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1. Introduction

Let {zni : 1 ≤ i ≤ n, n ≥ 1} be a sequence of independent random variables
(rv) defined on some probability space (Ω,A ,P). Consider a triangular array of
smooth functions {ψni(zni;β) : β ∈ B ⊂ Rp, 1 ≤ i ≤ n, n ≥ 1} taking values
in Rp and satisfying E(ψni(zni;β0)) = 0 for some unique unknown β0 ∈ B for

all i and n ≥ 1. We estimate β0 by the solution β̂n to the general estimating
equations (GEE),

Ψn(β) =

n∑
i=1

ψni(zni;β) = 0. (1.1)

Note that β̂n is not well defined on the whole space Ω but only on a sub-
space of it for any finite n. Typically, one extends the definition to the whole Ω
by defining it to be an arbitrary constant on the complement of the subspace
(denoted it by the s-space). For instance, consider estimating the probability
β ∈ (0, 1) in the Bernoulli distribution,

z̄n/β − (1− z̄n)/(1− β) = 0, (1.2)

where z̄n denotes the average of 1’s. The maximum likelihood estimator (MLE)

β̂n = z̄n exists only on the subspace {0 < z1 + · · ·+ zn < n} of Ω.

Let Bn,0 be the event on which β̂n does not satisfy (1.1). Naturally, the s-
space can be taken to be Bn,0. Without regard to its detailed structure, the
consistency and asymptotic distribution can be rigorously established under
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suitable conditions. As a result, the s-space Bn,0 is negligible. Often, however,
there is no statement with regard to the bias of the estimator as it generally
does not exist. Consider estimating the parameter β in the normal N (1/β, 1)

by the MLE β̂n = 1/z̄n. While β̂n is not defined at z̄n = 0, the consistency and

asymptotic normality (ASN) of β̂n hold at β0 ̸= 0. The bias, however, does not

exist because E(β̂n) diverges.
The preceding Bn,0 is not suitable for the ongoing analysis of bias. Bias cal-

culation necessitates specification of the s-space, although practical calculation
may be carried out without it provided that the s-space is adequately negligi-
ble. The probability of the s-space must, certainly, tend to zero faster than that
of Bn,0. But this is not enough, and we need to know that the gradient matrix

Ψ̇n(β) is non-singular at the values of certain random vectors (i.e. B̃1 in (1.3)) as
we shall rely on the generalized vector multivariate mean value theorem (MVT)
to solve for the bias. In contrast, the non-singularity of the expected gradient
at the true value β0, E(Ψ̇n(β0)), is sufficient for proving the consistency and
asymptotic distribution.

Consider the case that β̂n satisfies (1.1) (i.e. on Bc
n,0). By the MVT in (6.5),

there is a matrix point B̃1 ∈ Bp×p lying in β̂n and β0 such that

0 = Ψn(β̂n)= Ψn(β0) + Ψ̇n(B̃1)(β̂n − β0), (1.3)

where Ψ̇n(B),B ∈ Bp×p denotes the generalized gradient matrix. Eqt (1.3)
reveals that the event that Ψ̇n(B̃1) is singular must be included in the s-space.
In other words, the singularity event Cn,0 must be included in the s-space, where

Cn,0 =

{
ω ∈ Ω :

There exists B ∈ Bp×p s.t. σmin(Ψ̇n(B))(ω) = 0

and that (1.3) holds at B = B̃1(ω).

}
(1.4)

Noting that the number Nn of points B̃1 can’t diverge infinity too fast. For
notational brevity, we shall assume that Nn = 1 almost surely.

The s-space is now taken to be the union An,0 = Bn,0∪Cn,0, on which define

β̂n to be an arbitrary but fixed constant b. As a consequence, any moment of

β̂n can be “calculated” and, in particular, the variance-covariance and mean

squared error (MSE) of β̂n.
The concept of bias, dating back to the early years, is fundamental in statis-

tical science. The analysis of bias has recently gained momentum as the com-
plexity of models used in practice increases. For instance, regularization is com-
monly employed to reduce the model complexity, which, however, leads to biased
estimators such as LASSO estimators in high dimensional linear models. Esti-
mators which are asymptotically unbiased have finite sample biases that can
lead to significant loss of performance of standard inferential procedures, see a
comprehensive review by Kosmidis (2014)[13]. Biases are not negligible in high
dimensional parameter estimation. The squared bias in the decomposition of
MSE, for instance, can have higher order of magnitude than the variance as the
dimension grows to infinity, while it is dominated by the variance and negligible
in the case of fixed dimension, see (2.7).
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There is an extensive amount of literature on the analysis of bias, in which
the bootstrap, the jackknife, and the approximation are perhaps three most
popular methods. The tremendous success of the first two methods rests on the
idea of resampling, which is computationally intensive. In the Era of Big Data,
the two methods are confronted with the challenge that data are of massive size
and often accompanied with an estimation of a myriad of unknown parameters.
The method of approximation provides a remedy, with which we shall be con-
cerned in this article. A significant achievement in this method is the formulas
of the first order biases for MLE in a closed form. Cox and Snell (1968)[5] and
McCullagh (1987)[15] gave the formulas for i.i.d. observations achieved through
the systematic use of index notation and tensors; Cook, et al. (1986)[4] pro-
vided the formula in their Eqt (3) for normal nonlinear regression; Cordeiro and
McCullagh (1991)[6] obtained the formula in their Eqt (4.2) for GLM; Kosmidis
and Firth (2010)[12] presented the formula in their Eqt (2.4) in matrix form.

Efron (1975)[7] investigated the biases of an important class of estimators,
noting that the estimators were, apparently, assumed to be well defined on the
whole space. He proved the biases and rigorously established the rate o(1/n) for
the remainder based on some large deviation results.

While the analytic formulas are convenient in constructing bias-corrected
estimators, the analysis of bias in literature is often conducted in a framework
of some sort of specific bias formulas or of conditional biases. This appearing
to be permissible from a practitioner’s viewpoint, there would lead to a lack of
a rigorous analysis of bias with generality to the best of our knowledge, and
this article is an attempt to fill the gap. Briefly, we provide a bias formula
with generality and prove two rates. To be specific, we rely on the generalized
MVT to carry out the analysis of bias for Z-estimators in GEE for independent
observations, give the bias formulas in matrices in (2.2), and rigorously establish
the rates for the remainders with tedious calculation for both fixed and growing
dimension. Our spirit here is the same as Efron’s (1975)[7], and our approach
is elementary and there is no difficulty in extending our results to other cases
such as correlated data and incomplete data.

As an application, we derive the bias formulas for Lasso estimators in lin-
ear regression model, and the penalized estimators in generalized linear models
(GLM) and single index models (SIM). Our analysis of bias indicates that the
Lasso estimators vanishes at the fastest rate as the dimension tends to infinity
among all Bridge estimators, see Section 4 for more details.

The bias formulas for MLE are well documented in the literature, and agree
with ours. Moreover, we exhibit that the bias of a Z-estimator admits an expan-
sion of the form,

Bias(β̂) = E(β̂)− β0 = b1n
−1 +O(p9/2n−3/2), (1.5)

where b1n
−1 = O(p3/2n−1) is the first-order bias, which dominates the remain-

der for p = o(n1/6) among other conditions in Remark 2.1. The rates can be
improved to p = o(n1/2) and O(p7/2n−2 + p5/2n−3/2) for the remainder under
the conditions in Remark 2.4. For p-dimensional parametric exponential fami-
lies, Portnoy (1988)[18] showed that MLE are ASN as p, n tend to infinity but
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p = o(n1/2). Note that the bias expansion found in literature is often of the form
Bias = b1n

−1+b2n
−2+· · · , in decreasing powers of n faster than n−1/2 in (1.5).

See Wu (1986)[22] for LSE in linear regression, page 203 in the monograph by
McCullagh (1987)[15] and Eqt (2.2) of Firth (1993)[8]. In fact, the rate O(n−2)
was given on page 210 in the monograph. Our result here is that the biases have
a slower rate n−1/2 of negligibility than MLE.

For bias correction by the bootstrap and jackknife methods, see Wu (1986)[22]
and the monograph by Shao and Tu (1995)[20] among others; For indirect in-
ference appeared in the Econometrics literature, see the comprehensive review
by Jiang and Turnbull (2004)[10]; Other references include Firt (1993)[8], Gart,
et al. (1985)[9], Lin and Breslow (1996)[14], Mehrabi and Matthews (1995)[16],
Pettitt, et al. (1998)[17], Schaefer (1983)[19], and Simas, et al. (2010)[21].

The article is structured as follows: The main results are presented in Section
2. The biases in regularized regression models are given in Section 4. Section 5
contains the assumptions, which are verified in GLM in Section 3. Proofs are
collected in Section 6.

2. The Bias Formulas

In this section, we present the analystical formulas for the biases and rates for
the remainders for both fixed and growing dimension, with the proof delayed.

Write β̂n = β̂, ψni(β) = ψni(zni;β), ψni = ψni(β0), Ψ̇n = Ψ̇n(β0), etc.
Let Ψn,d(β) be the d-th component of Ψn(β),β ∈ Rp with Ψ̈n,d(B),B ∈ Rp×p

denoting the second order generalized partial derivative, which is the d-th block
of the stacking matrix Ψ̈n(B),B ∈ Rp2×p. Let

Jn = E(Ψ⊗2
n ) =

n∑
i=1

E(ψ⊗2
ni ), Hn = E(Ψ̇n), Gn,d = E(Ψ̈n,d). (2.1)

Assume throughout that Hn is invertible. Let ϑn = O(∥Hn∥o). Typically ϑn =
O(pn), but ϑn = O(n) is possible whenHn is a matrix of certain structure. For a
random matrix X, define the “under tilde” and “bar” operations as X˜ = H−1

n X

and X̄ = X− E(X) unless otherwise specified.
Let qn be a vector with components qn,d = Tr(H−⊤

n Gn,dH
−1
n Jn), and let

b˜n = H−1
n (bn1 − 2−1qn), where bn1 = E(Ψ̇nH

−1
n Ψn). (2.2)

As justified by the main theorem below, b˜n is the (first-order) bias under the
assumptions specified in Section 5.

Theorem 2.1. Let β̂n be a solution of (1.1).

(i) (Unbiasedness) Assume (B0)(a), (B2)(a) and (B5). Then Bias(β̂) = o(1).
(ii) (Bias) Assume (B0)(c), (B2), (B3) with |ξ̃n|4 = O(p2), (B6) with (ν0, ν1, ν2, ν3) =

(8, 4, 2, 8), and κ(Hn) = O(1). If p = o(ϑ
4/13
n ), then

Bias(β̂) = b˜n +O(p9/2ϑ−3/2
n ). (2.3)
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Remark 2.1. For the case of ϑn = O(n), b˜n = O(p3/2n−1) with the rate

O(p9/2n−3/2) for the remainder, provided that p and n satisfy p = o(n4/13)
among other conditions. Moreover, for the remainder to be negligible, p must
be much smaller, p = o(n1/6). These relationships between p and n reveal that
higher dimension has severer adverse effect on the bias.

Consider a classical case of ν′0 = ν′1 = 2 and n−1Jn = O(p) = n−1Hn. By

Theorem 2.1 (i), β̂ is asymptotically unbiased if (B0)(a), (B1) with ν = 2 and
(B2)(a) hold and p = o(n) as E(∥Ψ˜ n∥2) = O(pn−1) = o(1). In the case of

a constant gradient Ψ̇n(β), (B5) holds with ν′0 = ∞ and ν′1 = 1. Hence, the
unbiasedness result holds if E(∥n−1Ψn∥) = o(

√
p).

If only bn1 is involved, then the assumptions required are weaker.

Proposition 2.1. If p = o(ϑ
2/5
n ), then

Bias(β̂) = H−1
n bn1 +O(p5/2ϑ−1

n ). (2.4)

MLE. Suppose that ψni(β) are the gradients of a likelihood function. The

Z-estimator β̂ of (1.1) is then the MLE. In this case, Gn,d = −2E(ΨnΨ̇n,d) −
E(Ψ̇nΨn,d)− E(Ψ⊗2

n Ψn,d), d = 1, . . . , p, we thus have

qn,d = −2Tr
(
E(Ψ̇n,dJ

−1
n Ψn)

)
− Tr

(
E(J−1

n Ψ̇nΨn,d)
)
− Tr

(
E(J−1

n Ψ⊗2
n Ψn,d)

)
.

For ϑn = O(n), the d-th component of the bias simplifies to

Bias(β̂)d = −2−1J−1
n Tr(J−1

n E((Ψ̇n +Ψ⊗2
n )Ψn,d)) +O(p9/2n−3/2). (2.5)

Remark 2.2. For i.i.d. rv’s, the first order bias for MLE in (2.5) is identical
to the bias given by McCullagh (1987)[15], Kosmidis and Firth (2010)[12], the
formula (20) of Cox and Snell (1968)[5] and (10.21) of Efron (1975)[7].

Bias correction. Let β̃ be a pilot estimator of β0, and let J̃, H̃, G̃ be esti-

mates of Jn,Hn,Gn, respectively. Typically, β̃ = β̂, J̃ = Ψ⊗2
n (β̃), H̃ = Ψ̇n(β̃)

and G̃ = Ψ̈n(β̃). Other choices are possible or even necessary such as in the
Analysis of Big Data in which a subsampling estimator must be used. The bias
b˜n can be estimated by

b̃ = H̃−1
(
b̃1 − 2−1Tr

(
J̃(H̃−⊤ ◦ G̃)H̃−1

))
, (2.6)

where b̃1 =
∑n

i=1 ψ̇ni(β̃)H̃
−1ψni(β̃). Consider a function g(β) of β. A bias-

corrected estimator of ĝ = g(β̂) must be corrected the bias of ĝ itself.

Remark 2.3. Let g(β) be differentiable at β0. A bias-corrected estimator of
g(β0) is given by

ĝbc(β̂) = g(β̂)− ġ(β̃)b̃.

By Theorem 2.1, ĝbc(b̂)− g(β0) = O(p9/2n−3/2) under suitable assumptions.
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The block matrices Ψ̈n,d(B) in the stacking partial derivative Ψ̈n(B) contain
structural information. Using the quasinorm ∥ · ∥oe introduced in Section 6,
we formulate Assumptions (B2+) – (B3+) and (B6+) in Section 5. The global
properties of the block matrices lead to the reduction of the adverse effect of
high dimensionality, and yield faster rates as stated below.

Theorem 2.2. If (B0)(b), (B2) and (B6) in Proposition 2.1 are strengthened
to (B0)(c), (B2+) and (B6+), then p and the rate for the remainder in Propo-

sition 2.1 are improved to p = o(ϑ
2/3
n ) and O(p3/2/ϑn), respectively.

Furthermore, if (B0)(c) and (B3) in Theorem 2.1 (ii) are strengthened to

(B0)(d) and (B3+), then the results in Theorem 2.1 are improved to p = o(ϑ
4/7
n )

and O(p7/2/ϑ2n + p5/2/ϑ
3/2
n ) for the remainder.

Remark 2.4. Consider the case in Remark 2.1. By Theorem 3.1, for the re-
mainder to be negligible, p = o(n1/2) among other conditions. Using the struc-
tural information, p is much larger than p = o(n1/6) in Remark 2.1.

MSE. Although MSE is commonly used to study estimation bias and ef-
ficiency, its existence has yet been rigorously investigated. Similar to the bias
expansion, Var(β̂) and MSE(β̂) can be expanded. Here we are satisfied with a
heuristic expansion for dimension asymptotics. Recall

MSE(β̂) = E(∥β̂ − β0∥2) = Tr(Var(β̂)) + ∥Bias(β̂)∥2. (2.7)

Consider a typical case of ϑn = O(n) = λn, and Tr(Var(β̂)) = O(pn−1) and

∥Bias(β̂)∥2 = O(p3n−2) by (2.2) provided that p = o(n1/6) or p = o(n1/2)
for the case in Remarks 2.1 or 2.4 among other conditions, respectively. As a
consquence, the trace of the covariance matrix in (2.7) dominates the squared
bias. The dominance relationship, however, does not hold anymore if p grows to
infinity faster than the preceding rates.

3. Biases in GLM

In this section, we verify the assumptions. Let Yi be independent rv with density
in the canonical exponential class,

f(y; θi) = c(y) exp(yθi − b(θi)), θ ∈ Θ ⊂ R, (3.1)

where b(θ) has continuous third derivative and c(y) is a normalizing constant.
In GLM, the response Yi and covariate xi satisfy

E(Yi|xi) = µ(θi) = h(ηi), ηi = x⊤
i β, i = 1, . . . , n, (3.2)

where β ∈ B is an unknown regression parameter and h is an inverse link. A
canonical link yields θi = ηi, so that h(θ) = µ(θ), θ ∈ Θ. In this case, h′(θ) =
µ′(θ) = b′′(θ) = V (θ) and h′′(θ) = µ′′(θ) = b′′′(θ) = V ′(θ).
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The MLE β̂n solves the estimating equations,

Ψn(β) =

n∑
i=1

Yi − µi(β)

Vi(β)
h′i(β)xi = 0, (3.3)

where, as is customary, µi(β) =: µ(θi) = b′(θi), Vi(β) =: V (θi) = b′′(θi),
hi(β) = h(ηi) = h(x⊤

i β), h
′
i(β) = h′(ηi), εi(β) = yi − µi(β), etc. and µi =

µi(β0), Vi = Vi(β0), hi = h(x⊤
i β0), h

′
i = h′i(β0), etc..

Verification of (B0)–(B1). Let si(β) = (Yi−µi(β))/Vi(β). Noticingψni(β) =
si(β)h

′
i(β)xi = [(Yi − µ(θi))/V (θi)]h

′(ηi)xi, we let

ui(β) = − d

dηi
(sih

′
i)(β) =

(h′2i
Vi

+
V ′
i h

′2
i − V 2

i h
′′
i

V 3
i

εi

)
(β). (3.4)

Then ψ̇ni(β) = −ui(β)xix
⊤
i , whose d-th row ψ̇ni,d(β) = −ui(β)xi,dx⊤

i has the

partial derivative matrix ψ̈ni,d(β) = −u′i(β)xi,dxix
⊤
i . Likewise, the e-th row

of the latter, ψ̈ni,d,e(β) = −u′i(β)xi,dxi,ex⊤
i , has the derivative

...
ψni,d,e(β) =

−u′′i (β)xi,dxi,exix
⊤
i , where u

′
i(β) = (d/dηi)ui(β) and u

′′
i (β) = (d2/d2ηi)ui(β).

Stacking them up respectively, we have ψ̈ni(β) = −u′i(β)Mi and
...
ψni(β) =

−u′′i (β)xi ⊗Mi. Hence, with Mi = xi ⊗ (xix
⊤
i ),

Ψ̇n(β) = −X⊤U(β)X, U(β) = Diag(ui(β)),

Ψ̈n(β) = −
n∑

i=1

u′i(β)Mi,
...
Ψn(β) = −

n∑
i=1

u′′i (β)xi ⊗Mi.
(3.5)

Assume υn = inf{mini ui(β) : β ∈ Rp} > 0 (it still holds for υn < 0). Then

−Ψ̇n(β) = X⊤U(β)X ⪰ υnX
⊤X, β ∈ B,

where X is the matrix consisting of rows x⊤
i . As E(ui|xi) = h′2i /Vi, one has

Hn = −E(X⊤ΣX) = −Jn with Σ = E(U|X) = Diag(h′2i /Vi), and

σ−1
min(Ψ̇˜ n(β)) ≤ σ−1

min(Hn)υ
−1
n σ−1

min(X
⊤X), β ∈ B, n ≥ 1.

By Hölder’s inequality, for 1/u1 + 1/u2 = 1 with 1 ≤ u1, u2 ≤ ∞ and k ≥ 1,

E(σ−k
min(Ψ̇˜ n(β))) ≤ σ−k

min(Hn) · |υ−1
n |kku1

· |σ−1
min(X

⊤X)|kku2
, β ∈ B.

Thus (B1) can be established using the results in Peng (2024). If υn ≥ b > 0 for
some constant b, then one can take u1 = ∞ and u2 = 1. By Lemma ?? in Peng
(2024), if the rows of X are sub-Gaussian and isotropic, then (B0) holds.

Verification of (Bk) and (Bk+) (k = 2, 3, 6). Assume |xi,d| + |u′i(β)| ≤
m,∀β, i, d for some constant m. Then all ∥ψ̈ni,d(β)∥ ≤ m2∥xi∥2. Assume also

Hn = E(Ψ̇n) = O(n) (so that ϑn = O(n)). Then (B2) is met with E(η̃n) =
O(p3/2). Assume, furthermore, all |u′′i (β)| ≤ m. Then ∥

...
ψni,d,e(β)∥ ≤ m3∥xi∥2,

so that (B3) is met with E(ξ˜n) = O(p2).



H. Peng/Biases In General Estimating Equations 8

Note that all ψ̈ni,d(β) and
...
ψni,d,e(β) are symmetric matrices. While (B2)

is an entry-wise condition, (B2+) uses the global block information. Clearly,
Ψ̈n,d(β) ⪯ m2X⊤X = Hn,d,∀d as

ψ̈ni,d(β) ⪯ |ψ̈ni,d(β)| = |u′i(β)xi,d|xix
⊤
i ⪯ m2xix

⊤
i =: Hni,d, β ∈ B, ∀i, d.

By (2) and (4) of Lemma 6.1, we thus have

∥Ψ̈n(β)∥o ≤ ∥Ψ̈n(β)∥oe ≤ ∥Hn∥oe.

Assume, furthermore, the condition number of X satisfies κn(X) = O(1). Then
E(∥H˜ n∥oe) = O(

√
p), so that (B2+) is established.

Analogously, (B3+) is satisfied since, for ∀β ∈ B and i, d, e,
...
ψni,d,e(β) ⪯ |

...
ψni,d(β)| = |u′′i (β)xi,dxi,e|xix

⊤
i ⪯ m3xix

⊤
i =: Ξni,d,e,

yielding all
...
Ψn,d,e(β) ⪯ m3X⊤X = Ξn,d,e, hence E(∥Ξ˜n∥oe) = O(p). For the

rest of the verification, see the discussions behind the assumptions.
The Bias Formulas. One caculates Jn = E(X⊤ΣX) = −Hn and

Gn =

n∑
i=1

E
(
(2h′3i V

′
i /V

3
i − 3h′ih

′′
i /Vi)Mi

)
=:

n∑
i=1

E(giMi), say.

The d-th block of Gn is Gn,d =
∑

i E(gixi,dxix
⊤
i ), so that

qn,d = Tr(J−1
n ◦Gn,d) =

n∑
i=1

E((2h′iV ′
i /V

2
i − 3h′′i /h

′
i)Hi,ixi,d), (3.6)

where Hi,i = x⊤
i J

−1
n xi · h′2i /Vi are the diagonal entries of

H = Σ1/2X
(
X⊤J−1

n X
)−1

X⊤Σ1/2. (3.7)

(When xi are nonrandom, H is referred to as the generalized hat matrix in the
literature). Thus qn =

∑
i E((2h′iV ′

i /V
2
i − 3h′′i /h

′
i)Hi,ixi). One has

b˜n1 = J−1
n E((h′′i /h′i − V ′

i h
′
i/V

2
i )Hi,ixi).

By Theorem 3.1 and (2.2), if p = O(n2/3), then the first order bias is b˜n1 with

the rate O(p3/2/n) for the remainder. Further, if p = o(n4/7), then the bias with
a sharper rate for the remainder is

Bias(β̂) = −1

2
J−1
n

n∑
i=1

E (Hi,ixih
′′
i /h

′
i) +O(p7/2/n2 + p5/2/n3/2). (3.8)

This can also be obtained using the simplified bias formula (2.5). For a canonical
link, h′i = Vi and h

′′
i = V ′

i , so that Σ = Diag(Vi), Jn = E(X⊤Diag(Vi)X). The
bias then simplifies to

bn1 = 0, b˜n = −1

2
J−1
n

n∑
i=1

E
(
V ′
i (x

⊤
i J

−1
n xi)xi

)
. (3.9)
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Theorem 3.1. If (B0)(b), (B2) and (B6) in Proposition 2.1 are strengthened
to (B0)(c), (B2+) and (B6+), then p and the rate for the remainder in Propo-

sition 2.1 are improved to p = o(ϑ
2/3
n ) and O(p3/2/ϑn), respectively.

Furthermore, if (B0)(c) and (B3) in Theorem 2.1 (ii) are strengthened to

(B0)(d) and (B3+), then the results in Theorem 2.1 are improved to p = o(ϑ
4/7
n )

and O(p7/2ϑ−2
n + p5/2ϑ

−3/2
n ) for the remainder.

4. Biases in Regularized Regression Models

Consider the observations of the form zni = (xi, Yi), i = 1, . . . , n, where each
Yi is a scalar esponse and xi is a p-dimensional covariate. For large p possibly
p > n, a form of complexity regularization is often used. The penalized estimator
of β is defined as

β̂(λ) = argmin
β

{
1

n

n∑
i=1

ρ(xi, Yi;β) + P(β;λ)

}
,

where ρ(x, Y ;β) is a loss function, P(β;λ) is a penality function, and λ is
a penality parameter vector. If the penality function P(β;λ) is differentiable
w.r.t. β, then one readily caculates the partial derivative to obtain the GEE for
the penalized estimator β̂(λ). If P(β;λ) is not differentiable w.r.t. β, then one

caculates the subgrient to obtain the GEE for β̂(λ). As the ℓ1-norm has a linear
gradient, the second order gradients are zero. This fact suggests to applying the
bias formula obtained in the article to the ℓ1-penalty (or heuristically, and we
conjecture that the result still holds).

The LASSO Bias in LM. Consider a high dimensional linear model,

Y = Xβ + ε,

whereY = (Y1, . . . , Yn)
⊤ and ε = (ε1, . . . , εn). For the quadratic loss ρ(x, Y ;β) =

(Y − x⊤β)2 and the ℓ1-penality P(β;λ) = λ∥β∥1 with ∥β∥1 =
∑p

j=1 |βj |, the
LASSO estimator β̂(λ) satisfies the estimating equations,

Ψn(β) = n−1X⊤(Y −Xβ)− λu(β) = 0,

where u(β) is a subgradient of the ℓ1 norm at β, specifically, the jth component
satisfies uj(β) = uj(βj) ∈ [−1, 1] if βj = 0 and uj(β) = uj(βj) = sgn(βj)

otherwise if βj ̸= 0. One calculatees Ψ̇n(β) = −n−1X⊤X = Hn, and Ψ̈n,d(β) =
0 for d = 1, . . . , p. The LASSO estimator thus has the bias given by

Bias(β̂(λ)) = λ(X⊤X)−1u, (4.1)

where u = u(β0) is a subgradient at the true value β0 of parameter.
The LASSO Bias in GLM. The Lasso estimator is now defined by penaliz-

ing the negative log-likelihood with the ℓ1-norm. By (3.1)–(3.2), ρ(x, y;m,β) =
−θy − b(θ), where θ satisfies µ(θ) = m + x⊤

1 β1 with β = (m,β⊤
1 )

⊤ and
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x = (1,x⊤
1 )

⊤. As the intercept m is often not penalized, the penality takes

the form P(β;λ) = λ∥β1∥1. By (3.3), the GEE for β̂(λ) = (m̂(λ), β̂1(λ)
⊤)⊤ is

Ψn(β) =
1

n

n∑
i=1

Yi − µi(β)

Vi(β)
h′i(β)xi − λv(β1) = 0, (4.2)

where v(β1) = (0,u(β1)
⊤)⊤. Similar to the bias calculation for the GLM in

Section 3, both Hn and Gn are the same as those there since Ψ̇n(β), Ψ̈n(β),...
Ψn(β) are the same as those in (3.5). Meanwhile, Jn = Jglm,n + λ2v⊗2, where
Jglm,n = E(X⊤ΣX) = Hn is the Jn given in the GLM. One has bn1 = bglm,n1−
λv and qn,d = qglm,n,d + λ2qn,d(v), where qn,d(v) = v⊤H−⊤

n Gn,dH
−1
n v. By

Theorem 3.1, if p = o(n4/7), then the bias of the LASSO estimator satisfies

Bias(β̂(λ)) = b˜glm,n+λJ
−1
glm,n(v+2−1λqn(v))+O(p7/2n−2+p5/2n−3/2), (4.3)

where b˜glm,n is the bias for the GLM given in (3.8) or (3.9).
Biases in Penalized SIM. The response yi and the covriate xi satisfy

yi = m0(β
⊤
0 xi) + ϵi, i = 1, 2, . . . , n, (4.4)

where β0 ∈ Rp is the index parameter which satisfies ∥β0∥ = 1 with its first
component β1 > 0 for identifiability, m0(x) is a smooth nonparametric function
on R, and ϵ1 . . . , ϵn are i.i.d. random errors with zero mean and constant variance
σ2
0 = Var(ϵi) > 0. The mean function m0(x) is expressed by

m(x) = δ⊤B(x), x ∈ R, (4.5)

where δ ∈ Rd is an unknown vector of coefficients, and B(x) is a vector of basis
functions. Apparently, m(x) approximates m0(x) and converges to it as d→ ∞.
From a practical viewpoint, one takes m0 = m in (4.4). Our study of the bias
concerns with the case of p + d → ∞. The SIM is a hybrid of parametric and
nonparametric models. It generalizes LM by introducing a nonparametric link
function, and extends GLM by using an unknown link.

The parameters β, δ can be estimated by using the quadratic loss ρ(x, y;β, δ) =
(y − δ⊤B(β⊤x))2 and the penality P(β, δ;λ) = λP (β, δ) subject to the con-
straints ∥β∥ = 1 and β1 > 0. As is customary, the constraints on β can be
handled by reparametrization,

β(ϕ) = (1,ϕ⊤)⊤/
√
1 + ∥ϕ∥2, ϕ ∈ Rp−1. (4.6)

The parameters to be estimated become θ = (ϕ⊤, δ⊤)⊤ ∈ Rp+d−1 using the
transformed objective,

Qn(θ) =:
1

n

n∑
i=1

(
yi − δ⊤B(β(ϕ)

⊤
xi)
)2

+ λP (θ). (4.7)

Let fi(θ) = δ⊤B(x⊤
i β(ϕ)) and f(θ) = (f1(θ), . . . , fn(θ))

⊤, and let ei(θ) =
yi − fi(θ). Then E(ei) = 0 and Var(ei) = σ2. The GEE for the penalized
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estimator θ̂ reads

Ψn(θ) =

n∑
i=1

2ei(θ)ḟ
⊤
i (θ)− nλṖ⊤(θ) = 0. (4.8)

As a result, Jn = 4σ2ḟ⊗2 + n2λ2Ṗ⊤Ṗ .
Drop the indices for now and write x = xi, f(θ) = fi(θ), η = x⊤β with

β = β(ϕ), etc. Recall that ḟ(θ) = ∂f(θ)/∂θ⊤ is a row vector and f̈(θ) =
∂ḟ(θ)⊤/θ⊤. One has η̇ = x⊤β̇, ė(θ) = −ḟ(θ), ë(θ) = −f̈(θ), and

Ψ̇n(θ) =

n∑
i=1

2(eif̈i − ḟ⊤i ḟi)(θ)− nλP̈ (θ).

As a result, Hn = −2ḟ⊗2 − nλP̈ . For the kth component Ψn,k(θ) of Ψn(θ),

Ψ̈n,k(θ) = −
n∑

i=1

2(ḟi,kf̈i + f̈⊤i,kḟi + ḟ⊤i f̈i,k − ei
...
f i,k)(θ)− nλ

...
Pk(θ),

where ḟi,k (f̈i,k) denotes the kth component (row) of ḟi (f̈i) and
...
P k = D̈P,k

with DP,k = Ṗk. Hence

Gn,k = −
n∑

i=1

2E(ḟi,kf̈i + f̈⊤i,kḟi + ḟ⊤i f̈i,k)− nλ
...
P k, k = 1, . . . , d+ p− 1.

Let A = δ⊤B̈(η)(β̇
⊤
x)⊗2+δ⊤Ḃ(η)(β̈⊤

(1)x, · · · , β̈
⊤
(p−1)x)

⊤, where β̈(j) = ċj with

cj denoting the jth column of β̇. Then

ḟ(θ) = (δ⊤Ḃ(η)(x⊤β̇), B(η)⊤), f̈(θ) =

(
A (β̇

⊤
x)Ḃ(η)⊤

Ḃ(η)(x⊤β̇) 0d×d

)
.

Therefore, the first-order bias for θ̂ is Bias1(ϕ̂, δ̂) = H−1
n (bn1 − 2−1qn), where

qn,k = Tr(H−⊤
n Gn,kH

−1
n Jn), and

bn1 = 4σ2
∑
i

f̈iH
−1
n ḟ⊤i − 2nλ

∑
i

ḟ⊤i ḟiH
−1
n Ṗ⊤ + 2n2λ2P̈H−1

n Ṗ⊤. (4.9)

By Remark 2.3, the first-order bias for β0 is now given by Bias1(β̂) = J(ϕ̂)Bias1(ϕ̂),
where J⊤(ϕ) = (−ϕ, (1 + ∥ϕ∥2)I− ϕ⊗2)(1 + ∥ϕ∥2)−3/2.

Let J0,H0,G0 denote the respective values of n−1Jn, n
−1Hn, n

−1Gn when
λ = 0 (unpenalized). Let J1 = Ṗ⊤Ṗ , H2 = −P̈ and G1

k = −
...
P k. Then

n−1Jn = J0 + nλ2J1, n−1Hn = H0 + λH1, n−1Gn,k = G0
k + λG1

k.

Typically, (n−1Hn)
−1 = (H0)−1 + λH1

− for some matrix H1
−. It then follows

from the trace expression of qn,k that

qn,k = q0k + (nλ+ 1)q1k(λ), k = 1, . . . , p+ d− 1, (4.10)
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where q0k is the value of qn,k when λ = 0, and q1k(λ) = Tr(λC1 + λ2C2 + λ3C3)
with Ck, k = 1, 2, 3 being matrices independen of λ. Similarly,

bn1 = b0
1 + nλ(1 + λ+ λ2)b1

1, (4.11)

where b0
1 is the value of bn1 when λ = 0, and b1

1 is some averaged vector
independent of λ. Since eachCk is a product of four square matrices of dimension
p + d − 1, it follows from (6.1) that Tr(Ck) = O((p + d)4), so that q1k(λ) =
(λ + λ2 + λ3)O((p + d)4) for k = 1, . . . , d + p − 1. Also from the expression in
(4.9), one obtains b1

1 = O((p+ d)5/2). By (4.10)–(4.11), we thus derive that the
first-order bias satisfies

b˜n = n−1H−1
0 (b0

1 − 2−1q0) + λ(1 + λ+ · · ·+ λ4)O((p+ d)11/2). (4.12)

Note that the first term on the left-hand side is the first-order bias for the
unpenalized estimate θ̂, which is of order O(n−1(p + d)11/2). It is celebrated
that the optimal rate for the penality is λ = O(

√
log(p+ d)/n) under suitable

conditions, see e.g. Bickel, et al.(2009). Thus for the bias to be negligible, the
dimension p + d must grow at an extremely slow rate (p + d) 11

√
log(p+ d) =

o(n1/11) as p+ d tends to infinity.
For the ridge regression P (θ) = ∥θ∥2,

...
P k(θ0) = 0 for all k. Then qn ≡ 0,

and bn1 = b0
1 + nλ(1 + λ)b1

1 from (4.11). As b1
1 = O((p+ d)5/2), we have

b˜n = n−1H−1
0 b0

1 + λ(1 + λ+ λ2)O((p+ d)5/2). (4.13)

Consider P̈ (θ0) = 0. The ℓ1-penality is in this case (loosely speaking). Clearly,
Hn = −2ḟ⊗2, qn ≡ 0, and bn1 = b0

1 + nλb1
1 from (4.11). Similarly, the bias

satisfies
b˜n = n−1H−1

0 b0
1 + λO((p+ d)5/2). (4.14)

The Penality Function P (θ). For Bridge estimators, P (θ) =
∑D

j=1 |θj |γ , γ >
0. The cases of γ = 1, 2 are the ℓ1/ℓ2-penalities. Clearly, Ṗ (θ) is aD-dimensional
row vector with components Ṗk(θ) = γ|θk|γ−1sgn(θk), k = 1, . . . , D; the kth row
P̈k(θ) of P̈ (θ) consists of zero components except the kth component equals
γ(γ − 1)|θk|γ−2sgn(θk).

For the ridge regression P (θ) = ∥θ∥2, one has Ṗ (θ) = 2θ⊤, P̈ (θ) = 2I,
and

...
P k(θ) = 0 for all k, so that Hn = −2ḟ⊗2 − 2nλI and qn = 0. Hence

Bias1(θ̂) = H−1
n bn1, where by (4.9)

bn1 = 4σ2
∑
i

f̈iH
−1
n ḟ⊤i − 4nλ

∑
i

ḟ⊤i ḟiH
−1
n θ0.

Examining (4.12)–(4.13), we see that the bias in this case vanishes at a much
faster rate (p+d) 5

√
log(p+ d) = o(n1/5) than that for the biases when

...
P k(θ) ̸=

0 for some k. Likewise, the bias for the Lasso estimator in (4.1) vanishes faster
than that for the ℓ2-penality (the ridge regression).

In SIM, one popular model is the P-spline in which the spline basis is the
truncated powers given by B(u) = (1, u, . . . , uq, (u− κ1)

q
+, . . . , (u− κK)q+)

⊤.
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The penality function is of the form of the ridge regression, P (θ) = δ⊤Dδ,
where D is a diagonal matrix with the last K diagonal entries equal to 1 and
the rest equal to 0. This implies that the penalty λ works to avoid overfitting by
penalizing the last K components of δ. The cubic spline (q = 3) is often used.

5. Assumptions

In this section, we introduce the assumptions. Recall ϑn = O(∥Hn∥o) and An,0

defined in Section 1.

(B0) (a) P(An,0) = o(1); Furthermore, (b) P(An,0) = O(ϑ−1
n ); (c) P(An,0) =

O(ϑ−2
n ); (d) P(An,0) = O(p−2ϑ−3

n + ϑ−4
n + p4ϑ−6

n ).

(B1) For ν > 0, there is a constant B such that

E
(
sup{σ−ν

min

(
Ψ̇˜ n(β)1[Ω

c
n,0(β)]

)
: β ∈ B}

)
≤ B, p ≥ 1, n ≥ 1,

where Ωn,0(β) = {Ψ̇˜ n(β) is singular}.

(B2) (a) Each ψni,d(β),β ∈ B is twice continuously differentiable, and (b) there

exists a sequence of rv’s η̃n with E(η̃n) = O(p3/2) such that

∥Ψ̈˜ n(β)∥o ≤ η̃n, β ∈ B, n ≥ 1. (5.1)

(B3) Each ψni,d(β),β ∈ B is thrice continuously differentiable, and there exists
a sequence of rv’s ξ˜n with E(ξ˜n) = O(p2) such that

∥
...
Ψ˜n(β)∥o ≤ ξ˜n, β ∈ B, n ≥ 1. (5.2)

(B4) κ(Jn) =: λmax(Jn)/λmin(Jn) = O(1).

(B5) There exist constants 1 ≤ ν′0, ν
′
1 ≤ ∞ with 1/ν′0+1/ν′1 = 1 such that (B1)

holds with ν = ν′0 and |Ψ˜ n|ν′
1
= o(1) for p ≥ 1 and n ≥ 1.

(B6) There exist constants 1 ≤ ν0, ν1 ≤ ∞, 2 ≤ ν2, ν3 ≤ ∞ with 1/ν0 + · · · +
1/ν3 = 1 such that (B1) holds with ν = 2ν0, and

|Ψ˜ n|2ν1 = O(p1/2ϑ−1/2
n ), | ¯̇Ψ˜ n|2ν2 = O(pϑ−1/2

n ), |¯̃ηn|ν3 = O(p3/2ϑ−1/2
n ).

(B0)–(B1) and (B5)–(B6) involve conditions that concern with the singularity
of the gradient Ψ̇n(B),B ∈ Bp×p. While (B1) is a uniform integrability condition
for the inverse of the random matrix Ψ̇n(B) over B ∈ Rp×p and is investigated
in Peng (2024), (B0) is a mild condition as the probability that a random matrix
of interest is singular often decays exponentially with n, and the rates from (a) to
(d) get vanishing faster. (Bk) and (Bk+), k = 2, 3 below are typical assumptions.
All are verified for GLM in Section 3. By Lemma 6.2, (B6) implies (B5).

(B2+) Same as (B2) except replacing the existence of a sequence of η̃n with that
of p2 × p random matrices H˜ n such that E(∥H˜ n∥oe) = O(

√
p) and

∥Ψ̈˜ n(β)∥o ≤ ∥H˜ n∥oe, β ∈ Rp.
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(B3+) Same as (B3) except replacing the existence of a sequence of ξ˜n with that

of p3 × p random matrices Ξn such that E(∥Ξn∥oe) = O(p) and

∥
...
Ψ˜n(β)∥o ≤ ∥Ξ˜n∥oe, β ∈ Rp.

(B6+) Same as (B6) except replacing η̃n with H˜ n such that | ¯̇Ψ˜ n|2ν2
= O(1/

√
ϑn)

and |H̄˜ n|ν3 = O(
√
p/ϑn).

Remark 5.1. It is possible to relax (B1)–(B3) to hold a neighborhood of the
true value β0 of parameter, although we won’t pursue it in this article.

6. Proofs

In this section, we introduce the toolkit and prove the theorems.

6.1. Notation and the generalizated MVT

Write A ⊗ B for the Kronecker product of matrices A and B, A⊗2 = AA⊤,
A−⊤ = (A−1)⊤, and Vec(Diag(A)) = (A1,1, . . . , An,n)

⊤. Let A1/2 (A⊤/2) be
the left (right) square root of the positive definite matrix A. Write λmax(A) for
the maximum eigenvalue of A, etc. Write ∥A∥ for the euclidean norm and ∥A∥o
for the operator (spectral) norm, defined by ∥A∥2 = Tr(A⊤A) and ∥A∥o =

λ
1/2
max(A⊤A). The singular values σ(A) of A are the positive square roots of

the eigenvalues λ(A⊤A) of A⊤A. The maximum (minimum) singular value is

σmax(A) = λ
1/2
max(A⊤A) = ∥A∥o (σmin(A) = λ

1/2
min(A

⊤A)).
For p × q and q × r matrices A,B, write A = O(

√
pq) and A = O(

√
qr) if

∥A∥ = O(
√
pq) and ∥B∥ = O(

√
qr). It then follows

AB = O(
√
pq2r), Tr(AB) = p2( if p = q = r). (6.1)

For matrices V,W ∈ Rp×p and B⊤ = (B1, . . . ,Bq) with Bd ∈ Rp×p (if Bq

has less rows, then add zero rows), define the Hadamard-type product V◦B◦W
to be the q × p block matrix consisting of blocks VBdW, d = 1, . . . , q. Clearly,
V ◦B ◦W = (V ◦B)W, and it is not associative. Throughout it is understood
that it precedes the usual multiplication. For u,v ∈ Rp and a compatible block
qp× p matrix B, we have

∥u⊤ ◦B∥o ≤ ∥B∥o∥u∥, ∥u⊤ ◦B ◦ v∥ ≤ ∥B∥o∥u∥ ∥v∥. (6.2)

Define the quasinorm by

∥B∥oe =
√
∥B1∥2o + · · ·+ ∥Bq∥2o. (6.3)

Note that different block partitions of B have different values. Define Tr(B) to
be the block-wise trace vector of B, that is, Tr(B) = (Tr(B1), . . . ,Tr(Bq))

⊤.
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Let |A| stand for the absolute value of A, that is, |A| is the unique symmetric
semipositive definite matrix (A⊤A)1/2. For a matrix A consisting of blocks Ak,
define the (blockwise) absolute value |A| to be the matrix consisting of blocks
|Ak|. We summarize some useful facts from textbooks below.

Lemma 6.1. (1) ∥A1 + · · ·+Aq∥oe ≤
√
q(∥A1∥oe + · · ·+ ∥Aq∥oe).

(2) ∥B∥o ≤ ∥B∥oe ≤ ∥B∥.
(3)(Absolute) ∥ |A| ∥oe = ∥A∥oe and ∥ |A| ∥o = ∥A∥o.
(4) (Monotone) If |Ak| ⪯ |Bk|,∀k (blockwise), then ∥ |A| ∥oe ≤ ∥ |B| ∥oe.
Thus, if all the blocks Ak,Bk are symmetric, then

∥∥A∥∥
oe

≤
∥∥B∥∥

oe
.

(5) If |Ak|2 ⪯ |Bk|2,∀k, then |Ak| ⪯ |Bk| and ∥ |A| ∥o ≤ ∥B∥o.

For a random matrix X, define |X|p = (E(∥X∥po))1/p, p > 0. Note that if
|X|t = O(an) then |X|s = O(an) for 0 ≤ s ≤ t and an ≥ 0 by the moment
inequality. This, Lemma 6.2 and Hölder’s inequality for a few rv’s shall be
frequently used in our proofs. Here we shall state the inequality for three rv’s
X,Y, Z: for 1 ≤ a, b, c ≤ ∞ with 1/a+ 1/b+ 1/c = 1,

E(|XY Z|) ≤ |X|a · |Y |b · |Z|c. (6.4)

Lemma 6.2. If |X|a+|Y |b+|Z|c <∞ for 1 ≤ a, b, c ≤ ∞ with 1/a+1/b+1/c =
1, then there exist positive a′, b′ with a′ < a, b′ < b and 1/a′+1/b′ = 1 such that
E(|XY |) ≤ |X|a′ |X|b′ ≤ |X|a|X|b. As a result, E(|XY |)+E(|XZ|)+E(|Y Z|)+
E(|XY Z|) <∞.

MVT. For ψ : Rp → Rq, define ψ̇ : Rq×p → Rq×p to be the q × p matrix
ψ̇(β1, . . . ,βq) with the d-th row equal to the partial derivative ψ̇d(βd),βd ∈ Rp.

Define ψ̈ : Rqp×p → Rqp×p to be the matrix consisting of stacking q p×p partial
derivative matrices ψ̈d(βd,1, . . . ,βd,p). Similarly, define ψ(k) : R(qpk−2)p×p →
R(qpk−2)p×p for k ≥ 2. Let f : Rp → Rq be k-th continuously differentiable. For

x0, t ∈ Rp, there exists X̃k ∈ Rqpk−1×p (whose row vectors) lying in x0 and
x0 + t such that

f (k)(x0 + t) = f (k)(x0) + t⊤ ◦ f (k+1)(X̃k), k ≥ 0. (6.5)

The multivariate MVT holds in the Laplacian form. Stacking up the partial
derivative matrices leads to the integral MVT,

f (k)(x0 + t) = f (k)(x0) + t⊤ ◦
∫ 1

0

f (k+1)(x0 + ut) du, k ≥ 0. (6.6)

Clearly, (6.5)–(6.6) are equivalent, showing that the boundedness of f (k+1)(x)

implies that of f (k+1)(X̃k). This fact is repeatedly used without reference to it.

6.2. Proof of Proposition 2.1 and Theorem 2.1

The proof of Theorem 3.1 is similar to Theorem 2.1 and is omitted.
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The main idea of the proof is as follows: take the expected values across Eqt
(1.3) or (6.28) and solve for the bias formula; solve the same equation for β̂ and
substitute it in the bias; identify the dominate terms and calculate tediously
the rates of the remainders. Note we shall repeatedly use the moment-type
inequalities in Lemma 6.2 without explicit reference.

Proof (of Proposition 2.1). Let An,1 = {Ψ̇n(B̃1) is singular}. Then An,1 ⊂
An,0. Recall the definition of β̂ in (1.3) – (1.4) associated with Ωn,0. Setting
l = −Ψ˜ n, we obtain from (1.3) an important decomposition,

β̂ − β0 = Ψ̇˜ n(B̃1)
−1l · 1[Ac

n,1] + (b− β0)1[An,1]

=: (β̂ − β0)+ + (β̂ − β0)0, say. (6.7)

Taking expectation across (1.3) and using E(Ψn) = 0, we obtain

Bias(β̂n) = E
(
(Ip − Ψ̇˜ n)(β̂ − β0)

)
+∆˜ , (6.8)

∆˜ = E
(
(Ψ̇˜ n − Ψ̇˜ n(B̃1))(β̂ − β0)

)
. (6.9)

Again from (1.3) we derive the representation,

β̂ − β0 = −Ψ˜ n +α1 =: l+α˜1, (6.10)

where α˜1 = (Ip − Ψ̇˜ n(B̃1))(β̂ − β0). Substitution of (6.10) in the expectation
of (6.8) yields

E
(
(Ip − Ψ̇˜ n)(β̂ − β0)

)
= −E

( ¯̇Ψ˜ n(β̂ − β0)
)
= E

(
Ψ̇˜ nΨ˜ n

)
+ δ˜1, (6.11)

where δ˜1 = −E( ¯̇Ψ˜ nα˜1). Noting E(ψni) = 0 for all i and by independence, we
substitute (6.11) in (6.8) and get

Bias(β̂) =:

n∑
i=1

E
(
ψ̇˜niψ˜ni

)
+ rn, (6.12)

where rn = δ˜1 +∆˜ . Corresponding to the decomposition (6.7), we write α˜1 =
α˜1+ +α˜10, resulting in δ˜1 = δ˜1+ + δ˜10. Analogously,

∆˜ = ∆˜ + +∆˜ 0. (6.13)

It is shown below
∥∆˜ +∥ = O

(
p5/2/ϑn

)
, (6.14)

∥δ˜1+∥ = O(p7/2/ϑ3/2n ), (6.15)

∥δ˜10∥ = P1/2(An,1)O(p7/2/ϑ1/2n ), (6.16)

∥∆˜ 0∥ = P1/2(An,1)O
(
p5/2/ϑ1/2n

)
+ P(An,1)O

(
p5/2

)
. (6.17)

To determine the magnitude of p relative to n (via ϑn), we first find the maxi-
mum magnitude of p such that (6.14) – (6.15) converge to zero as p and n tend
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to infinity; then determine the rate rn (the slowest among all the rates); finally,
determine the rate of the singularity probability so that P(An,1) = O(rn). In

this case, p = o(ϑ
2/5
n ), rn = O(p5/2/ϑn). Setting ∥δ˜10∥ ≍ rn, ∥∆˜ 0∥ ≍ rn, we

find P(An,1) ≍ ϑ−1
n . By (B0)(b), we thus prove rn = O(p5/2/ϑn) by (6.12).

To prove (6.15), we write α˜1+ = α˜1+a +α˜1+b, where

α˜1+a = (Ψ̇˜ n − Ψ̇˜ n(B̃1))(β̂ − β0)+, α˜1+b = (Ip − Ψ̇˜ n)(β̂ − β)+. (6.18)

Thus δ˜1+ = δ˜1+a + δ˜1+b. Let sn = σmin(Ψ̇˜ n(B̃1)1[Ω
c
n,0(B̃1)]). Then

∥(β̂ − β0)+∥ ≤ s−1
n ∥l∥1[Ac

n,1]. (6.19)

By Hölder’s inequality for three rv’s in (6.4), we now get

∥δ˜1+b∥ ≤ E
(
s−1
n ∥l∥

∥∥ ¯̇Ψ˜ n

∥∥2
o

)
= O(p5/2/ϑ3/2n ), by (B6).

Thus (6.15) follows from

∥δ˜1+a∥ = O(p7/2/ϑ3/2n ), (6.20)

which is shown next. To this end, (B2)(a) allows us to apply (6.5) with k = 2,

there being B̃2 in between β̂ and β0, and get on Ac
n,1 by (B2)(b) that

∥Ψ̇˜ n(B̃1)− Ψ̇˜ n∥o ≤ ∥Ψ̈˜ n(B̃2)∥o∥β̂ − β0∥ ≤ η̃n∥β̂ − β0∥
=
(
¯̃ηn + E(η̃n)

)
s−1
n ∥l∥ =: a1 + a2, say. (6.21)

Corresponding to the last sum, we bound δ˜1+a ≤ d1 + d2, and obtain

∥d1∥ ≤ E
(
s−2
n ∥l∥2

∥∥ ¯̇Ψ˜ n

∥∥
o
|¯̃ηn|

)
≤ |s−1

n |22ν0
|l|22ν1

∣∣ ¯̇Ψ˜ n

∣∣
ν2
|¯̃ηn|ν3

= O(p7/2/ϑ2n), by (B6), (6.22)

∥d2∥ ≤ E
(
s−2
n ∥l∥2

∥∥ ¯̇Ψ˜ n

∥∥
o

)
E(η̃n) = O(p7/2/ϑ3/2n ), by (B2)&(B6).(6.23)

These prove (6.20). Using (6.21), we also have

∥∆˜ +∥ ≤ E
(
(|a1|+ |a2|)s−1

n ∥l∥
)
=: b1 + b2.

Thus (6.14) follows from

b1 ≤ E(s−2
n ∥l∥2|¯̃η|) ≤ |s−1

n |22ν0
|l|22ν1

|¯̃η|ν3 = O(p5/2/ϑ3/2n ), by (B6),

b2 ≤ E(s−2
n ∥l∥2)E(η̃n) = O(p5/2/ϑn), by (B2) & (B6).

To show (6.16) – (6.17), analogous to (6.18) we write α˜10 = aa + ab, where

aa = (Ψ̇˜ n − Ψ̇˜ n(B̃1))1[An,1](b− β0), ab = (Ip − Ψ̇˜ n)1[An,1](b− β0).
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Thereby δ˜10 = da + db. Similar to (6.20), we have by (R9),

∥db∥ ≤ P1/2(An,1)E1/2
(∥∥ ¯̇Ψ˜ n

∥∥4
o

)
∥b− β0∥ = P1/2(An,1)O(p5/2/ϑn). (6.24)

Thus (6.16) follows from

∥da∥ = P1/2(An,1)O(p7/2/
√
ϑn), (6.25)

which is shown next. Similar to (6.21), we have on Ac
n,1,

∥Ψ̇˜ n(B̃1)− Ψ̇˜ n∥o ≤
(
¯̃ηn + E(η̃n)

)
∥b− β0∥ =: A1 +A2. (6.26)

Correspondingly, ∥da∥ ≤ ∥da1∥+ ∥da2∥. Similar to (6.22),

∥da1∥ ≤ P1/2(An,1)E1/2
(∥∥ ¯̇Ψ˜ n

∥∥2
o
|¯̃η|2
)
∥b− β0∥2 = P1/2(An,1)O(p7/2/ϑn),

∥da2∥ ≤ P1/2(An,1)E(η̃n)E1/2
(∥∥ ¯̇Ψ˜ n

∥∥2
o

)
∥b− β0∥2

+ P1/2(An,1)O(p7/2/
√
ϑn), by (B2) & (B6).

These prove (6.25). Recalling ∆0 in (6.13) and using (6.26), we get

∥∆˜ 0∥ ≤ E
(
(A1 +A2)

)
∥b− β0∥ =: D01 +D02.

Thus the desired (6.17) follows from

D01 ≤ P1/2(An,1)E1/2(|¯̃η|2)∥b− β0∥2 = P1/2(An,1)O(p5/2/
√
ϑn),

D02 ≤ P(An,1)E(η̃n)∥b− β0∥2 = P(An,1)O(p5/2). □

Proof (of Theorem 2.1). By Hölder’s, the main term in (6.7) satisfies

E(∥(β̂ − β0)+∥) ≤ |Ψ̇˜ n(B̃1)
−11[Ac

n,1]|ν′
0
· |l|ν′

1
,

where ν′0, ν
′
1 are given in (B5), by which the above product is O(1) uniformly

in p, n. Since the other term in (6.7) is obviously bounded, it follows Bias(β̂) =
O(1) uniformly in p, n. As (B0)(a) and (B5) imply that the product is o(1), we
prove part (i) of Theorem 2.1.

The rest of the proof is similar to Proposition 2.1. By (B2), we expand

Ψn(β̂n) = 0 at β0,

0 =Ψn+Ψ̇n(β̂n − β0)+1/2 (β̂n − β0)
⊤ ◦ Ψ̈n(B̃2) ◦ (β̂n − β0), (6.27)

where B̃2 lies in β̂n and β0. Taking expectation across the equality yields

0 = E
(
Ψ̇n(β̂n − β0)

)
+ 1/2E

(
(β̂n − β0)

⊤ ◦ Ψ̈n(B̃2) ◦ (β̂ − β0)
)

= E
( ¯̇Ψn(β̂ − β0)

)
+ E(Ψ̇n)Bias(β̂n) +∆1 +∆2, where (6.28)

∆1 = 1/2E
(
(β̂ − β0)

⊤ ◦ Ψ̈n ◦ (β̂ − β0)
)
,

∆2 = 1/2E
(
(β̂ − β0)

⊤ ◦
(
Ψ̈n(B̃2)− Ψ̈n

)
◦ (β̂ − β0)

)
.

(6.29)
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By (6.27) again and analogous to (6.10) but with a higher order expansion,

β̂ − β0 = l+α˜2, say, (6.30)

where α˜2 = α˜21 +α˜22 with

α˜21 = ¯̇Ψ˜ n(β̂ − β0), (6.31)

α˜22 = −1/2H−1
n

(
(β̂ − β0)

⊤ ◦ Ψ̈n(B̃2) ◦ (β̂ − β0)
)
. (6.32)

Write ∆1 = ∆11 +∆12, where

∆11 = 1/2E
(
(β̂ − β0)

⊤ ◦ ¯̈Ψn ◦ (β̂ − β0)
)
, (6.33)

∆12 = 1/2E
(
(β̂ − β0)

⊤ ◦ E
(
Ψ̈n

)
◦ (β̂ − β0)

)
. (6.34)

Plugging (6.30) in ∆12, we get

∆12 = 1/2E
(
l⊤ ◦ E

(
Ψ̈n

)
◦ l
)
+ δ2, (6.35)

where δ2 = E
(
α˜⊤

2 ◦E(Ψ̈n) ◦ l+1/2α˜⊤
2 ◦E(Ψ̈n) ◦α˜2

)
. Using independence and

E(ψ˜ni) = 0 for all i, we simplify

∆12 =
1

2

n∑
i,j=1

E
(
ψ˜⊤

ni ◦ E
(
Ψ̈n

)
◦ψ˜nj

)
+ δ2 =:

1

2

n∑
i=1

bnii + δ2, (6.36)

Substituting (6.11) and (6.36) in (6.28), we arrive at the expansion,

Bias(β̂) =

n∑
i=1

(
E(ψ̇˜niψ˜ni)−

1

2
b˜nii)+ δ˜1 − δ˜2 −∆˜ 11 −∆˜ 2. (6.37)

We now derive the rates for the remainders. Using the decomposition in (6.7),
Hölder’s inequality with indices (2, 6, 3) and Cauchy,

E(∥α˜21∥2) = E(∥α˜21+∥2) + E(∥α˜210∥2)

≤ E(∥ ¯̇Ψ˜ ns
−1
n l∥2) + E(∥ ¯̇Ψ˜ n∥2o1[An,1])∥b− β0∥2

≤ | ¯̇Ψ˜ n|24 · |s−1
n |212 · |l|26 + | ¯̇Ψ˜ n|24 · P1/2(An,1)∥b− β0∥2

= |s−1
n |212O(p3/ϑ2n) + P1/2(An,1)O(p3/ϑn). (6.38)

The decomposition also yields α˜22 = α˜22+ + α˜220, ∆˜ 11 = ∆˜ 11+ + ∆˜ 110 and
∆˜ 2 = ∆˜ 2+ +∆˜ 20. Recalling κn = κ(Hn), we show bellow

∥∆˜ 11+∥ = κn|s−1
n |28O(p5/2/ϑ3/2n ), (6.39)

∥∆˜ 110∥ = κnP1/2(An,1)O(p5/2/
√
ϑn), (6.40)

∥∆˜ 2+∥ = κn|s−1
n |38O(p7/2/ϑ3/2n ), (6.41)



H. Peng/Biases In General Estimating Equations 20

∥∆˜ 20∥ = κn
(
P1/2(An,1)O(p7/2/

√
ϑn) + P(An,1)O(p7/2)

)
, (6.42)

E(∥α˜22+∥2) = κ2n|s−1
n |416O(p5/ϑ2n), (6.43)

E(∥α˜220∥2) = κ2n
(
P1/2(An,1)O(p5/ϑn) + P(An,1)O(p5)

)
. (6.44)

By (6.38) and (6.43) and using ∥α˜2+∥2 ≤ 2∥α˜21+∥2 + 2∥α˜22+∥2, we get

E(∥α˜2+∥2) ≤ |s−1
n |212O(p3/ϑ2n) + κ2n|s−1

n |416O(p5/ϑ2n) = κ2n|s−1
n |416O(p5/ϑ2n).

Similarly, by (6.38) and (6.44),

E(∥α˜20∥2) ≤ κ2n
(
P1/2(An,1)O(p5/ϑn) + P(An,1)O(p5)

)
.

One has δ2 = δ2+ + δ20, where

δ2s = E
(
α˜⊤

2s ◦ E(Ψ̈n) ◦ ls + 1/2α˜⊤
2s ◦ E(Ψ̈n) ◦α˜2s

)
, s = +, 0.

By (6.2) and Cauchy,

∥δ2s∥ ≤ ∥E(Ψ̈n)∥o
(
E
(
∥α˜2s∥ · ∥l∥) + 1/2E(∥α˜2s∥2)

)
≤ ∥E(Ψ̈n)∥o

(
|α˜2s|2 · |l|2 + 1/2 |α˜2s|22

)
, s = +, 0. (6.45)

Noting ∥E(Ψ̈˜ n)∥o = O(p3/2), it thus follows

∥δ˜2+∥ = κ2n|s−1
n |416O

(
p13/2/ϑ2n + p9/2/ϑ3/2n

)
=: R+, (6.46)

∥δ˜20∥ = P1/4(An,1)κnO(p9/2/ϑn) + P(An,1)κ
2
nO(p13/2)

+P1/2(An,1)
(
κnO(p9/2/

√
ϑn) + κ2nO(p13/2/ϑn)

)
=: R0.

By (6.15), (6.39), (6.41) and (6.16), (6.40), (6.42), we derive

∥δ˜1+∥+∥δ˜2+∥+∥∆˜ 11+∥+∥∆˜ 2+∥ =: R+,

∥δ˜10∥+ ∥δ˜20∥+ ∥∆˜ 110∥+ ∥∆˜ 20∥ =: R0.

We shall calculate the rate rn using the method described in Proposition 2.1.
Note first that the remainder in (6.37) is equal to R+ + R0. As |s−1

n |16 + κn =

O(1), we see that R+ = o(1) leads to p = ϑ
4/13
n , which results in the rate

R+ ≍ p9/2/ϑ
3/2
n = rn, while R0 = O(rn) leads to P(An,1) ≍ ϑ−2

n . By (B0)(c),
we thus prove the desired rate in (2.3).

To show (6.41), we use (B3) and (6.5) with k = 3, there being B̃3 in between

β̂ and β0, and get

∥Ψ̈˜ n(B̃1)− Ψ̈˜ n∥o ≤ ∥
...
Ψ˜n(B̃3)∥o∥β̂ − β0∥ ≤ ξ˜n∥β̂ − β0∥. (6.47)

Recalling (6.7), we thus have

2∥∆˜ 2+∥ ≤ κnE
(
∥Ψ̈˜ n(B̃2)− Ψ̈˜ n∥os−2

n ∥l∥2
)

≤ κnE
(
(ξ̄˜n + E(ξ˜n))s−3

n ∥l∥3
)
=: κn(D1 +D2). (6.48)
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By (6.19), (B3) and Hölder’s inequality with indices (8/3, 8/3, 4) and (1/2, 1/2)
for (6.49) and (6.50), respectively, we get

D1 ≤ |s−1
n |38 · |l|38 · |ξ̄˜n|4 = |s−1

n |38O(p7/2/ϑ2n), (6.49)

D2 ≤ |s−1
n |36 · |l|36 · E(ξ˜n) = |s−1

n |36O(p7/2/ϑ3/2n ), (6.50)

yielding (6.41). Similarly, it follows (6.42) from

2∥∆˜ 20∥ ≤ κnE
(
∥Ψ̈˜ n(B̃2)− Ψ̈˜ n∥o1[An,1]

)
∥b− β0∥2

≤ κnE
(
(ξ̄˜n + E(ξ˜n))1[An,1]

)
∥b− β0∥3

=: κn(D10 +D20)O(p3/2), where

D10 ≤ |ξ̄˜n|2P1/2(An,1) = P1/2(An,1)O(p2/
√
ϑn), (6.51)

D20 ≤ E(ξ˜n)P(An,1) = P(An,1)O(p2). (6.52)

By (B2), ∥Ψ̈˜ n(B̃2)∥o ≤ η̃n, so that

4E(∥α˜22+∥2) ≤ ∥E−1(Ψ̇n)∥2oE(∥Ψ̈n(B̃2)∥2os−4
n ∥l∥4) ≤ κ2nE(η̃2ns−4

n ∥l∥4)
≤ 2κ2nE(¯̃η2n + E2(η̃n))s

−4
n ∥l∥4) =: 2κ2n(E1 + E2). (6.53)

By Hölder’s inequality with power indices (4, 4, 2), we obtain

E1 ≤ |s−1
n |416 · |¯̃ηn|28 · |l|48 ≤ |s−1

n |416O(p5/ϑ3n), (6.54)

E2 ≤ |s−1
n |48 · E2(η̃n) · |l|48 = |s−1

n |48O(p5/ϑ2n), (6.55)

yielding (6.43), whereas (6.44) follows from

4E(∥α˜220∥2) ≤ ∥E−1(Ψ̇n)∥2oE
(
∥Ψ̈n(B̃2)∥2o1[An,1]

)
∥b− β0∥4

≤ κ2nE
(
η̃2n1[An,1]

)
∥b− β0∥4

≤ 2κ2nE
(
(¯̃η2n + E2(η̃n))1[An,1]

)
∥b− β0∥4

≤ 2κ2n
(
|η̄˜n|24P1/2(An,1) + E2(η̃n)P(An,1)

)
∥b− β0∥4

= κ2n
(
P1/2(An,1)O(p5/ϑn) + P(An,1)O(p5)

)
. (6.56)

Using the last Hölder’s inequality, (6.39) – (6.40) follow from

2∥∆˜ 11+∥ ≤ ∥E−1(Ψ̇n)∥oE(∥ ¯̈Ψn∥os−2
n ∥l∥2)

≤ κnE(∥ ¯̈Ψ˜ n∥os−2
n ∥l∥2) ≤ κn| ¯̈Ψ˜ n|2 · |s−1

n |28 · |l|28 = κn|s−1
n |28 ·O(p5/2/ϑ3/2n ),

2∥∆˜ 110∥ ≤ ∥E−1(Ψ̇n)∥oE(∥ ¯̈Ψn∥o1[An,1])∥b− β0∥2

≤ κn| ¯̈Ψ˜ n|2 · P1/2(An,1) · ∥b− β0∥2 = κnP1/2(An,1) ·O(p5/2/
√
ϑn). □
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