test set
bound because of the 1/b factor. Moreover, unlike the test set bound, we
cannot set b be 0 for the obvious reason. Hence we have to do a search
on both b and t to choose an “optimal” outlier detector, the one with the
largest t that gives an upper bound on the FAP no greater than the desired
level. As a result, the test set bound is usually preferred when the number
of observations is large so that it is possible to have enough observations in
both the training set and test set. One the other hand, we argue that the
training set bound is more useful for small sample size, under which both
bounds will be loose. Therefore, it is more desirable to build the outlier
detector upon all available observations instead of sacrificing a portion of
the precious observations on the test set. In this scenario, the relative, rather
than the absolute, value of the bounds can be used to select the t parameter
of an outlier detector.

4.2 The Missing Label Problem

For a missing label problem, all observations are unlabeled, or, put it equiva-
lently, they come from a mixture of Fgood and Foutlier, i.e., F = (1−α)Fgood+
αFoutlier for some α ∈ [0, 1]. Consequently, the above training set and test

16



set bounds cannot be directly applied to select detectors because PFA(gκ)
could be greater than �F [gκ(x,X )] – an upper bound on �F [gκ(x,X )] does
not imply an upper bound on the FAP.

Fortunately, the results of Theorem 1 and Theorem 2 can be extended
to the missing label problem under a mild assumption, namely, the prior
probability α for outliers does not exceed a given number r ∈ [0, 1]. In other
words, α ≤ r means that the probability of a randomly chosen observation
being an outlier is not greater than r. Since outliers are typically rare in
almost all applications that outliers are sought, quantifying the rareness via
an upper bound on α is actually not a restrictive but a defining presumption.

Theorem 3 Let X = {x1,x2, . . . ,x�} ⊂ �
n be i.i.d. samples from a mixture

distribution
F = (1 − α)Fgood + αFoutlier, α ∈ [0, 1],

on �
n . Let gκ(x,X ) be an outlier detector defined in (5). Suppose that

α ≤ r for some r ∈ [0, 1]. Then

�Fgood
[gκ(x,X )] ≤ 1

1 − r
�F [gκ(x,X )] . (8)

A proof of Theorem 3 is given in the Appendix.
Based on (8), the bounds on FAP for the one-class learning problem can

be extended to the missing label problem: the training set bound (6) is of
the form

PFA(gκ) ≤ 1
1 − r


1

�

�∑
i=1

gκ(xi,X ) +
2
�b

+


1 +

√
1 +

(
1 +

4
b

)2

√

ln(2/δ)
2�


 ,

and the test set bound (7) is of the form

PFA(gκ) ≤ 1
1 − r


 1

�test

�test∑
i=1

gκ(yi,X ) +

√
ln 1/δ
2�test


 . (9)

If r is small, 1/(1 − r) ≈ 1. This suggests that the bounds for the missing
label problem are only slightly larger than those for the one-class learning
problem for small r.

5 Experimental Results

In the first experiment, we test kernelized spatial depth outlier detection
on a synthetic data set. Next we compare the performance of the proposed
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method with that of three well-established outlier detection algorithms, the
LOF [27], the feature bagging [31], and the active learning [1]. In all the
experiments, the KSD is computed using the Gaussian kernel with the σ
parameter being determined from the following procedure.

Algorithm 1 Deciding σ for Gaussian Kernel

1 FOR (every observation xi in X)
2 di = minj=1,...,�,j �=i ‖xi − xj‖
3 END
4 OUTPUT (σ = median(d1, d2, . . . , d�))

5.1 Synthetic Data

For the synthetic data, we assume that Foutlier is uniform over the region
[−9, 9] × [−9, 9], and Fgood is a mixture of five 2-dimensional Gaussian dis-
tributions (with equal weights): N1 ∼ N([0, 0]T , I), N2 ∼ N([4, 4]T , I),
N3 ∼ N([−4, 4]T , I), N4 ∼ N([−4,−4]T , I), and N5 ∼ N([4,−4]T , I), where
N(µ,Σ) denotes Gaussian with mean µ and covariance matrix Σ.

We first simulate an outlier detector in a one-class learning scenario.
A training set of 500 i.i.d. observations and a validation set of 500 i.i.d.
observations are generated from Fgood. The KSD function is constructed
based on the 500 training observations. In order to control the FAP under
0.1, we select the threshold t of the detector based on the test set bound
(7) with δ = 0.05 such that t is chosen to be the maximum value subject
to the condition that the right-hand side of (7) does not exceed 0.1. Note
that the validation set here is the test set in (7). It turns out that t =
0.29160165 is the desired threshold, i.e., all observations with depth vale
less than 0.29160165 are identified as outliers. This threshold will, with
probability at least 0.95, keep the FAP less than 0.1. We apply the detector
to a test set of 525 i.i.d. observations, among which 500 are generated from
Fgood and the remaining 25 from Foutlier. Figure 5.a shows all 525 test
observations superimposed with the contour of the KSD at value t. The
∗’s and ◦’s represent observations from Fgood and Foutlier, respectively. The
regions enclosed by the contour have KSD values greater than t. For the test
set, the false alarm rate of our detector is 0.052, which is below the required
0.1 false alarm probability. At the same time, the detector identifies 17 out
of the 25 outliers. Hence the detection rate is 0.68.

Next, we simulate the missing label scenario. Each of the training and
validation set contains 500 i.i.d. observations generated from F = (1 −
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(a) One-class learning scenario (b) Missing label scenario

Figure 5: Decision boundaries of the proposed outlier detectors in (a) one-
class learning scenario and (b) missing label scenario, based on 525 i.i.d. test
observations in which 500 (marked with ∗’s) were generated from Fgood and
25 (marked with ◦’s) from Foutlier. Here Fgood is a mixture of 5 Gaussian
distributions and Foutlier is uniform over [−9, 9] × [−9, 9]. The boundaries
are chosen such that the upper bound on the false alarm probability is 0.1.
Observations falling outside the boundaries are classified as outliers. The
false alarm rate and the detection rate on the test set are: (a) 0.052 and
0.68; (b) 0.026 and 0.56.

α)Fgood + αFoutlier where α = 0.05. The kernelized spatial depth function
is built upon the training set. The threshold t of the detector is determined
based on the validation set and the inequality (9) where δ = 0.05; the target
false alarm rate is less than 0.1; and α ≤ r = 0.05. It turns out that
t = 0.29164708 is the desired threshold. We apply the detector to the same
test set as in the above one-class learning scenario. Figure 5.b shows all 525
observations and the contour of KSD at the selected threshold. The false
alarm rate of this detector is 0.026 which is much below 0.1, the required
level of false alarm probability. The detector identifies 14 out of the 25
outliers. The detection rate is therefore 0.56. Compared with the one-class
learning setting, the detection rate is lower in the missing label case. This
is because we need to be more conservative in selecting the threshold, which
leads to a smaller false alarm rate and a smaller detection rate.
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Table 1: Performance comparison of KSD, LOF, feature bagging (FB), and
active learning (AL) outlier detection methods. The area under the ROC
curve (AUC) for each method and each data set is shown. KSD1 and KSD2
refer to the one-class learning and missing label scenarios, respectively. A
larger AUC value (closer to 1) indicates better performance.

Data Set Ann-Thyroid 1 Ann-Thyroid 2 Shuttle KDD-Cup’99

Outlier Class Class 1 Class 2 Class 2, 3, 5–7 U2R

|Data Set| 3428 3428 14500 60839

KSD1 0.9725 ± 0.008 0.8074 ± 0.007 0.9969 ± 0.001 0.9403 ± 0.006

KSD2 0.9381 ± 0.010 0.7287 ± 0.010 0.7754 ± 0.032 0.8884 ± 0.044

LOF 0.869 0.761 0.825 0.61 ± 0.1

FB 0.869 0.769 0.839 0.74 ± 0.1

AL 0.97 ± 0.01 0.89 ± 0.11 0.999 ± 0.0006 0.935 ± 0.04

5.2 Comparison with Other Approaches

We compare the performance of the proposed approach with three existing
outlier detection algorithms: the well-known LOF method [27], the recent
feature bagging method [31], and the most recent active learning outlier
detection method [1]. The data sets we used for the comparison include two
versions of Ann-Thyroid, the Shuttle data, and the KDD-Cup 1999 intrusion
detection data. Ann-Thyroid and Shuttle data sets are available from the
UCI Machine Learning Repository. The KDD-Cup 1999 data set is available
at the UCI KDD Archive. To be consistent with the experimental set-up
in [31] and [1], one of the rare classes is chosen as the outlier class in our
experiment. The outlier classes are listed in Table 1. In [31], the smallest
intrusion class, U2R, was chosen as the outlier class. We found that the
outlier class in [31] actually contains several other types of attacks including
ftp write, imap, multihop, nmap, phf, pod, and teardrop. The number of
outliers is 246.

Each data set is randomly divided into a training set and a test set.
Approximately half of the observations in Thyroid data sets are selected as
training data. For the Shuttle and KDD-Cup 1999 data sets, the training
set contains 500 randomly chosen observations and the test set has the re-
maining 14, 000 and 60, 339 observations. In the one-class learning scenario,
the outliers in the training set are excluded from the construction of the
KSD function, while in the missing label scenario, the KSD function is built
on all observations in the training set. As in [31] and [1], we use the area
under the ROC curve (AUC) as the performance metric. The average AUC
over 10 random splits are reported for the proposed approach in Table 1
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along with the standard deviation. The AUC values of the LOF, the feature
bagging, and the active learning methods are obtained from [31] and [1].
The standard deviations are included when they are available.

As expected, the performance of the proposed approach degrades when
the outliers are included in the construction of the KSD function, i.e., in the
missing label scenario. Both LOF and feature bagging were evaluated un-
der the one-class learning scenario where detectors were built from normal
observations. From Table 1, it is clear that the KSD based outlier detec-
tion (one-class learning) consistently outperforms the LOF and the feature
bagging methods on all four data sets. The performance of the proposed
approach is comparable with that of the active learning outlier detection on
all four data sets. The mean AUC of the proposed approach is slightly lower
than that of the active learning on Ann-Thyroid 2. However, the variance
is significantly smaller (by one order of magnitude). Hence the difference
of mean ACU on Ann-Thyroid2 is not statistically significant. The active
learning outlier detection transforms outlier detection to a binary classifi-
cation problem using artificially generated observations that play the role
of potential outliers. As pointed out by the authors of [1], the choice of
the distribution of synthetic observations is domain dependent. In contrast,
no prior knowledge on the distribution of outliers is required by the KSD
outlier detection.

6 Conclusions

In this chapter, we presented a statistical depth function, the kernelized spa-
tial depth (KSD), and an outlier detection method using the KSD function.
The KSD is a generalization of the spatial depth [52, 10, 56]. It defines a
depth function in a feature space induced by a positive definite kernel. The
KSD of any observation can be evaluated using a given set of samples. The
depth value is always within the interval [0, 1], and decreases as a data point
moves away from the center, the spatial median, of the data cloud. This mo-
tivates a simple outlier detection algorithm that identifies an observation as
an outlier if its KSD value is smaller than a threshold. We derived the prob-
abilistic inequalities for the false alarm probability of an outlier detector.
These inequalities can be applied to determine the threshold of an outlier
detector, i.e., the threshold is chosen to control the upper bound on the false
alarm probability under a given level. We evaluated the proposed outlier
detection algorithm over synthetic data sets and real life data sets. In com-
parison with other methods, the KSD based outlier detection demonstrates
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competitive performance on all data sets tested.
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