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The Theil-Sen Estimator In Simple Linear Regression

◮ Simple Linear Regression

Yi = α + βxi + ǫi , i = 1, · · ·, n,

where xi ’s are nonrandom covariates, ǫi ’s are IID random
errors with common cdf F , and α, β are parameters.
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The Theil-Sen Estimator In Simple Linear Regression

◮ Simple Linear Regression

Yi = α + βxi + ǫi , i = 1, · · ·, n,

where xi ’s are nonrandom covariates, ǫi ’s are IID random
errors with common cdf F , and α, β are parameters.

◮ Theil-Sen Estimator (Theil(1950), Sen(1968, JASA)):

β̂n = Median

{

Yi − Yj

xi − xj

: xi 6= xj , i < j = 1, · · ·, n
}
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The Theil-Sen Estimator In Simple Linear Regression

◮ Simple Linear Regression

Yi = α + βxi + ǫi , i = 1, · · ·, n,

where xi ’s are nonrandom covariates, ǫi ’s are IID random
errors with common cdf F , and α, β are parameters.

◮ Theil-Sen Estimator (Theil(1950), Sen(1968, JASA)):

β̂n = Median

{

Yi − Yj

xi − xj

: xi 6= xj , i < j = 1, · · ·, n
}

◮ Robustness: Breaking-down Point BP = 0.293–Global and
Bounded Influence Function–Local.
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The Theil-Sen Estimator In Simple Linear Regression

◮ Simple Linear Regression

Yi = α + βxi + ǫi , i = 1, · · ·, n,

where xi ’s are nonrandom covariates, ǫi ’s are IID random
errors with common cdf F , and α, β are parameters.

◮ Theil-Sen Estimator (Theil(1950), Sen(1968, JASA)):

β̂n = Median

{

Yi − Yj

xi − xj

: xi 6= xj , i < j = 1, · · ·, n
}

◮ Robustness: Breaking-down Point BP = 0.293–Global and
Bounded Influence Function–Local.

◮ Compete favorably with LSE (Wilcox, 1998).
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Strong Consistency (Peng, Wang & Wang, 2008, JSPI)

Theorem 1 Suppose non-random covariates x1, · · ·, xn satisfy

n−1 log n

ā2
n

= o(1), where ān =

(

n

2

)−1
∑

i<j

1[xi 6= xj ].
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Strong Consistency (Peng, Wang & Wang, 2008, JSPI)

Theorem 1 Suppose non-random covariates x1, · · ·, xn satisfy

n−1 log n

ā2
n

= o(1), where ān =

(

n

2

)−1
∑

i<j

1[xi 6= xj ].

(i) If F is discontinuous, then

P(ω : β̂n 6= β0 happens only finite many times) = 1.
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Strong Consistency (Peng, Wang & Wang, 2008, JSPI)

Theorem 1 Suppose non-random covariates x1, · · ·, xn satisfy

n−1 log n

ā2
n

= o(1), where ān =

(

n

2

)−1
∑

i<j

1[xi 6= xj ].

(i) If F is discontinuous, then

P(ω : β̂n 6= β0 happens only finite many times) = 1.

Hence, the TSE is strongly consistent: P(limn→∞ β̂n = β0) = 1.
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Strong Consistency (Peng, Wang & Wang, 2008, JSPI)

Theorem 1 Suppose non-random covariates x1, · · ·, xn satisfy

n−1 log n

ā2
n

= o(1), where ān =

(

n

2

)−1
∑

i<j

1[xi 6= xj ].

(i) If F is discontinuous, then

P(ω : β̂n 6= β0 happens only finite many times) = 1.

Hence, the TSE is strongly consistent: P(limn→∞ β̂n = β0) = 1.

(ii) If F is continuous and

lim inf
n→∞

{|xi − xj | : xi 6= xj : i < j} > 0,

then the TSE is strongly consistent.
Peng The Theil-Sen Estimators In Linear Regression



TSE In Simple Linear Regression
TSE In Multiple Linear Regression

Ongoing/Future Research (I)
Ongoing/Future Research (II)

Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

P(nν(β̂n − β0) → 0) = 1, ν ≥ 0.
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Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

P(nν(β̂n − β0) → 0) = 1, ν ≥ 0.

Hence β̂n is super-efficient.
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Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

P(nν(β̂n − β0) → 0) = 1, ν ≥ 0.

Hence β̂n is super-efficient.

Cae II. Suppose F is continuous.
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Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

P(nν(β̂n − β0) → 0) = 1, ν ≥ 0.

Hence β̂n is super-efficient.

Cae II. Suppose F is continuous.
Let C 2

n =
∑

c2
i where ci =

∑

1[xj > xi ] − 1[xj < xi ].
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Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

P(nν(β̂n − β0) → 0) = 1, ν ≥ 0.

Hence β̂n is super-efficient.

Cae II. Suppose F is continuous.
Let C 2

n =
∑

c2
i where ci =

∑

1[xj > xi ] − 1[xj < xi ].
If kn → ∞, maxi ,j |xi − xj |/kn → 0, lim infn Cn/n3/2 > 0, and

C−1
n

∑

i<j

[1 − 2F2(t|xi − xj |/kn)] → m(t), F2(t) = EF (ε + t),
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Asymptotic Distribution(Peng, Wang & Wang, 2008, JSPI)

Theorem 2 Case I. Suppose F is discontinuous. Then

P(nν(β̂n − β0) → 0) = 1, ν ≥ 0.

Hence β̂n is super-efficient.

Cae II. Suppose F is continuous.
Let C 2

n =
∑

c2
i where ci =

∑

1[xj > xi ] − 1[xj < xi ].
If kn → ∞, maxi ,j |xi − xj |/kn → 0, lim infn Cn/n3/2 > 0, and

C−1
n

∑

i<j

[1 − 2F2(t|xi − xj |/kn)] → m(t), F2(t) = EF (ε + t),

then

lim
n→∞

P(kn(β̂n − β0) ≤ t) = Φ(−
√

3m(t)), t ∈ R,

where Φ is the cdf of the standard normal.
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Asymptotic Distribution (Cont’d)

◮ The asymptotic distribution is normal iff m(t) in linear in t.
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Asymptotic Distribution (Cont’d)

◮ The asymptotic distribution is normal iff m(t) in linear in t.

◮ Sufficient Conditions.
Corollary Suppose F is absolutely continuous with pdf f such
that B(F ) =

∫

f 2(t) dt < ∞. If lim inf Cn/n3/2 > 0, then

(Dn/Cn)(β̂n − β0) ⇒ N (0, 1/3B2(F )),

where Dn =
∑n

i=1 di with di =
∑

j |xi − xj |.
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Asymptotic Distribution (Cont’d)

◮ The asymptotic distribution is normal iff m(t) in linear in t.

◮ Sufficient Conditions.
Corollary Suppose F is absolutely continuous with pdf f such
that B(F ) =

∫

f 2(t) dt < ∞. If lim inf Cn/n3/2 > 0, then

(Dn/Cn)(β̂n − β0) ⇒ N (0, 1/3B2(F )),

where Dn =
∑n

i=1 di with di =
∑

j |xi − xj |.
This corresponds to Theorem 6.2 of Sen (1968, JASA).
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Simulation On Super-Efficiency

Table: Proportions of β̂n = β0 with N = 500 replications & different
sample sizes.

x Err 5 20 50 80 100 150 250 400

±1 0.564 0.998 1.00 1.00 1.00 1.00 1.00 1.00
Bin Poi 0.222 0.932 1.00 1.00 1.00 1.00 1.00 1.00

Bin 0.034 0.270 0.47 0.58 0.66 0.72 0.86 0.92
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Multiple Theil-Sen Estimator (Dang, Peng, Wang &
Zhang, 2008, To appear in JMVA)

◮ Multiple Linear Regression

Yi = α + β⊤Xi + ǫi , i = 1, · · ·, n,

where Xi ’s are IID random covariates, ǫi ’s IID ∼ F , and
θ = (α, β⊤)⊤ ∈ R

p+1 are parameters.
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Multiple Theil-Sen Estimator (Dang, Peng, Wang &
Zhang, 2008, To appear in JMVA)

◮ Multiple Linear Regression

Yi = α + β⊤Xi + ǫi , i = 1, · · ·, n,

where Xi ’s are IID random covariates, ǫi ’s IID ∼ F , and
θ = (α, β⊤)⊤ ∈ R

p+1 are parameters.
◮ For sub-sample ξ(K) = {(Xk , Yk) : k ∈ K} with K = {i1, · · ·,

im} a subset of {1...n} with p + 1 ≤ m ≤ n, the LSE:

θ̃(K) = (X⊤
(K)X(K))

−1X⊤
(K)Y(K).
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Multiple Theil-Sen Estimator (Dang, Peng, Wang &
Zhang, 2008, To appear in JMVA)

◮ Multiple Linear Regression

Yi = α + β⊤Xi + ǫi , i = 1, · · ·, n,

where Xi ’s are IID random covariates, ǫi ’s IID ∼ F , and
θ = (α, β⊤)⊤ ∈ R

p+1 are parameters.
◮ For sub-sample ξ(K) = {(Xk , Yk) : k ∈ K} with K = {i1, · · ·,

im} a subset of {1...n} with p + 1 ≤ m ≤ n, the LSE:

θ̃(K) = (X⊤
(K)X(K))

−1X⊤
(K)Y(K).

◮ The proposed Multiple Theil-Sen Estimator (MTSE):

θ̂n = Multivariate Median
{

θ̃(K) : ∀K
}
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Difference-based MTSE

◮ Pairwise Differences

Yi − Yj = β⊤(Xi − Xj) + ǫi − ǫj , i , j = 1, ..., n
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Difference-based MTSE

◮ Pairwise Differences

Yi − Yj = β⊤(Xi − Xj) + ǫi − ǫj , i , j = 1, ..., n

◮ For a sub-sample

ξ(K) = {(Xk − Xl , Yk − Yl) : k , l ∈ K}
The least squares etimator is β∗

(K).
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Difference-based MTSE

◮ Pairwise Differences

Yi − Yj = β⊤(Xi − Xj) + ǫi − ǫj , i , j = 1, ..., n

◮ For a sub-sample

ξ(K) = {(Xk − Xl , Yk − Yl) : k , l ∈ K}
The least squares etimator is β∗

(K).
◮ The proposed Difference-based MTSE of the slope β:

β∗
n = Multivariate Median

{

β∗
(K) : ∀K

}

.
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Difference-based MTSE

◮ Pairwise Differences

Yi − Yj = β⊤(Xi − Xj) + ǫi − ǫj , i , j = 1, ..., n

◮ For a sub-sample

ξ(K) = {(Xk − Xl , Yk − Yl) : k , l ∈ K}
The least squares etimator is β∗

(K).
◮ The proposed Difference-based MTSE of the slope β:

β∗
n = Multivariate Median

{

β∗
(K) : ∀K

}

.

◮ Similarly, define non-overlapped difference-based MTSE β̃n, so
β∗

n is overlapped diff-based.
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Depth Functions and Depth Medians

◮ Depth functions provide center-outward ordering of a point in
high dim space w.r.t. a distribution.
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Depth Functions and Depth Medians

◮ Depth functions provide center-outward ordering of a point in
high dim space w.r.t. a distribution.

◮ High depth corresponds to centrality, low depth to
outlyingness.
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Depth Functions and Depth Medians

◮ Depth functions provide center-outward ordering of a point in
high dim space w.r.t. a distribution.

◮ High depth corresponds to centrality, low depth to
outlyingness.

◮ Depth median consists of the point(s) with the deepest depth.
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Depth Functions and Depth Medians

◮ Depth functions provide center-outward ordering of a point in
high dim space w.r.t. a distribution.

◮ High depth corresponds to centrality, low depth to
outlyingness.

◮ Depth median consists of the point(s) with the deepest depth.

◮ Popular depth functions:
◮ Tukey depth (halfspace depth)(Tukey, ’75, Proc. ICM)
◮ Simplicial depth (Liu, ’90, Ann. Statist.)
◮ Spatial depth (Zhang, et al., ’00, JMVA)
◮ Projection depth (Zuo & Serfling, ’00, Ann. Statist.)
◮ Tangent depth (Mizera, ’02, Ann. Statist.)
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Spatial Depth and Spatial Median

◮ Spatial Depth:

D(x , F ) = 1 − ‖EFS(x − X )‖, x ∈ Rd

where S(x) = x/‖x‖ is the spatial sign function.
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Spatial Depth and Spatial Median

◮ Spatial Depth:

D(x , F ) = 1 − ‖EFS(x − X )‖, x ∈ Rd

where S(x) = x/‖x‖ is the spatial sign function.
◮ Sample Version:

D(x , Fn) = 1 −
∥

∥

∥

∥

∥

1

n

n
∑

i=1

S(x − Xi )

∥

∥

∥

∥

∥
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Spatial Depth and Spatial Median

◮ Spatial Depth:

D(x , F ) = 1 − ‖EFS(x − X )‖, x ∈ Rd

where S(x) = x/‖x‖ is the spatial sign function.
◮ Sample Version:

D(x , Fn) = 1 −
∥

∥

∥

∥

∥

1

n

n
∑

i=1

S(x − Xi )

∥

∥

∥

∥

∥

◮ Spatial Median:

Spatial Median {x ; X1, ...,Xn} = arg max
x∈Rd

D(x , Fn)

= arg min
x∈Rd

∥

∥

∥

∥

∥

1

n

n
∑

i=1

S(x − Xi )

∥

∥

∥

∥

∥
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Uniqueness and Existence of Spatial Median

Let Z be a r.v. on R
d with distribution Q. Z has a unique spatial

median if one of the following holds.
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Uniqueness and Existence of Spatial Median

Let Z be a r.v. on R
d with distribution Q. Z has a unique spatial

median if one of the following holds.

◮ Q is not concentrated on a line (Milasevic and Ducharme,
1987, Ann. Statist.)
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Uniqueness and Existence of Spatial Median

Let Z be a r.v. on R
d with distribution Q. Z has a unique spatial

median if one of the following holds.

◮ Q is not concentrated on a line (Milasevic and Ducharme,
1987, Ann. Statist.)

◮ There are two one-dimensional marginal distributions each of
which is not point mass for d ≥ 2.
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Uniqueness and Existence of Spatial Median

Let Z be a r.v. on R
d with distribution Q. Z has a unique spatial

median if one of the following holds.

◮ Q is not concentrated on a line (Milasevic and Ducharme,
1987, Ann. Statist.)

◮ There are two one-dimensional marginal distributions each of
which is not point mass for d ≥ 2.

◮ There are at least two absolute continuous one-dimensional
marginal distributions.
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Uniqueness and Existence of Spatial Median

Let Z be a r.v. on R
d with distribution Q. Z has a unique spatial

median if one of the following holds.

◮ Q is not concentrated on a line (Milasevic and Ducharme,
1987, Ann. Statist.)

◮ There are two one-dimensional marginal distributions each of
which is not point mass for d ≥ 2.

◮ There are at least two absolute continuous one-dimensional
marginal distributions.

◮ Q is angularly symmetric about its median.
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Uniqueness and Existence of Spatial Median

Let Z be a r.v. on R
d with distribution Q. Z has a unique spatial

median if one of the following holds.

◮ Q is not concentrated on a line (Milasevic and Ducharme,
1987, Ann. Statist.)

◮ There are two one-dimensional marginal distributions each of
which is not point mass for d ≥ 2.

◮ There are at least two absolute continuous one-dimensional
marginal distributions.

◮ Q is angularly symmetric about its median.

◮ Q is centrally symmetric about its median.
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Strong Consistency

Denote θ0 = (α0, β
⊤
0 )⊤ the true parameter value and

θ̂n = (α̂n, β̂n) the estimator and k0 = (1...m).
Theorem 3 Suppose the distribution of h(ξ0) = (X⊤

k0
Xk0)

−1X⊤
k0

Yk0

is not concentrated on a line and the map ϑ 7→ E‖ϑ − h(ξ0)‖ is
maximized at true θ0. Then the MTSE θ̂n is strongly consistent,
i.e. θ̂n → θ0 a.s.

Peng The Theil-Sen Estimators In Linear Regression



TSE In Simple Linear Regression
TSE In Multiple Linear Regression

Ongoing/Future Research (I)
Ongoing/Future Research (II)

Strong Consistency

Denote θ0 = (α0, β
⊤
0 )⊤ the true parameter value and

θ̂n = (α̂n, β̂n) the estimator and k0 = (1...m).
Theorem 3 Suppose the distribution of h(ξ0) = (X⊤

k0
Xk0)

−1X⊤
k0

Yk0

is not concentrated on a line and the map ϑ 7→ E‖ϑ − h(ξ0)‖ is
maximized at true θ0. Then the MTSE θ̂n is strongly consistent,
i.e. θ̂n → θ0 a.s.

Theorem 4 Suppose ǫ is not concentrated on a point mass and its
distribution is symmetric about zero. Then the overlapped
diff-based MTSE β∗

n is strongly consistent: β∗
n → β0 a.s.
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Strong Consistency

Denote θ0 = (α0, β
⊤
0 )⊤ the true parameter value and

θ̂n = (α̂n, β̂n) the estimator and k0 = (1...m).
Theorem 3 Suppose the distribution of h(ξ0) = (X⊤

k0
Xk0)

−1X⊤
k0

Yk0

is not concentrated on a line and the map ϑ 7→ E‖ϑ − h(ξ0)‖ is
maximized at true θ0. Then the MTSE θ̂n is strongly consistent,
i.e. θ̂n → θ0 a.s.

Theorem 4 Suppose ǫ is not concentrated on a point mass and its
distribution is symmetric about zero. Then the overlapped
diff-based MTSE β∗

n is strongly consistent: β∗
n → β0 a.s.

Theorem 5 Suppose the distribution of the error ǫ is not
concentrated on a point mass. Then the non-overlapped diff-based
MTSE β̃n are strongly consistent: β̃n → β0 a.s.
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Symmetry

Obviously ǫ1 − ǫ2
d
= ǫ2 − ǫ1.
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Symmetry

Obviously ǫ1 − ǫ2
d
= ǫ2 − ǫ1. But

(ǫ1 − ǫ2, ǫ1 − ǫ3, ǫ2 − ǫ3)
d

6= (ǫ2 − ǫ1, ǫ3 − ǫ1, ǫ3 − ǫ2).
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Symmetry

Obviously ǫ1 − ǫ2
d
= ǫ2 − ǫ1. But

(ǫ1 − ǫ2, ǫ1 − ǫ3, ǫ2 − ǫ3)
d

6= (ǫ2 − ǫ1, ǫ3 − ǫ1, ǫ3 − ǫ2).

Certainly

(ǫ1 − ǫ2, ǫ3 − ǫ4, ǫ5 − ǫ6)
d
= (ǫ2 − ǫ1, ǫ4 − ǫ3, ǫ6 − ǫ5).
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Symmetry

Obviously ǫ1 − ǫ2
d
= ǫ2 − ǫ1. But

(ǫ1 − ǫ2, ǫ1 − ǫ3, ǫ2 − ǫ3)
d

6= (ǫ2 − ǫ1, ǫ3 − ǫ1, ǫ3 − ǫ2).

Certainly

(ǫ1 − ǫ2, ǫ3 − ǫ4, ǫ5 − ǫ6)
d
= (ǫ2 − ǫ1, ǫ4 − ǫ3, ǫ6 − ǫ5).

Theorem 6 A random variable is symmetric about its median iff
the random vectors whose components are the differences of three
i.i.d. copies of the random variable are symmetric about zero.
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Super-Efficiency

Let hb(ξ0) = Iph(ξ0) with Ip = diag(0, 1, . . . , 1) a diagonal matrix.
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Super-Efficiency

Let hb(ξ0) = Iph(ξ0) with Ip = diag(0, 1, . . . , 1) a diagonal matrix.
Theorem 7 Suppose the error has a distribution symmetric about
zero. Assume hb(ξ0) is not concentrated on a line. If the error
distribution is discontinuous, then

P(β̂n = β0) → 1.
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Super-Efficiency

Let hb(ξ0) = Iph(ξ0) with Ip = diag(0, 1, . . . , 1) a diagonal matrix.
Theorem 7 Suppose the error has a distribution symmetric about
zero. Assume hb(ξ0) is not concentrated on a line. If the error
distribution is discontinuous, then

P(β̂n = β0) → 1.

Consequently, we have super-efficiency:

nν(β̂n − β0) → 0, ν ≥ 0.
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Assumptotic Normality

Denote µ(ϑ) = E(‖ϑ − h(ξ0)‖ − ‖h(ξ0)‖) and

D1(ϑ) = E

{

1

‖ϑ − h(ξ0)‖

(

Im − (ϑ − h(ξ0))
⊗2

‖ϑ − h(ξ0)‖2

)}

.
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Assumptotic Normality

Denote µ(ϑ) = E(‖ϑ − h(ξ0)‖ − ‖h(ξ0)‖) and

D1(ϑ) = E

{

1

‖ϑ − h(ξ0)‖

(

Im − (ϑ − h(ξ0))
⊗2

‖ϑ − h(ξ0)‖2

)}

.

Theorem 8 Suppose
◮ ǫ is symmetric about zero;
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Assumptotic Normality

Denote µ(ϑ) = E(‖ϑ − h(ξ0)‖ − ‖h(ξ0)‖) and

D1(ϑ) = E

{

1

‖ϑ − h(ξ0)‖

(

Im − (ϑ − h(ξ0))
⊗2

‖ϑ − h(ξ0)‖2

)}

.

Theorem 8 Suppose
◮ ǫ is symmetric about zero;
◮ the map ϑ 7→ E‖ϑ − h(ξ0)‖ is maximized at true θ0;
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Assumptotic Normality

Denote µ(ϑ) = E(‖ϑ − h(ξ0)‖ − ‖h(ξ0)‖) and

D1(ϑ) = E

{

1

‖ϑ − h(ξ0)‖

(

Im − (ϑ − h(ξ0))
⊗2

‖ϑ − h(ξ0)‖2

)}

.

Theorem 8 Suppose
◮ ǫ is symmetric about zero;
◮ the map ϑ 7→ E‖ϑ − h(ξ0)‖ is maximized at true θ0;
◮ the distributions of ǫ and (X⊤

k0
Xk0)

−1X⊤
k0

are absolutely
continuous w.r.t. the Lebesgue measure;
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Assumptotic Normality

Denote µ(ϑ) = E(‖ϑ − h(ξ0)‖ − ‖h(ξ0)‖) and

D1(ϑ) = E

{

1

‖ϑ − h(ξ0)‖

(

Im − (ϑ − h(ξ0))
⊗2

‖ϑ − h(ξ0)‖2

)}

.

Theorem 8 Suppose
◮ ǫ is symmetric about zero;
◮ the map ϑ 7→ E‖ϑ − h(ξ0)‖ is maximized at true θ0;
◮ the distributions of ǫ and (X⊤

k0
Xk0)

−1X⊤
k0

are absolutely
continuous w.r.t. the Lebesgue measure;

◮ ∆µ(ϑ) is continuously differentiable with derivative
∆2µ(ϑ) = D1(ϑ) in a neighborhood of θ0.
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Assumptotic Normality

Denote µ(ϑ) = E(‖ϑ − h(ξ0)‖ − ‖h(ξ0)‖) and

D1(ϑ) = E

{

1

‖ϑ − h(ξ0)‖

(

Im − (ϑ − h(ξ0))
⊗2

‖ϑ − h(ξ0)‖2

)}

.

Theorem 8 Suppose
◮ ǫ is symmetric about zero;
◮ the map ϑ 7→ E‖ϑ − h(ξ0)‖ is maximized at true θ0;
◮ the distributions of ǫ and (X⊤

k0
Xk0)

−1X⊤
k0

are absolutely
continuous w.r.t. the Lebesgue measure;

◮ ∆µ(ϑ) is continuously differentiable with derivative
∆2µ(ϑ) = D1(ϑ) in a neighborhood of θ0.

Then we have(D = D1(θ0) invertible):

θ̂n = θ0 + D−1S̄n + Rn, (1)

where S̄n =
∑

k S(θ0 − h(ξ(k)))/
(

n
m

)

, Rn = op(n
−1/2).
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Assumptotic Normality: Theorem 6 (Cont’d)

Hence √
n(θ̂n − θ0) ⇒ N (0, Σ)

where Σ = D−1
1 (θ0)Eh̃(ξ1)

⊗2D−1
1 (θ0) with

h̃(ξ1) = E(S(θ0 − h(ξ1, ..., ξm))|ξ1).
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Assumptotic Normality

Theorem 9 Suppose ǫ has distribution symmetric about zero.
Assume

E‖h(ξ0) − θ0‖(3+ν)/2 < ∞
for some 0 ≤ ν ≤ 1. Then the MTSE θ̂n satisfies (1) with the
remainder

Rn = Op(n
−(3+ν)/4(log n)1/2(log log n)(1+ν)/4).
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Assumptotic Normality

Theorem 9 Suppose ǫ has distribution symmetric about zero.
Assume

E‖h(ξ0) − θ0‖(3+ν)/2 < ∞
for some 0 ≤ ν ≤ 1. Then the MTSE θ̂n satisfies (1) with the
remainder

Rn = Op(n
−(3+ν)/4(log n)1/2(log log n)(1+ν)/4).

Theorem 10 Under similar assumptions, β∗
n satisfies (1) with the

remainder satisfying the above equality.
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Assumptotic Normality

Theorem 9 Suppose ǫ has distribution symmetric about zero.
Assume

E‖h(ξ0) − θ0‖(3+ν)/2 < ∞
for some 0 ≤ ν ≤ 1. Then the MTSE θ̂n satisfies (1) with the
remainder

Rn = Op(n
−(3+ν)/4(log n)1/2(log log n)(1+ν)/4).

Theorem 10 Under similar assumptions, β∗
n satisfies (1) with the

remainder satisfying the above equality.

Our results slightly improve Bose’s (1998, Ann. Statist.) and Zhou
and Serfling’s (2007, preprint).
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Robustness

◮ Breakdown point

BP = 1 − (1/2)1/m
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Robustness

◮ Breakdown point

BP = 1 − (1/2)1/m

◮ Balance between robustness, efficiency and computation
intensity
robustness: decreasing
efficiency: increasing
intensity (complexity): increasing then decreasing
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Robustness

◮ Influence function IF ((y , x); β̂n) is

D−1
ES(β0 − (X⊤

x Xx)
−1X⊤

x Yy )

where D is the previous D1 or D∗
1 , Xx = [1m, X (x)] with

column 1m ∈ R
m of all entries 1 and

X (x) = [x, X1, · · ·, Xm−1]
⊤ and Yy = (y , Y1, · · ·, Ym−1)

⊤.
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Robustness

◮ Influence function IF ((y , x); β̂n) is

D−1
ES(β0 − (X⊤

x Xx)
−1X⊤

x Yy )

where D is the previous D1 or D∗
1 , Xx = [1m, X (x)] with

column 1m ∈ R
m of all entries 1 and

X (x) = [x, X1, · · ·, Xm−1]
⊤ and Yy = (y , Y1, · · ·, Ym−1)

⊤.

◮ This shows that the estimator is only influenced by the
direction and is irrelevant to the magnitudes of y and x.
Consequently our MTSE is robust against both x and y

outlying.
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Simulation: Robustness

Samples are generated from

Yi = 1 + 5X1i + 10X2i + ǫi ,

where X1i ∼ N (0, 1), X2i ∼ U(0, 1), ǫi ∼ N (0, 0.5).
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Simulation: Robustness

Samples are generated from

Yi = 1 + 5X1i + 10X2i + ǫi ,

where X1i ∼ N (0, 1), X2i ∼ U(0, 1), ǫi ∼ N (0, 0.5).

true parameter θ0 = (5, 10)
Theil-Sen Diff Theil-Sen LSE

n=20 (4.31,10.43) (4.38,10.93) (4.38,10.59)
n=40 (4.97,9.88) (4.98,9.66) (5.01,9.87)

n1 = 16, n2 = 4 (5.01,9.95) (5.06,9.71) (4.18,7.76)
n1 = 15, n2 = 5 (5.30,9.46) (5.25,9.33) (5.65,2.27)
n1 = 14, n2 = 6 (4.37,9.68) (4.22,9.41) (-2.65,7.72)
n1 = 13, n2 = 7 (4.14,9.17) (4.88,9.59) (-2.37,3.34)
n1 = 12, n2 = 8 (3.98,9.12) (0.72,5.65) (-3.37,5.18)

(a) Upper: estimators with sample size n without outliers.
(b) Lower: estimators with sample size n = n1 + n2: n1=# of “good”
observations, n2=# of outliers.
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Simulation: Efficiency Comparison

Normal T3 Cauchy
TSE LSE TSE LSE TSE LSE

n=10 EMSE 3.716 2.643 7.058 7.628 45.97 2613
RE 0.711 1.000 1.081 1.000 56.84 1.000

n=20 EMSE 1.339 1.075 2.111 2.627 5.667 816.2
RE 0.803 1.000 1.245 1.000 144.0 1.000

n=30 EMSE 0.739 0.596 1.161 1.569 3.032 2207
RE 0.806 1.000 1.352 1.000 728.0 1.000

EMSE=Empirical Mean Squared Error.
RE=Ratio of EMSE of LSE to EMSE of MTSE
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Theil-Sen Estimator in Multiple Regression With
non-random Covariate

◮ Multiple Regression

Yi = α + β⊤xi + ǫi , i = 1, · · ·, n,

where xi ’s are non-random.
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Theil-Sen Estimator in Multiple Regression With
non-random Covariate

◮ Multiple Regression

Yi = α + β⊤xi + ǫi , i = 1, · · ·, n,

where xi ’s are non-random.

◮ Asymptotic Behavior: Consistency and Asymptotic Normality.
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Theil-Sen Estimator in Multiple Regression With
non-random Covariate

◮ Multiple Regression

Yi = α + β⊤xi + ǫi , i = 1, · · ·, n,

where xi ’s are non-random.

◮ Asymptotic Behavior: Consistency and Asymptotic Normality.

◮ Asymptotic Behavior of TSE as m = mn → ∞.
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Theil-Sen Estimator in Multivariate Multiple Regression

◮ Multivariate Multiple Regression

Y = BX + E

where Y,X are observation matrices and E is randon error
matrix, and B is matrix parameter of interest.
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Theil-Sen Estimator in Multivariate Multiple Regression

◮ Multivariate Multiple Regression

Y = BX + E

where Y,X are observation matrices and E is randon error
matrix, and B is matrix parameter of interest.

◮ Construction of TSE and Asymptotic Behavior.
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Theil-Sen Estimator in Multivariate Multiple Regression

◮ Multivariate Multiple Regression

Y = BX + E

where Y,X are observation matrices and E is randon error
matrix, and B is matrix parameter of interest.

◮ Construction of TSE and Asymptotic Behavior.
Two considerations:
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Theil-Sen Estimator in Multivariate Multiple Regression

◮ Multivariate Multiple Regression

Y = BX + E

where Y,X are observation matrices and E is randon error
matrix, and B is matrix parameter of interest.

◮ Construction of TSE and Asymptotic Behavior.
Two considerations:
(1) X is random
(2) X is non-random.

Peng The Theil-Sen Estimators In Linear Regression



TSE In Simple Linear Regression
TSE In Multiple Linear Regression

Ongoing/Future Research (I)
Ongoing/Future Research (II)

TSE in Semiparametric Mixed Models

Semiparametric mixed model

yj = x⊤
j β + z⊤j uj + ρ(tj) + εj , j = 1, · · ·, n,

where β is parameter, uj is random vector with Euj = 0, ρ is
unknown nonparametric function. {εj} are IID errors independent
of {(xj , uj , tj)}.
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TSE in Semiparametric Mixed Models

Semiparametric mixed model

yj = x⊤
j β + z⊤j uj + ρ(tj) + εj , j = 1, · · ·, n,

where β is parameter, uj is random vector with Euj = 0, ρ is
unknown nonparametric function. {εj} are IID errors independent
of {(xj , uj , tj)}.
The model includes

◮ Linear Mixed Model: ρ(t) ≡ 0,
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TSE in Semiparametric Mixed Models

Semiparametric mixed model

yj = x⊤
j β + z⊤j uj + ρ(tj) + εj , j = 1, · · ·, n,

where β is parameter, uj is random vector with Euj = 0, ρ is
unknown nonparametric function. {εj} are IID errors independent
of {(xj , uj , tj)}.
The model includes

◮ Linear Mixed Model: ρ(t) ≡ 0, including
◮ (1a) Weighted multiple linear model: u ≡ 0
◮ (1b) BLUE of common mean
◮ (1c) Kriging estimator
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TSE in Semiparametric Mixed Models

Semiparametric mixed model

yj = x⊤
j β + z⊤j uj + ρ(tj) + εj , j = 1, · · ·, n,

where β is parameter, uj is random vector with Euj = 0, ρ is
unknown nonparametric function. {εj} are IID errors independent
of {(xj , uj , tj)}.
The model includes

◮ Linear Mixed Model: ρ(t) ≡ 0, including
◮ (1a) Weighted multiple linear model: u ≡ 0
◮ (1b) BLUE of common mean
◮ (1c) Kriging estimator

◮ Nonparametric: β ≡ 0, u ≡ 0

Peng The Theil-Sen Estimators In Linear Regression



TSE In Simple Linear Regression
TSE In Multiple Linear Regression

Ongoing/Future Research (I)
Ongoing/Future Research (II)

TSE in Semiparametric Mixed Models

Semiparametric mixed model

yj = x⊤
j β + z⊤j uj + ρ(tj) + εj , j = 1, · · ·, n,

where β is parameter, uj is random vector with Euj = 0, ρ is
unknown nonparametric function. {εj} are IID errors independent
of {(xj , uj , tj)}.
The model includes

◮ Linear Mixed Model: ρ(t) ≡ 0, including
◮ (1a) Weighted multiple linear model: u ≡ 0
◮ (1b) BLUE of common mean
◮ (1c) Kriging estimator

◮ Nonparametric: β ≡ 0, u ≡ 0

◮ Partially Linear Additive: u ≡ 0
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Sub-Sampling

◮ The computation of TSE will be enormous.
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◮ The computation of TSE will be enormous.

◮ To deal with this, we consider sub-sampling.
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Sub-Sampling

◮ The computation of TSE will be enormous.

◮ To deal with this, we consider sub-sampling.

◮ We compute the spatial median based a simple random

subsample N of all
(

n
m

)

LSE’s, M.
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Sub-Sampling

◮ The computation of TSE will be enormous.

◮ To deal with this, we consider sub-sampling.

◮ We compute the spatial median based a simple random

subsample N of all
(

n
m

)

LSE’s, M.

◮ We propose TSE θ̂n,N by

θ̂n,N = SpatialMedian
{

θ̂(m) : (m) ∈ N
}

.
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Sub-Sampling

◮ The computation of TSE will be enormous.

◮ To deal with this, we consider sub-sampling.

◮ We compute the spatial median based a simple random

subsample N of all
(

n
m

)

LSE’s, M.

◮ We propose TSE θ̂n,N by

θ̂n,N = SpatialMedian
{

θ̂(m) : (m) ∈ N
}

.

◮ Asymptotic behavior and properties of θ̂n,N .
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Projects

◮ Efficiency Comparison of TSE’s with LSE, ETC.

Peng The Theil-Sen Estimators In Linear Regression



TSE In Simple Linear Regression
TSE In Multiple Linear Regression

Ongoing/Future Research (I)
Ongoing/Future Research (II)

Projects

◮ Efficiency Comparison of TSE’s with LSE, ETC.

◮ Robustness Comparison of TSE’s with Other Robust
Estimators.

Peng The Theil-Sen Estimators In Linear Regression



TSE In Simple Linear Regression
TSE In Multiple Linear Regression

Ongoing/Future Research (I)
Ongoing/Future Research (II)

Projects

◮ Efficiency Comparison of TSE’s with LSE, ETC.

◮ Robustness Comparison of TSE’s with Other Robust
Estimators.

◮ Applications: astronomy, remote sensoring, psychology, etc.

Peng The Theil-Sen Estimators In Linear Regression



TSE In Simple Linear Regression
TSE In Multiple Linear Regression

Ongoing/Future Research (I)
Ongoing/Future Research (II)

Projects

◮ Efficiency Comparison of TSE’s with LSE, ETC.

◮ Robustness Comparison of TSE’s with Other Robust
Estimators.

◮ Applications: astronomy, remote sensoring, psychology, etc.

◮ TSE’s Based on Other Depth-defined Medians.
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Spatial depth-based outlier detector
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A disadvantage of Spatial Depth

(a) Triangle data (b) Ring data

Figure: Contour plots of sample spatial depth functions constructed fromPeng The Theil-Sen Estimators In Linear Regression
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Positive Definition Kernel

A positive definite kernel, κ : R
d × R

d → R, implicitly defines an
embedding map

φ : x ∈ R
d 7−→ φ(x) ∈ F

via the inner product in the feature space F, i.e.

κ(x, y) = 〈φ(x), φ(y)〉 .

Examples of kernels:

Gaussian kernel: κ(x, y) = exp
(

−‖x−y‖2

σ2

)

Polynomial kernel: κ(x, y) = (1 + xty)p

Rational quadratic kernel: κ(x, y) = ‖x − y‖/(θ + ‖x − y‖)
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Kernelized Spatial Depth

Rewrite sample spatial depth as

D(x, Fn) = 1 − 1

n





∑

y,z∈X

xTx + yTz − xTy − xT z

δ(x, y)δ(x, z)





1/2

.

where δ(x, y) =
√

xTx + yTy − 2xTy. Replacing the inner
products with kernel κ, we have the kernelized spatial depth:

Dκ(x, Fn) = 1− 1

n





∑

y,z∈X

κ(x, x) + κ(y, z) − κ(x, y) − κ(x, z)

δκ(x, y)δκ(x, z)





1/2

(2)
where δκ(x, y) =

√

κ(x, x) + κ(y, y) − 2κ(x, y).
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(a) Triangle data (b) Ring data

Figure: Contour plots of kernelized spatial depth functions.
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Synthetic Data

Figure: Decision boundaries of outlier detectors.
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Synthetic Data

Figure: Decision boundaries of outlier detectors.

Chen, Dang, Peng and Bart (2007). Outlier Detection with the
Kernelized Spatial Depth Function, To appear in IEEEPeng The Theil-Sen Estimators In Linear Regression



TSE In Simple Linear Regression
TSE In Multiple Linear Regression

Ongoing/Future Research (I)
Ongoing/Future Research (II)

Local Spatial Depth

Zuo and Serfling (2000, Ann. Statist.) gave defining properties of
statistical depth function.

◮ Affine invariance.
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Local Spatial Depth

Zuo and Serfling (2000, Ann. Statist.) gave defining properties of
statistical depth function.

◮ Affine invariance.

◮ Maximality at center.

◮ Monotonicity relative to the deepest point.

◮ Vanishing at infinity.
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Local Spatial Depth

◮ Existence and Uniqueness of LSD.
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Local Spatial Depth

◮ Existence and Uniqueness of LSD.

◮ Nestedness of the LSD contours.

◮ Relationship between LSD and kernel density estimates.
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Applications of Local Spatial Depth

◮ LSD-based TSE’s.

◮ LSD-based Spatial Rank Statistics: Skewness, Kurtosis, ETC.

◮ LSD-based Spatial Quantile.

◮ LSD-based Robust Estimators of Scatter Matrices.

◮ LSD-based Clustering/Classification/Outlier Detection.
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