The Theil-Sen Estimators In Linear Regression

Hanxiang Peng

Department of Mathematics University of Mississippi

September 15, 2008

() < </p>

TSE In Simple Linear Regression	
TSE In Multiple Linear Regression	
Ongoing/Future Research (I)	
Ongoing/Future Research (II)	

Outline

The Theil-Sen Estimator In Simple Linear Regression

The Theil-Sen Estimators In Multiple Linear Regression

Ongoing/Future Research (I): TSE In Modern Regression

Ongoing/Future Research (II): The Local Spatial Depth

・ 同 ト ・ ヨ ト ・ ヨ ト

The Theil-Sen Estimator In Simple Linear Regression

Simple Linear Regression

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where x_i 's are nonrandom covariates, ϵ_i 's are IID random errors with common cdf F, and α, β are parameters.

The Theil-Sen Estimator In Simple Linear Regression

Simple Linear Regression

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where x_i 's are nonrandom covariates, ϵ_i 's are IID random errors with common cdf F, and α, β are parameters.

Theil-Sen Estimator (Theil(1950), Sen(1968, JASA)):

$$\hat{\beta}_n = \operatorname{Median}\left\{ \frac{Y_i - Y_j}{x_i - x_j} : x_i \neq x_j, i < j = 1, \cdots, n \right\}$$

(D) (A) (A) (A) (A)

The Theil-Sen Estimator In Simple Linear Regression

Simple Linear Regression

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where x_i 's are nonrandom covariates, ϵ_i 's are IID random errors with common cdf F, and α, β are parameters.

Theil-Sen Estimator (Theil(1950), Sen(1968, JASA)):

$$\hat{\beta}_n = \operatorname{Median}\left\{ \frac{Y_i - Y_j}{x_i - x_j} : x_i \neq x_j, i < j = 1, \cdots, n \right\}$$

 Robustness: Breaking-down Point BP = 0.293–Global and Bounded Influence Function–Local.

The Theil-Sen Estimator In Simple Linear Regression

Simple Linear Regression

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where x_i 's are nonrandom covariates, ϵ_i 's are IID random errors with common cdf F, and α, β are parameters.

► Theil-Sen Estimator (Theil(1950), Sen(1968, JASA)):

$$\hat{\beta}_n = \operatorname{Median}\left\{ rac{Y_i - Y_j}{x_i - x_j} : x_i \neq x_j, i < j = 1, \cdots, n
ight\}$$

- Robustness: Breaking-down Point BP = 0.293–Global and Bounded Influence Function–Local.
- Compete favorably with LSE (Wilcox, 1998).

Strong Consistency (Peng, Wang & Wang, 2008, JSPI)

Theorem 1 Suppose non-random covariates x_1, \dots, x_n satisfy

$$\frac{n^{-1}\log n}{\bar{a}_n^2} = o(1), \quad \text{where } \bar{a}_n = \binom{n}{2}^{-1} \sum_{i < j} \mathbf{1}[x_i \neq x_j].$$

Strong Consistency (Peng, Wang & Wang, 2008, JSPI)

Theorem 1 Suppose non-random covariates x_1, \dots, x_n satisfy

$$\frac{n^{-1}\log n}{\bar{a}_n^2} = o(1), \quad \text{where } \bar{a}_n = \binom{n}{2}^{-1} \sum_{i < j} \mathbf{1}[x_i \neq x_j].$$

(i) If F is discontinuous, then

 $\mathbb{P}(\omega: \hat{\beta}_n \neq \beta_0 \text{ happens only finite many times}) = 1.$

Strong Consistency (Peng, Wang & Wang, 2008, JSPI)

Theorem 1 Suppose non-random covariates x_1, \dots, x_n satisfy

$$\frac{n^{-1}\log n}{\bar{a}_n^2} = o(1), \quad \text{where } \bar{a}_n = \binom{n}{2}^{-1} \sum_{i < j} \mathbf{1}[x_i \neq x_j].$$

(i) If F is discontinuous, then

 $\mathbb{P}(\omega: \hat{\beta}_n \neq \beta_0 \text{ happens only finite many times}) = 1.$

Hence, the TSE is strongly consistent: $\mathbb{P}(\lim_{n\to\infty} \hat{\beta}_n = \beta_0) = 1$.

Strong Consistency (Peng, Wang & Wang, 2008, JSPI)

Theorem 1 Suppose non-random covariates x_1, \dots, x_n satisfy

$$\frac{n^{-1}\log n}{\bar{a}_n^2} = o(1), \quad \text{where } \bar{a}_n = \binom{n}{2}^{-1} \sum_{i < j} \mathbf{1}[x_i \neq x_j].$$

(i) If F is discontinuous, then

 $\mathbb{P}(\omega:\hat{\beta}_n\neq\beta_0 \text{ happens only finite many times})=1.$

Hence, the TSE is strongly consistent: $\mathbb{P}(\lim_{n\to\infty} \hat{\beta}_n = \beta_0) = 1$. (ii) If F is continuous and

$$\liminf_{n\to\infty} \{|x_i-x_j|: x_i\neq x_j: i< j\}>0,$$

then the TSE is strongly consistent.

Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

$$\mathbb{P}(n^{\nu}(\hat{\beta}_n-\beta_0)\to 0)=1, \quad \nu\geq 0.$$

イロト イポト イヨト イヨト

Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

$$\mathbb{P}(n^{\nu}(\hat{\beta}_n-\beta_0)\to 0)=1, \quad \nu\geq 0.$$

Hence $\hat{\beta}_n$ is super-efficient.

Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

$$\mathbb{P}(n^{\nu}(\hat{\beta}_n-\beta_0)\to 0)=1, \quad \nu\geq 0.$$

Hence $\hat{\beta}_n$ is super-efficient.

Cae II. Suppose F is continuous.

Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

$$\mathbb{P}(n^{\nu}(\hat{\beta}_n-\beta_0)\to 0)=1, \quad \nu\geq 0.$$

Hence $\hat{\beta}_n$ is super-efficient.

Cae II. Suppose F is continuous. Let $C_n^2 = \sum c_i^2$ where $c_i = \sum \mathbf{1}[x_j > x_i] - \mathbf{1}[x_j < x_i]$.

Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

$$\mathbb{P}(n^{\nu}(\hat{\beta}_n-\beta_0)\to 0)=1, \quad \nu\geq 0.$$

Hence $\hat{\beta}_n$ is super-efficient.

Cae II. Suppose F is continuous. Let $C_n^2 = \sum c_i^2$ where $c_i = \sum \mathbf{1}[x_j > x_i] - \mathbf{1}[x_j < x_i]$. If $k_n \to \infty$, $\max_{i,j} |x_i - x_j|/k_n \to 0$, $\liminf_n C_n/n^{3/2} > 0$, and $C_n^{-1} \sum_{i=1} [1 - 2F_2(t|x_i - x_j|/k_n)] \to m(t), \quad F_2(t) = \mathbb{E}F(\varepsilon + t),$

Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

$$\mathbb{P}(n^{\nu}(\hat{\beta}_n-\beta_0)\to 0)=1, \quad \nu\geq 0.$$

Hence $\hat{\beta}_n$ is super-efficient.

Cae II. Suppose F is continuous. Let $C_n^2 = \sum c_i^2$ where $c_i = \sum \mathbf{1}[x_j > x_i] - \mathbf{1}[x_j < x_i]$. If $k_n \to \infty$, $\max_{i,j} |x_i - x_j|/k_n \to 0$, $\liminf_n C_n/n^{3/2} > 0$, and $C_n^{-1} \sum_{i < i} [1 - 2F_2(t|x_i - x_j|/k_n)] \to m(t), \quad F_2(t) = \mathbb{E}F(\varepsilon + t),$

then

$$\lim_{n\to\infty}\mathbb{P}(k_n(\hat{\beta}_n-\beta_0)\leq t)=\Phi(-\sqrt{3}m(t)),\quad t\in\mathbb{R},$$

where Φ is the cdf of the standard normal.

Asymptotic Distribution (Cont'd)

• The asymptotic distribution is normal iff m(t) in linear in t.

イロト イポト イヨト イヨト

Asymptotic Distribution (Cont'd)

- The asymptotic distribution is normal iff m(t) in linear in t.
- ▶ Sufficient Conditions. **Corollary** Suppose *F* is absolutely continuous with pdf *f* such that $B(F) = \int f^2(t) dt < \infty$. If lim inf $C_n/n^{3/2} > 0$, then

$$(D_n/C_n)(\hat{\beta}_n-\beta_0) \Rightarrow \mathcal{N}(0,1/3B^2(F)),$$

where $D_n = \sum_{i=1}^n d_i$ with $d_i = \sum_j |x_i - x_j|$.

イロト イポト イヨト イヨト

Asymptotic Distribution (Cont'd)

- The asymptotic distribution is normal iff m(t) in linear in t.
- ▶ Sufficient Conditions. **Corollary** Suppose *F* is absolutely continuous with pdf *f* such that $B(F) = \int f^2(t) dt < \infty$. If lim inf $C_n/n^{3/2} > 0$, then

$$(D_n/C_n)(\hat{\beta}_n-\beta_0) \Rightarrow \mathcal{N}(0,1/3B^2(F)),$$

where $D_n = \sum_{i=1}^n d_i$ with $d_i = \sum_j |x_i - x_j|$.

This corresponds to Theorem 6.2 of Sen (1968, JASA).

Simulation On Super-Efficiency

Table: Proportions of $\hat{\beta}_n = \beta_0$ with N = 500 replications & different sample sizes.

x	Err	5	20	50	80	100	150	250	400
Bin	± 1	0.564	0.998	1.00	1.00	1.00	1.00	1.00	1.00
	Poi	0.222	0.932	1.00	1.00	1.00	1.00	1.00	1.00
	Bin	0.034	0.270	0.47	0.58	0.66	0.72	0.86	0.92

イロン イヨン イヨン イヨン

Multiple Theil-Sen Estimator (Dang, Peng, Wang & Zhang, 2008, To appear in JMVA)

Multiple Linear Regression

$$Y_i = \alpha + \beta^\top X_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where X_i 's are *IID random covariates*, ϵ_i 's IID $\sim F$, and $\theta = (\alpha, \beta^{\top})^{\top} \in \mathbb{R}^{p+1}$ are parameters.

イロト イポト イヨト イヨト

Multiple Theil-Sen Estimator (Dang, Peng, Wang & Zhang, 2008, To appear in JMVA)

Multiple Linear Regression

$$Y_i = \alpha + \beta^\top X_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where X_i 's are *IID random covariates*, ϵ_i 's IID $\sim F$, and $\theta = (\alpha, \beta^{\top})^{\top} \in \mathbb{R}^{p+1}$ are parameters.

▶ For sub-sample $\xi_{(K)} = \{(X_k, Y_k) : k \in K\}$ with $K = \{i_1, \dots, i_m\}$ a subset of $\{1...n\}$ with $p + 1 \le m \le n$, the LSE:

$$\tilde{\theta}_{(\kappa)} = (X_{(\kappa)}^\top X_{(\kappa)})^{-1} X_{(\kappa)}^\top Y_{(\kappa)}.$$

Multiple Theil-Sen Estimator (Dang, Peng, Wang & Zhang, 2008, To appear in JMVA)

Multiple Linear Regression

$$Y_i = \alpha + \beta^\top X_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where X_i 's are *IID random covariates*, ϵ_i 's IID ~ *F*, and $\theta = (\alpha, \beta^{\top})^{\top} \in \mathbb{R}^{p+1}$ are parameters.

► For sub-sample $\xi_{(K)} = \{(X_k, Y_k) : k \in K\}$ with $K = \{i_1, \dots, i_m\}$ a subset of $\{1...n\}$ with $p + 1 \le m \le n$, the LSE:

$$\tilde{\theta}_{(K)} = (X_{(K)}^{\top} X_{(K)})^{-1} X_{(K)}^{\top} Y_{(K)}.$$

The proposed Multiple Theil-Sen Estimator (MTSE):

$$\hat{\theta}_n = \text{Multivariate Median} \left\{ \tilde{\theta}_{(\mathcal{K})} : \forall \mathcal{K} \right\}$$

Difference-based MTSE

Pairwise Differences

$$Y_i - Y_j = \beta^{\top} (X_i - X_j) + \epsilon_i - \epsilon_j, \quad i, j = 1, ..., n$$

・ロン ・回と ・ヨン・

Э

Difference-based MTSE

Pairwise Differences

$$Y_i - Y_j = \beta^{\top} (X_i - X_j) + \epsilon_i - \epsilon_j, \quad i, j = 1, ..., n$$

For a sub-sample

$$\xi_{(K)} = \{ (X_k - X_l, Y_k - Y_l) : k, l \in K \}$$

The least squares etimator is $\beta^*_{(K)}$.

イロト イポト イヨト イヨト

Difference-based MTSE

Pairwise Differences

$$Y_i - Y_j = \beta^{\top} (X_i - X_j) + \epsilon_i - \epsilon_j, \quad i, j = 1, ..., n$$

For a sub-sample

$$\xi_{(K)} = \{ (X_k - X_l, Y_k - Y_l) : k, l \in K \}$$

The least squares etimator is β^{*}_(K).
► The proposed Difference-based MTSE of the slope β:

$$\beta_n^* =$$
Multivariate Median $\left\{ \beta_{(\kappa)}^* : \forall \kappa \right\}$.

イロト イポト イヨト イヨト

Difference-based MTSE

Pairwise Differences

$$Y_i - Y_j = \beta^{\top} (X_i - X_j) + \epsilon_i - \epsilon_j, \quad i, j = 1, ..., n$$

For a sub-sample

$$\xi_{(K)} = \{ (X_k - X_l, Y_k - Y_l) : k, l \in K \}$$

The least squares etimator is β^{*}_(K).
The proposed Difference-based MTSE of the slope β:

$$\beta_n^* = \text{Multivariate Median} \left\{ \beta_{(\mathcal{K})}^* : \forall \mathcal{K} \right\}.$$

Similarly, define non-overlapped difference-based MTSE $\tilde{\beta}_n$, so β_n^* is overlapped diff-based.

Depth Functions and Depth Medians

Depth functions provide center-outward ordering of a point in high dim space w.r.t. a distribution.

Depth Functions and Depth Medians

- Depth functions provide center-outward ordering of a point in high dim space w.r.t. a distribution.
- High depth corresponds to centrality, low depth to outlyingness.

Depth Functions and Depth Medians

- Depth functions provide center-outward ordering of a point in high dim space w.r.t. a distribution.
- High depth corresponds to centrality, low depth to outlyingness.
- Depth median consists of the point(s) with the deepest depth.

・ロト ・回ト ・ヨト

Depth Functions and Depth Medians

- Depth functions provide center-outward ordering of a point in high dim space w.r.t. a distribution.
- High depth corresponds to centrality, low depth to outlyingness.
- Depth median consists of the point(s) with the deepest depth.
- Popular depth functions:
 - Tukey depth (halfspace depth)(Tukey, '75, Proc. ICM)
 - Simplicial depth (Liu, '90, Ann. Statist.)
 - Spatial depth (Zhang, et al., '00, JMVA)
 - Projection depth (Zuo & Serfling, '00, Ann. Statist.)
 - Tangent depth (Mizera, '02, Ann. Statist.)

Spatial Depth and Spatial Median

Spatial Depth:

$$D(x,F) = 1 - \|\mathbb{E}_F S(x-X)\|, \quad x \in R^d$$

where S(x) = x/||x|| is the spatial sign function.

ヘロン 人間 とくほど くほどう

Spatial Depth and Spatial Median

Spatial Depth:

$$D(x,F) = 1 - \|\mathbb{E}_F S(x-X)\|, \quad x \in R^d$$

where S(x) = x/||x|| is the spatial sign function.

Sample Version:

$$D(x,F_n) = 1 - \left\|\frac{1}{n}\sum_{i=1}^n S(x-X_i)\right\|$$

・ロト ・回ト ・ヨト ・ヨト

Spatial Depth and Spatial Median

Spatial Depth:

$$D(x,F) = 1 - \|\mathbb{E}_F S(x-X)\|, \quad x \in R^d$$

where S(x) = x/||x|| is the spatial sign function.

Sample Version:

$$D(x,F_n) = 1 - \left\|\frac{1}{n}\sum_{i=1}^n S(x-X_i)\right\|$$

Spatial Median:

Spatial Median { $x; X_1, ..., X_n$ } = $\arg \max_{x \in \mathbb{R}^d} D(x, F_n)$ = $\arg \min_{x \in \mathbb{R}^d} \left\| \frac{1}{n} \sum_{i=1}^n S(x - X_i) \right\|$

Uniqueness and Existence of Spatial Median

Let Z be a r.v. on \mathbb{R}^d with distribution Q. Z has a unique spatial median if one of the following holds.

Uniqueness and Existence of Spatial Median

Let Z be a r.v. on \mathbb{R}^d with distribution Q. Z has a unique spatial median if one of the following holds.

▶ Q is not concentrated on a line (Milasevic and Ducharme, 1987, Ann. Statist.)
Uniqueness and Existence of Spatial Median

Let Z be a r.v. on \mathbb{R}^d with distribution Q. Z has a unique spatial median if one of the following holds.

- ▶ Q is not concentrated on a line (Milasevic and Ducharme, 1987, Ann. Statist.)
- ► There are two one-dimensional marginal distributions each of which is not point mass for d ≥ 2.

イロン イヨン イヨン

Uniqueness and Existence of Spatial Median

Let Z be a r.v. on \mathbb{R}^d with distribution Q. Z has a unique spatial median if one of the following holds.

- ▶ Q is not concentrated on a line (Milasevic and Ducharme, 1987, Ann. Statist.)
- ► There are two one-dimensional marginal distributions each of which is not point mass for d ≥ 2.
- There are at least two absolute continuous one-dimensional marginal distributions.

Uniqueness and Existence of Spatial Median

Let Z be a r.v. on \mathbb{R}^d with distribution Q. Z has a unique spatial median if one of the following holds.

- ▶ Q is not concentrated on a line (Milasevic and Ducharme, 1987, Ann. Statist.)
- ► There are two one-dimensional marginal distributions each of which is not point mass for d ≥ 2.
- There are at least two absolute continuous one-dimensional marginal distributions.
- ► *Q* is *angularly symmetric* about its median.

Uniqueness and Existence of Spatial Median

Let Z be a r.v. on \mathbb{R}^d with distribution Q. Z has a unique spatial median if one of the following holds.

- ▶ Q is not concentrated on a line (Milasevic and Ducharme, 1987, Ann. Statist.)
- ► There are two one-dimensional marginal distributions each of which is not point mass for d ≥ 2.
- There are at least two absolute continuous one-dimensional marginal distributions.
- ► *Q* is *angularly symmetric* about its median.
- Q is centrally symmetric about its median.

Strong Consistency

Denote $\theta_0 = (\alpha_0, \beta_0^{\top})^{\top}$ the true parameter value and $\hat{\theta}_n = (\hat{\alpha}_n, \hat{\beta}_n)$ the estimator and $k_0 = (1...m)$. **Theorem 3** Suppose the distribution of $h(\xi_0) = (X_{k_0}^{\top}X_{k_0})^{-1}X_{k_0}^{\top}Y_{k_0}$ is not concentrated on a line and the map $\vartheta \mapsto \mathbb{E} \| \vartheta - h(\xi_0) \|$ is maximized at true θ_0 . Then the MTSE $\hat{\theta}_n$ is strongly consistent, i.e. $\hat{\theta}_n \to \theta_0$ a.s.

(D) (A) (A) (A) (A)

Strong Consistency

Denote $\theta_0 = (\alpha_0, \beta_0^{\top})^{\top}$ the true parameter value and $\hat{\theta}_n = (\hat{\alpha}_n, \hat{\beta}_n)$ the estimator and $k_0 = (1...m)$. **Theorem 3** Suppose the distribution of $h(\xi_0) = (X_{k_0}^{\top} X_{k_0})^{-1} X_{k_0}^{\top} Y_{k_0}$ is not concentrated on a line and the map $\vartheta \mapsto \mathbb{E} \| \vartheta - h(\xi_0) \|$ is maximized at true θ_0 . Then the MTSE $\hat{\theta}_n$ is strongly consistent, i.e. $\hat{\theta}_n \to \theta_0$ a.s.

Theorem 4 Suppose ϵ is not concentrated on a point mass and its distribution is symmetric about zero. Then the overlapped diff-based MTSE β_n^* is strongly consistent: $\beta_n^* \to \beta_0$ a.s.

Strong Consistency

Denote $\theta_0 = (\alpha_0, \beta_0^{\top})^{\top}$ the true parameter value and $\hat{\theta}_n = (\hat{\alpha}_n, \hat{\beta}_n)$ the estimator and $k_0 = (1...m)$. **Theorem 3** Suppose the distribution of $h(\xi_0) = (X_{k_0}^{\top} X_{k_0})^{-1} X_{k_0}^{\top} Y_{k_0}$ is not concentrated on a line and the map $\vartheta \mapsto \mathbb{E} \| \vartheta - h(\xi_0) \|$ is maximized at true θ_0 . Then the MTSE $\hat{\theta}_n$ is strongly consistent, i.e. $\hat{\theta}_n \to \theta_0$ a.s.

Theorem 4 Suppose ϵ is not concentrated on a point mass and its distribution is symmetric about zero. Then the overlapped diff-based MTSE β_n^* is strongly consistent: $\beta_n^* \to \beta_0$ a.s.

Theorem 5 Suppose the distribution of the error ϵ is not concentrated on a point mass. Then the non-overlapped diff-based MTSE $\tilde{\beta}_n$ are strongly consistent: $\tilde{\beta}_n \to \beta_0$ a.s.

TSE In Simple Linear Regression TSE In Multiple Linear Regression	
Ongoing/Future Research (I)	
Ongoing/Future Research (II)	

Obviously
$$\epsilon_1 - \epsilon_2 \stackrel{d}{=} \epsilon_2 - \epsilon_1$$
.

(ロ) (四) (E) (E) (E)

TSE In Simple Linear Regression TSE In Multiple Linear Regression
Ongoing/Future Research (I)
Ongoing/Future Research (II)

Obviously
$$\epsilon_1 - \epsilon_2 \stackrel{d}{=} \epsilon_2 - \epsilon_1$$
. But

$$(\epsilon_1 - \epsilon_2, \epsilon_1 - \epsilon_3, \epsilon_2 - \epsilon_3) \stackrel{d}{\neq} (\epsilon_2 - \epsilon_1, \epsilon_3 - \epsilon_1, \epsilon_3 - \epsilon_2).$$

(ロ) (四) (E) (E) (E)

TSE In Simple Linear Regression TSE In Multiple Linear Regression
Ongoing/Future Research (I) Ongoing/Future Research (II)

Obviously
$$\epsilon_1 - \epsilon_2 \stackrel{d}{=} \epsilon_2 - \epsilon_1$$
. But

$$(\epsilon_1 - \epsilon_2, \epsilon_1 - \epsilon_3, \epsilon_2 - \epsilon_3) \stackrel{d}{\neq} (\epsilon_2 - \epsilon_1, \epsilon_3 - \epsilon_1, \epsilon_3 - \epsilon_2).$$

Certainly

$$(\epsilon_1 - \epsilon_2, \epsilon_3 - \epsilon_4, \epsilon_5 - \epsilon_6) \stackrel{d}{=} (\epsilon_2 - \epsilon_1, \epsilon_4 - \epsilon_3, \epsilon_6 - \epsilon_5).$$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

TSE In Simple Linear Regression TSE In Multiple Linear Regression
Ongoing/Future Research (I) Ongoing/Future Research (II)

Obviously
$$\epsilon_1 - \epsilon_2 \stackrel{d}{=} \epsilon_2 - \epsilon_1$$
. But

$$(\epsilon_1 - \epsilon_2, \epsilon_1 - \epsilon_3, \epsilon_2 - \epsilon_3) \stackrel{d}{\neq} (\epsilon_2 - \epsilon_1, \epsilon_3 - \epsilon_1, \epsilon_3 - \epsilon_2).$$

Certainly

$$(\epsilon_1 - \epsilon_2, \epsilon_3 - \epsilon_4, \epsilon_5 - \epsilon_6) \stackrel{d}{=} (\epsilon_2 - \epsilon_1, \epsilon_4 - \epsilon_3, \epsilon_6 - \epsilon_5).$$

Theorem 6 A random variable is symmetric about its median iff the random vectors whose components are the differences of three i.i.d. copies of the random variable are symmetric about zero.

・ 同 ト ・ ヨ ト ・ ヨ ト

Super-Efficiency

Let $h_b(\xi_0) = I_p h(\xi_0)$ with $I_p = \text{diag}(0, 1, \dots, 1)$ a diagonal matrix.

・ロン ・回 と ・ヨン ・ヨン

Super-Efficiency

Let $h_b(\xi_0) = I_p h(\xi_0)$ with $I_p = \text{diag}(0, 1, \dots, 1)$ a diagonal matrix. **Theorem 7** Suppose the error has a distribution symmetric about zero. Assume $h_b(\xi_0)$ is not concentrated on a line. If the error distribution is discontinuous, then

$$\mathbb{P}(\hat{\beta}_n = \beta_0) \to 1.$$

イロン イヨン イヨン

Super-Efficiency

Let $h_b(\xi_0) = I_p h(\xi_0)$ with $I_p = \text{diag}(0, 1, \dots, 1)$ a diagonal matrix. **Theorem 7** Suppose the error has a distribution symmetric about zero. Assume $h_b(\xi_0)$ is not concentrated on a line. If the error distribution is discontinuous, then

$$\mathbb{P}(\hat{\beta}_n = \beta_0) \to 1.$$

Consequently, we have super-efficiency:

$$n^{\nu}(\hat{\beta}_n-\beta_0) \rightarrow 0, \quad \nu \geq 0.$$

Assumptotic Normality

Denote
$$\mu(\vartheta) = \mathbb{E}(\|\vartheta - h(\xi_0)\| - \|h(\xi_0)\|)$$
 and
 $D_1(\vartheta) = \mathbb{E}\left\{\frac{1}{\|\vartheta - h(\xi_0)\|}\left(I_m - \frac{(\vartheta - h(\xi_0))^{\otimes 2}}{\|\vartheta - h(\xi_0)\|^2}\right)\right\}$

イロト イヨト イヨト イヨト

Э

Assumptotic Normality

Denote
$$\mu(\vartheta) = \mathbb{E}(\|\vartheta - h(\xi_0)\| - \|h(\xi_0)\|)$$
 and
 $D_1(\vartheta) = \mathbb{E}\left\{\frac{1}{\|\vartheta - h(\xi_0)\|}\left(I_m - \frac{(\vartheta - h(\xi_0))^{\otimes 2}}{\|\vartheta - h(\xi_0)\|^2}\right)
ight\}.$

Theorem 8 Suppose

e is symmetric about zero;

イロト イポト イヨト イヨト

Assumptotic Normality

Denote
$$\mu(\vartheta) = \mathbb{E}(\|\vartheta - h(\xi_0)\| - \|h(\xi_0)\|)$$
 and
 $D_1(\vartheta) = \mathbb{E}\left\{\frac{1}{\|\vartheta - h(\xi_0)\|}\left(I_m - \frac{(\vartheta - h(\xi_0))^{\otimes 2}}{\|\vartheta - h(\xi_0)\|^2}\right)\right\}.$

Theorem 8 Suppose

- *e* is symmetric about zero;
- ▶ the map $\vartheta \mapsto \mathbb{E} \| \vartheta h(\xi_0) \|$ is maximized at true θ_0 ;

イロト イポト イヨト イヨト

э

Assumptotic Normality

C

Denote
$$\mu(\vartheta) = \mathbb{E}(\|\vartheta - h(\xi_0)\| - \|h(\xi_0)\|)$$
 and
 $D_1(\vartheta) = \mathbb{E}\left\{\frac{1}{\|\vartheta - h(\xi_0)\|}\left(I_m - \frac{(\vartheta - h(\xi_0))^{\otimes 2}}{\|\vartheta - h(\xi_0)\|^2}\right)\right\}$

Theorem 8 Suppose

- *e* is symmetric about zero;
- ▶ the map $\vartheta \mapsto \mathbb{E} \| \vartheta h(\xi_0) \|$ is maximized at true θ_0 ;
- ► the distributions of e and (X^T_{k0}X_{k0})⁻¹X^T_{k0} are absolutely continuous w.r.t. the Lebesgue measure;

Assumptotic Normality

Denote $\mu(artheta) = \mathbb{E}(\|artheta - h(\xi_0)\| - \|h(\xi_0)\|)$ and

$$D_1(artheta) = \mathbb{E}\left\{rac{1}{\|artheta-h(\xi_0)\|}\left(I_m - rac{(artheta-h(\xi_0))^{\otimes 2}}{\|artheta-h(\xi_0)\|^2}
ight)
ight\}$$

Theorem 8 Suppose

- *e* is symmetric about zero;
- ▶ the map $\vartheta \mapsto \mathbb{E} \| \vartheta h(\xi_0) \|$ is maximized at true θ_0 ;
- ► the distributions of \(\epsilon\) and \((X_{k_0}^T X_{k_0})^{-1} X_{k_0}^T\) are absolutely continuous w.r.t. the Lebesgue measure;
- $\Delta \mu(\vartheta)$ is continuously differentiable with derivative $\Delta^2 \mu(\vartheta) = D_1(\vartheta)$ in a neighborhood of θ_0 .

Assumptotic Normality

Denote $\mu(\vartheta) = \mathbb{E}(\|\vartheta - h(\xi_0)\| - \|h(\xi_0)\|)$ and

$$D_1(artheta) = \mathbb{E}\left\{rac{1}{\|artheta-h(\xi_0)\|}\left(I_m - rac{(artheta-h(\xi_0))^{\otimes 2}}{\|artheta-h(\xi_0)\|^2}
ight)
ight\}.$$

Theorem 8 Suppose

- *e* is symmetric about zero;
- the map $\vartheta \mapsto \mathbb{E} \| \vartheta h(\xi_0) \|$ is maximized at true θ_0 ;
- ► the distributions of e and (X^T_{k0}X_{k0})⁻¹X^T_{k0} are absolutely continuous w.r.t. the Lebesgue measure;
- $\Delta \mu(\vartheta)$ is continuously differentiable with derivative $\Delta^2 \mu(\vartheta) = D_1(\vartheta)$ in a neighborhood of θ_0 .

Then we have $(D = D_1(\theta_0)$ invertible):

$$\hat{\theta}_n = \theta_0 + D^{-1}\bar{S}_n + R_n, \tag{1}$$

where $\bar{S}_n = \sum_k S(\theta_0 - h(\xi_{(k)})) / {n \choose m}$, $R_n = o_p(n^{-1/2})$.

Assumptotic Normality: Theorem 6 (Cont'd)

Hence

$$\sqrt{n}(\hat{ heta}_n - heta_0) \Rightarrow \mathcal{N}(0, \Sigma)$$

where $\Sigma = D_1^{-1}(\theta_0) \mathbb{E} \tilde{h}(\xi_1)^{\otimes 2} D_1^{-1}(\theta_0)$ with
 $\tilde{h}(\xi_1) = \mathbb{E}(S(\theta_0 - h(\xi_1, ..., \xi_m))|\xi_1).$

・ロン ・回と ・ヨン・

э

Assumptotic Normality

Theorem 9 Suppose ϵ has distribution symmetric about zero. Assume

$$\mathbb{E}\|h(\xi_0)-\theta_0\|^{(3+\nu)/2}<\infty$$

for some 0 $\leq \nu \leq$ 1. Then the MTSE $\hat{\theta}_n$ satisfies (1) with the remainder

$$R_n = O_p(n^{-(3+\nu)/4} (\log n)^{1/2} (\log \log n)^{(1+\nu)/4}).$$

э

Assumptotic Normality

Theorem 9 Suppose ϵ has distribution symmetric about zero. Assume

$$\mathbb{E}\|h(\xi_0)-\theta_0\|^{(3+\nu)/2}<\infty$$

for some 0 $\leq \nu \leq$ 1. Then the MTSE $\hat{\theta}_n$ satisfies (1) with the remainder

$$R_n = O_p(n^{-(3+\nu)/4} (\log n)^{1/2} (\log \log n)^{(1+\nu)/4}).$$

Theorem 10 Under similar assumptions, β_n^* satisfies (1) with the remainder satisfying the above equality.

イロン イヨン イヨン イヨン

Assumptotic Normality

Theorem 9 Suppose ϵ has distribution symmetric about zero. Assume

$$\mathbb{E}\|h(\xi_0)-\theta_0\|^{(3+\nu)/2}<\infty$$

for some 0 $\leq \nu \leq$ 1. Then the MTSE $\hat{\theta}_n$ satisfies (1) with the remainder

$$R_n = O_p(n^{-(3+\nu)/4} (\log n)^{1/2} (\log \log n)^{(1+\nu)/4}).$$

Theorem 10 Under similar assumptions, β_n^* satisfies (1) with the remainder satisfying the above equality.

Our results slightly improve Bose's (1998, Ann. Statist.) and Zhou and Serfling's (2007, preprint).

Robustness

Breakdown point

$$BP = 1 - (1/2)^{1/m}$$

イロト イポト イヨト イヨト

æ

Robustness

Breakdown point

$$BP = 1 - (1/2)^{1/m}$$

 Balance between robustness, efficiency and computation intensity robustness: decreasing efficiency: increasing intensity (complexity): increasing then decreasing

Robustness

• Influence function $IF((y, \mathbf{x}); \hat{\beta}_n)$ is

$$D^{-1}\mathbb{E}\mathcal{S}(\beta_0 - (X_{\mathsf{x}}^{\top}X_{\mathsf{x}})^{-1}X_{\mathsf{x}}^{\top}Y_y)$$

where D is the previous D_1 or D_1^* , $X_{\mathbf{x}} = [\mathbf{1}_m, X(\mathbf{x})]$ with column $\mathbf{1}_m \in \mathbb{R}^m$ of all entries 1 and $X(\mathbf{x}) = [\mathbf{x}, X_1, \dots, X_{m-1}]^\top$ and $Y_y = (y, Y_1, \dots, Y_{m-1})^\top$.

・ロト ・回ト ・ヨト

Robustness

• Influence function $IF((y, \mathbf{x}); \hat{\beta}_n)$ is

$$D^{-1}\mathbb{E}S(\beta_0 - (X_{\mathbf{x}}^{\top}X_{\mathbf{x}})^{-1}X_{\mathbf{x}}^{\top}Y_y)$$

where D is the previous D_1 or D_1^* , $X_{\mathbf{x}} = [\mathbf{1}_m, X(\mathbf{x})]$ with column $\mathbf{1}_m \in \mathbb{R}^m$ of all entries 1 and $X(\mathbf{x}) = [\mathbf{x}, X_1, \dots, X_{m-1}]^\top$ and $Y_y = (y, Y_1, \dots, Y_{m-1})^\top$.

This shows that the estimator is only influenced by the direction and is irrelevant to the magnitudes of y and x. Consequently our MTSE is robust against both x and y outlying.

Simulation: Robustness

Samples are generated from

 $Y_i = 1 + 5X_{1i} + 10X_{2i} + \epsilon_i,$

where $X_{1i} \sim \mathcal{N}(0,1)$, $X_{2i} \sim U(0,1)$, $\epsilon_i \sim \mathcal{N}(0,0.5)$.

イロト イポト イヨト イヨト

Simulation: Robustness

Samples are generated from

$$Y_i = 1 + 5X_{1i} + 10X_{2i} + \epsilon_i,$$

where $X_{1i} \sim \mathcal{N}(0, 1)$, $X_{2i} \sim U(0, 1)$, $\epsilon_i \sim \mathcal{N}(0, 0.5)$.

	true parameter $ heta_0=(5,10)$					
	Theil-Sen	Diff Theil-Sen	LSE			
n=20	(4.31,10.43)	(4.38,10.93)	(4.38,10.59)			
n=40	(4.97,9.88)	(4.98,9.66)	(5.01,9.87)			
$n_1 = 16, n_2 = 4$	(5.01,9.95)	(5.06,9.71)	(4.18,7.76)			
$n_1 = 15, n_2 = 5$	(5.30,9.46)	(5.25,9.33)	(5.65,2.27)			
$n_1 = 14, n_2 = 6$	(4.37,9.68)	(4.22,9.41)	(-2.65,7.72)			
$n_1 = 13, n_2 = 7$	(4.14,9.17)	(4.88,9.59)	(-2.37,3.34)			
$n_1 = 12, n_2 = 8$	(3.98,9.12)	(0.72,5.65)	(-3.37,5.18)			

(a) Upper: estimators with sample size n without outliers.
(b) Lower: estimators with sample size n = n₁ + n₂: n₁=# of "good" observations, n₂=# of outliers.

Peng

Simulation: Efficiency Comparison

		Normal		<i>T</i> ₃		Cauchy	
		TSE	LSE	TSE	LSE	TSE	LSE
n=10	EMSE	3.716	2.643	7.058	7.628	45.97	2613
	RE	0.711	1.000	1.081	1.000	56.84	1.000
n=20	EMSE	1.339	1.075	2.111	2.627	5.667	816.2
	RE	0.803	1.000	1.245	1.000	144.0	1.000
n=30	EMSE	0.739	0.596	1.161	1.569	3.032	2207
	RE	0.806	1.000	1.352	1.000	728.0	1.000

EMSE=Empirical Mean Squared Error. RE=Ratio of EMSE of LSE to EMSE of MTSE

A (1)

3 ×

Theil-Sen Estimator in Multiple Regression With non-random Covariate

Multiple Regression

$$Y_i = \alpha + \beta^\top x_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where x_i 's are non-random.

イロト イポト イヨト イヨト

э

Theil-Sen Estimator in Multiple Regression With non-random Covariate

Multiple Regression

$$Y_i = \alpha + \beta^\top x_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where x_i 's are non-random.

Asymptotic Behavior: Consistency and Asymptotic Normality.

・ロト ・回ト ・ヨト

Theil-Sen Estimator in Multiple Regression With non-random Covariate

Multiple Regression

$$Y_i = \alpha + \beta^\top x_i + \epsilon_i, \quad i = 1, \cdots, n,$$

where x_i 's are non-random.

- Asymptotic Behavior: Consistency and Asymptotic Normality.
- Asymptotic Behavior of TSE as $m = m_n \rightarrow \infty$.

Theil-Sen Estimator in Multivariate Multiple Regression

Multivariate Multiple Regression

$$\mathbf{Y} = B\mathbf{X} + \mathscr{E}$$

where \mathbf{Y}, \mathbf{X} are observation matrices and \mathscr{E} is random error matrix, and B is matrix parameter of interest.

Theil-Sen Estimator in Multivariate Multiple Regression

Multivariate Multiple Regression

$$\mathbf{Y} = B\mathbf{X} + \mathscr{E}$$

where \mathbf{Y}, \mathbf{X} are observation matrices and \mathscr{E} is random error matrix, and B is matrix parameter of interest.

Construction of TSE and Asymptotic Behavior.

(D) (A) (A) (A) (A)
Theil-Sen Estimator in Multivariate Multiple Regression

Multivariate Multiple Regression

$$\mathbf{Y} = B\mathbf{X} + \mathscr{E}$$

where \mathbf{Y}, \mathbf{X} are observation matrices and \mathscr{E} is random error matrix, and B is matrix parameter of interest.

 Construction of TSE and Asymptotic Behavior. Two considerations:

(D) (A) (A) (A) (A)

Theil-Sen Estimator in Multivariate Multiple Regression

Multivariate Multiple Regression

$$\mathbf{Y} = B\mathbf{X} + \mathscr{E}$$

where \mathbf{Y}, \mathbf{X} are observation matrices and \mathscr{E} is random error matrix, and B is matrix parameter of interest.

- Construction of TSE and Asymptotic Behavior. Two considerations:
 - (1) \mathbf{X} is random
 - (2) X is non-random.

- 4 回 ト 4 ヨ ト 4 ヨ ト

TSE in Semiparametric Mixed Models

Semiparametric mixed model

$$y_j = x_j^\top \beta + z_j^\top u_j + \rho(t_j) + \varepsilon_j, \quad j = 1, \cdots, n,$$

where β is parameter, u_j is random vector with $\mathbb{E}u_j = 0$, ρ is unknown nonparametric function. $\{\varepsilon_j\}$ are IID errors independent of $\{(x_j, u_j, t_j)\}$.

・ロト ・回ト ・ヨト

TSE in Semiparametric Mixed Models

Semiparametric mixed model

$$y_j = x_j^\top \beta + z_j^\top u_j + \rho(t_j) + \varepsilon_j, \quad j = 1, \cdots, n,$$

where β is parameter, u_j is random vector with $\mathbb{E}u_j = 0$, ρ is unknown nonparametric function. $\{\varepsilon_j\}$ are IID errors independent of $\{(x_j, u_j, t_j)\}$. The model includes

• Linear Mixed Model: $\rho(t) \equiv 0$,

TSE in Semiparametric Mixed Models

Semiparametric mixed model

$$y_j = x_j^\top \beta + z_j^\top u_j + \rho(t_j) + \varepsilon_j, \quad j = 1, \cdots, n,$$

where β is parameter, u_j is random vector with $\mathbb{E}u_j = 0$, ρ is unknown nonparametric function. $\{\varepsilon_j\}$ are IID errors independent of $\{(x_j, u_j, t_j)\}$. The model includes

- Linear Mixed Model: $\rho(t) \equiv 0$, including
 - (1a) Weighted multiple linear model: $u \equiv 0$
 - (1b) BLUE of common mean
 - (1c) Kriging estimator

TSE in Semiparametric Mixed Models

Semiparametric mixed model

$$y_j = x_j^\top \beta + z_j^\top u_j + \rho(t_j) + \varepsilon_j, \quad j = 1, \cdots, n,$$

where β is parameter, u_j is random vector with $\mathbb{E}u_j = 0$, ρ is unknown nonparametric function. $\{\varepsilon_j\}$ are IID errors independent of $\{(x_j, u_j, t_j)\}$. The model includes

- Linear Mixed Model: $\rho(t) \equiv 0$, including
 - (1a) Weighted multiple linear model: $u \equiv 0$
 - (1b) BLUE of common mean
 - (1c) Kriging estimator
- Nonparametric: $\beta \equiv 0, u \equiv 0$

TSE in Semiparametric Mixed Models

Semiparametric mixed model

$$y_j = x_j^\top \beta + z_j^\top u_j + \rho(t_j) + \varepsilon_j, \quad j = 1, \cdots, n,$$

where β is parameter, u_j is random vector with $\mathbb{E}u_j = 0$, ρ is unknown nonparametric function. $\{\varepsilon_j\}$ are IID errors independent of $\{(x_j, u_j, t_j)\}$. The model includes

- Linear Mixed Model: $\rho(t) \equiv 0$, including
 - (1a) Weighted multiple linear model: $u \equiv 0$
 - (1b) BLUE of common mean
 - (1c) Kriging estimator
- Nonparametric: $\beta \equiv 0, u \equiv 0$
- Partially Linear Additive: $u \equiv 0$

Sub-Sampling

The computation of TSE will be enormous.

イロン 不同と 不同と 不同と

Sub-Sampling

- The computation of TSE will be enormous.
- ► To deal with this, we consider sub-sampling.

イロト イポト イヨト イヨト

Sub-Sampling

- The computation of TSE will be enormous.
- ► To deal with this, we consider sub-sampling.

イロト イポト イヨト イヨト

Sub-Sampling

- The computation of TSE will be enormous.
- ► To deal with this, we consider sub-sampling.
- We compute the spatial median based a simple random subsample N of all (ⁿ_m) LSE's, M.
- We propose TSE $\hat{\theta}_{n,N}$ by

$$\hat{\theta}_{n,N} = ext{SpatialMedian} \left\{ \hat{\theta}_{(m)} : (m) \in \mathcal{N} \right\}.$$

イロト イポト イヨト イヨト

Sub-Sampling

- The computation of TSE will be enormous.
- ► To deal with this, we consider sub-sampling.
- ▶ We compute the spatial median based a simple random subsample N of all ⁿ_m LSE's, M.

• We propose TSE
$$\hat{\theta}_{n,N}$$
 by

$$\hat{\theta}_{n,N} = \operatorname{SpatialMedian} \left\{ \hat{\theta}_{(m)} : (m) \in \mathcal{N} \right\}.$$

• Asymptotic behavior and properties of $\hat{\theta}_{n,N}$.

Projects

► Efficiency Comparison of TSE's with LSE, ETC.

イロト イポト イヨト イヨト

Projects

- Efficiency Comparison of TSE's with LSE, ETC.
- Robustness Comparison of TSE's with Other Robust Estimators.

イロト イポト イヨト イヨト

Projects

- Efficiency Comparison of TSE's with LSE, ETC.
- Robustness Comparison of TSE's with Other Robust Estimators.
- ► Applications: astronomy, remote sensoring, psychology, etc.

イロト イポト イヨト イヨト

Projects

- Efficiency Comparison of TSE's with LSE, ETC.
- Robustness Comparison of TSE's with Other Robust Estimators.
- ► Applications: astronomy, remote sensoring, psychology, etc.
- ► TSE's Based on Other Depth-defined Medians.

イロト イポト イヨト イヨト

Spatial depth-based outlier detector

イロト イポト イヨト イヨト

A disadvantage of Spatial Depth

(a) Triangle data

Peng

(b) Ring data

э

Positive Definition Kernel

A positive definite kernel, $\kappa : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, implicitly defines an embedding map

$$\phi: \mathbf{x} \in \mathbb{R}^{d} \longmapsto \phi(\mathbf{x}) \in \mathbb{F}$$

via the inner product in the feature space $\mathbb F,$ i.e.

$$\kappa(\mathbf{x},\mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y})
angle$$
 .

Examples of kernels: Gaussian kernel: $\kappa(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{\sigma^2}\right)$ Polynomial kernel: $\kappa(\mathbf{x}, \mathbf{y}) = (1 + \mathbf{x}^t \mathbf{y})^p$ Rational quadratic kernel: $\kappa(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|/(\theta + \|\mathbf{x} - \mathbf{y}\|)$

・ロト ・同ト ・ヨト ・ヨト

Kernelized Spatial Depth

Rewrite sample spatial depth as

$$D(\mathbf{x}, F_n) = 1 - \frac{1}{n} \left(\sum_{\mathbf{y}, \mathbf{z} \in \mathcal{X}} \frac{\mathbf{x}^T \mathbf{x} + \mathbf{y}^T \mathbf{z} - \mathbf{x}^T \mathbf{y} - \mathbf{x}^T \mathbf{z}}{\delta(\mathbf{x}, \mathbf{y}) \delta(\mathbf{x}, \mathbf{z})} \right)^{1/2}$$

where $\delta(\mathbf{x}, \mathbf{y}) = \sqrt{\mathbf{x}^T \mathbf{x} + \mathbf{y}^T \mathbf{y} - 2\mathbf{x}^T \mathbf{y}}$. Replacing the inner products with kernel κ , we have the kernelized spatial depth:

$$D_{\kappa}(\mathbf{x}, F_{n}) = 1 - \frac{1}{n} \left(\sum_{\mathbf{y}, \mathbf{z} \in \mathcal{X}} \frac{\kappa(\mathbf{x}, \mathbf{x}) + \kappa(\mathbf{y}, \mathbf{z}) - \kappa(\mathbf{x}, \mathbf{y}) - \kappa(\mathbf{x}, \mathbf{z})}{\delta_{\kappa}(\mathbf{x}, \mathbf{y})\delta_{\kappa}(\mathbf{x}, \mathbf{z})} \right)^{1/2}$$
(2)
where $\delta_{\kappa}(\mathbf{x}, \mathbf{y}) = \sqrt{\kappa(\mathbf{x}, \mathbf{x}) + \kappa(\mathbf{y}, \mathbf{y}) - 2\kappa(\mathbf{x}, \mathbf{y})}.$

(a) Triangle data

(b) Ring data

Figure: Contour plots of kernelized spatial depth functions.

Synthetic Data

Figure: Decision boundaries of outlier detectors.

・ロン ・回 と ・ヨン ・ヨン

Э

Synthetic Data

Figure: Decision boundaries of outlier detectors.

Chen, Dang, Peng and Bart (2007). Outlier Detection with the

Local Spatial Depth

Zuo and Serfling (2000, Ann. Statist.) gave defining properties of statistical depth function.

Affine invariance.

イロト イポト イヨト イヨト

Local Spatial Depth

Zuo and Serfling (2000, Ann. Statist.) gave defining properties of statistical depth function.

- Affine invariance.
- Maximality at center.

イロト イポト イヨト イヨト

Local Spatial Depth

Zuo and Serfling (2000, Ann. Statist.) gave defining properties of statistical depth function.

- Affine invariance.
- Maximality at center.
- Monotonicity relative to the deepest point.

Local Spatial Depth

Zuo and Serfling (2000, Ann. Statist.) gave defining properties of statistical depth function.

- Affine invariance.
- Maximality at center.
- Monotonicity relative to the deepest point.
- Vanishing at infinity.

イロト イポト イヨト イヨト

Local Spatial Depth

• Existence and Uniqueness of LSD.

イロン イヨン イヨン イヨン

Local Spatial Depth

- Existence and Uniqueness of LSD.
- Nestedness of the LSD contours.

イロト イポト イヨト イヨト

Local Spatial Depth

- Existence and Uniqueness of LSD.
- Nestedness of the LSD contours.
- Relationship between LSD and kernel density estimates.

イロト イポト イヨト イヨト

Applications of Local Spatial Depth

LSD-based TSE's.

イロン イヨン イヨン イヨン

Applications of Local Spatial Depth

- LSD-based TSE's.
- LSD-based Spatial Rank Statistics: Skewness, Kurtosis, ETC.

イロト イポト イヨト イヨト

Applications of Local Spatial Depth

- LSD-based TSE's.
- LSD-based Spatial Rank Statistics: Skewness, Kurtosis, ETC.
- LSD-based Spatial Quantile.

・ロト ・回ト ・ヨト

Applications of Local Spatial Depth

- LSD-based TSE's.
- LSD-based Spatial Rank Statistics: Skewness, Kurtosis, ETC.
- LSD-based Spatial Quantile.
- LSD-based Robust Estimators of Scatter Matrices.

イロト イポト イヨト イヨト

Applications of Local Spatial Depth

- LSD-based TSE's.
- LSD-based Spatial Rank Statistics: Skewness, Kurtosis, ETC.
- LSD-based Spatial Quantile.
- LSD-based Robust Estimators of Scatter Matrices.
- LSD-based Clustering/Classification/Outlier Detection.

THANKS

イロン 不同 とくほど 不良 とうほ