
Free Knot Spline Cox Models
Counting Process Framework and Assumptions

Concavity, Consistency and Asymptotic Normality
Asymptotic Normality in Free-Knot Polynomial Spline Models

Sketches of Proofs

Asymptotics of Maximum Partial Likelihood

Estimators in General Semiparametric

Multiplicative Hazard Models

Under First Order Differentiability

Hanxiang Peng

Department of Mathematical Sciences
Indiana University-Purdue University at Indianapolis

Joint work with Fei Tan, FAMU

November 11, 2009

Peng Asymptotic MPLE in Semiparametric Hazard Models



Free Knot Spline Cox Models
Counting Process Framework and Assumptions

Concavity, Consistency and Asymptotic Normality
Asymptotic Normality in Free-Knot Polynomial Spline Models

Sketches of Proofs

Outline

Free Knot Spline Cox Models

Counting Process Framework and Assumptions

Concavity, Consistency and Asymptotic Normality

Asymptotic Normality in Free-Knot Polynomial Spline Models

Sketches of Proofs

Peng Asymptotic MPLE in Semiparametric Hazard Models



Free Knot Spline Cox Models
Counting Process Framework and Assumptions

Concavity, Consistency and Asymptotic Normality
Asymptotic Normality in Free-Knot Polynomial Spline Models

Sketches of Proofs

Free Knot Spline Cox Models

Consider a parametric Cox model:

h(t) = h0(t) exp(gθ(t, Z (t))), (1)

where gθ is a “smooth” function. Our candidate of gθ is a free

knot spline.
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Free Knot Spline Cox Models

Consider a parametric Cox model:

h(t) = h0(t) exp(gθ(t, Z (t))), (1)

where gθ is a “smooth” function. Our candidate of gθ is a free

knot spline.

i A quadratic free-knot polynomial spline with knots in

time:

gθ(t, z) = (β1 + β2t + β3t
2 + β4(t − γ)2+)z ,

where θ = [β1, β2, β3, β4, γ]⊤ is the parameter of interest.
The knot γ can be a threshold value such as a changepoint.
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ii A quadratic free-knot polynomial spline with knots in

covariates:

gθ(z) = β1z + β2z
2 + β3(z − κ)2+, (2)

where θ = [β1, β2, β3, κ]⊤ is the parameter of interest. The
knot κ can be a threshold value such as a nadir (of BMI), a
changepoint, etc.
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ii A quadratic free-knot polynomial spline with knots in

covariates:

gθ(z) = β1z + β2z
2 + β3(z − κ)2+, (2)

where θ = [β1, β2, β3, κ]⊤ is the parameter of interest. The
knot κ can be a threshold value such as a nadir (of BMI), a
changepoint, etc.

iii Applications? B-splines? Natural Splines?
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iv gθ has first continuous derivative,

ġθ(z) = [z , z2, (z − κ)21{z>κ},−2β3(z − κ)1{z>κ}]
⊤,

but the 2nd derivative does not exist at knot κ.
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iv gθ has first continuous derivative,

ġθ(z) = [z , z2, (z − κ)21{z>κ},−2β3(z − κ)1{z>κ}]
⊤,

but the 2nd derivative does not exist at knot κ.

v Consistency? Asymptotic Normality? Under continuous first
derivative, we have obtained.
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iv gθ has first continuous derivative,

ġθ(z) = [z , z2, (z − κ)21{z>κ},−2β3(z − κ)1{z>κ}]
⊤,

but the 2nd derivative does not exist at knot κ.

v Consistency? Asymptotic Normality? Under continuous first
derivative, we have obtained.

vi Consistency? Asymptotic Normality? Knots in covariates:

gθ(z) = β1z + β2(z − κ)+, gθ(z) = β(1z≥κ − 1z<κ).

Knots in time:

gθ(t, z) = (β0+β1t+β2(t−γ)+)z , gθ(t, z) = β(1t≥γ−1t<γ)z ,
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Counting Process Framework

◮ Consider a semiparametric multiplicative hazard model,

h(t) = h0(t)rθ(t, Z (t)), t ≥ 0, (3)

where rθ is parametric with θ ∈ R
p, h0 is nonparametric

baseline hazard, and Z (t) is a covariate process.
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Counting Process Framework

◮ Consider a semiparametric multiplicative hazard model,

h(t) = h0(t)rθ(t, Z (t)), t ≥ 0, (3)

where rθ is parametric with θ ∈ R
p, h0 is nonparametric

baseline hazard, and Z (t) is a covariate process.

◮ n independent individuals continuously monitored over time
t ≥ 0, each corresponds to a process (Ni (t), Yi (t), Zi (t)),
where Ni (t) is a counting proc. recording events (such as
deaths), Yi (t) is the at-risk proc. taking values 1 and 0
depending on whether the individual is under observation,
Zi (t) is a vector covariate proc., all up to time t.
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Counting Process Framework

Set gθ(t, Z (t)) = log rθ(t, Z (t)). As usual, assume

◮ (N1, ...,Nn) is a multivariate counting proc.

◮ Each Mi = Ni − Ai is a local martingale w.r.t. a right-cont.
filtration, where gθ a predictable proc., Ai is the compensator
Ai =

∫

Yi (s) exp(gθ0(s, Zi (s)))h0(s)ds, and θ0 is the true
parameter value.

◮ Each Yi and Zi is predictable w.r.t. a right-cont. filtration.
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Counting Process Framework

Set gθ(t, Z (t)) = log rθ(t, Z (t)). As usual, assume

◮ (N1, ...,Nn) is a multivariate counting proc.

◮ Each Mi = Ni − Ai is a local martingale w.r.t. a right-cont.
filtration, where gθ a predictable proc., Ai is the compensator
Ai =

∫

Yi (s) exp(gθ0(s, Zi (s)))h0(s)ds, and θ0 is the true
parameter value.

◮ Each Yi and Zi is predictable w.r.t. a right-cont. filtration.

The usual partial likelihood function is

PLn(θ) =
∏n

i=1

{

exp [gθ(Ti ,Zi (Ti ))]
Σj∈Ri

exp [gθ(Ti ,Zj (Ti ))]

}δi

,

where δi is the indicator that the failure of individual i was
observed and Ri is the at-risk set at the time of the ith failure.
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Assumptions

Let Sn be the operator defined by

Sn(t, g)[h] = 1
n

∑n
i=1 h(t, Zi (t))Yi (t) exp(g(t, Zi (t))),

where g is a function and h is a scalar, vector or matrix function.

Formally, let S
(0)
n (θ, t) = Sn(t, gθ)[ı], where ı is the identity map;

S
(1)
n (θ, t) = Sn(t, gθ)[ġθ]; S

(2)
n (θ, t) = Sn(t, gθ)[ġ

⊗2
θ ].
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Assumptions

Let Sn be the operator defined by

Sn(t, g)[h] = 1
n

∑n
i=1 h(t, Zi (t))Yi (t) exp(g(t, Zi (t))),

where g is a function and h is a scalar, vector or matrix function.

Formally, let S
(0)
n (θ, t) = Sn(t, gθ)[ı], where ı is the identity map;

S
(1)
n (θ, t) = Sn(t, gθ)[ġθ]; S

(2)
n (θ, t) = Sn(t, gθ)[ġ

⊗2
θ ].

The following assumptions are needed.

(I) There exists time τ such that
∫ τ
0 h0(x)dx < ∞.

(II) For any compact neighborhood Θ0 of θ0, there exists a scalar
s(0), a vector s(1) and a matrix s(2) on Θ0 × [0, τ ] such that for

j = 0, 1, 2, supt∈[0,τ ], θ∈Θ0
‖S

(j)
n (θ, t) − s(j)(θ, t)‖

P
−→ 0,where

‖B‖ ≡ max {|Bij | : ∀i , j} is a matrix norm.
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Assumptions

(III) Define e ≡ s(1)/s(0) and v ≡ s(2)/s(0) − e⊗2. Then for
θ ∈ Θ0 and t ∈ [0, τ ], ∂

∂θ s(0)(θ, t) = s(1)(θ, t).

(IV) For j = 0, 1, 2, the functions s(j)(θ, x) are bounded; the
function families s(j)(·, t), t ∈ [0, τ ] are equicontinuous at
θ = θ0; and s(0)(θ, t) is bounded away from zero on
Θ0 × [0, τ ].

(V) Σ(θ0, τ) =
∫ τ
0 v(θ0, x)s(0)(θ0, x)h0(x) dx is positive definite.

(VI) There exists δ > 0 such that as n tends to infinity,

sup
1≤i≤n, 0≤x≤τ

‖ġθ0(x , Zi (x))‖Yi (x)1{gθ0
(x ,Zi (x))>−δ‖ġθ0

(x ,Zi (x))‖}

= op(n
1/2).
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Sufficient Conditions

Let T and U be the failure and censoring time and Z be a
covariate. Suppose (Xi , δi , Zi ) are n i.i.d. observations, where
Xi ≡ min(Ti , Ui ), representing the observed time; δi ≡ 1{Ti≤Ui},
indicating that the observed time is a death time not a censoring.
The counting process Ni (t) ≡ 1{Xi≤t,δi=1}, the at-risk process
Yi (t) ≡ 1{Xi≥t}.
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Sufficient Conditions

Let T and U be the failure and censoring time and Z be a
covariate. Suppose (Xi , δi , Zi ) are n i.i.d. observations, where
Xi ≡ min(Ti , Ui ), representing the observed time; δi ≡ 1{Ti≤Ui},
indicating that the observed time is a death time not a censoring.
The counting process Ni (t) ≡ 1{Xi≤t,δi=1}, the at-risk process
Yi (t) ≡ 1{Xi≥t}.
The following is sufficient condition for Assumption.
Proposition Suppose each covariate Zi is constant in time and
takes value in a compact set Z of R

q; Ti and Ui are conditionally
independent given Zi ; and P{Yi (τ) > 0} > 0 for some τ > 0.
Suppose gθ(Z ) has continuous first derivative for Z ∈ Z, θ ∈ Θ
with Θ a compact neighborhood of θ0. Then Assumption holds
with the exception of (V).
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Concavity

Theorem 1 Suppose that Assumption (I)–(V) hold. Assume
that there exist a neighborhood Θ0 of θ0 and a bounded matrix
function s(3) on Θ3

0x[0, τ ] such that

sup
t∈[0,τ ], ∀θi∈Θ0

‖Sn(t, gθ1)[ġθ2 ġ
⊤
θ3

] − s(3)(θ1, θ2, θ3, t)‖
P

−→ 0, (4)

and the family of matrix functions s(3)(·, ·, ·, x), x ∈ [0, τ ] is
equicontinuous at (θ0, θ0, θ0). Then there exists a neighborhood Θ
of the true parameter value θ0 such that the log-partial likelihood
function ln(θ) = log PLn(θ) is concave in Θ in probability.
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Concavity

◮ For the linear log-relative risk, gθ(t, Z (t)) = θ⊤Z (t), the
concavity of ln(θ) is a folklore (Andersen and Gill, 1983).
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Concavity

◮ For the linear log-relative risk, gθ(t, Z (t)) = θ⊤Z (t), the
concavity of ln(θ) is a folklore (Andersen and Gill, 1983).

◮ If the usual exponential form is relaxed to an arbitrary
non-negative twice continuously differentiable function, the
global concavity of ln(θ) is reduced to the local concavity
(Prentice and Self, 1983).
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Concavity

◮ For the linear log-relative risk, gθ(t, Z (t)) = θ⊤Z (t), the
concavity of ln(θ) is a folklore (Andersen and Gill, 1983).

◮ If the usual exponential form is relaxed to an arbitrary
non-negative twice continuously differentiable function, the
global concavity of ln(θ) is reduced to the local concavity
(Prentice and Self, 1983).

◮ O’Sullivan (1993) investigated nonparametric estimation in
the Cox model,

h(t) = h0(t) exp[θ(Z (t)))], t ≥ 0,

where θ is a nonparametric function. O’Sullivan shows that
ln(θ) and its limit l(θ) are concave in θ in some Sobolev space.
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Consistency

Theorem 2 Assume that the assumptions in Theorem 1 hold.
Suppose that there exist a neighborhood Θ0 of θ0 and scalar
functions mj on Θx[0, τ ] such that

sup
x∈[0, τ ], θ∈Θ0

‖Sn(x , gθ)[g
j
θ] − mj(θ, x)‖

P
−→ 0, j = 1, 2. (5)

Suppose that differentiation can pass integration, i.e.,

∂
∂θ

∫ τ
0 s(x , gθ0)[gθ]h0(x) dx

∣

∣

∣

θ=θ0

=

∂
∂θ

∫ τ
0 log s(0)(θ, x)s(0)(θ0, x)h0(x) dx

∣

∣

∣

θ=θ0

,

Then the MPLE θ̂n is consistent, i.e., θ̂n
p
→ θ0.
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The Score Process

◮ The score function Un(θ) is

Un(θ) ≡
∂ln(θ)

∂θ
=

n
∑

i=1

∫ ∞

0

[

ġθ(t, Zi (t)) −
S

(1)
n (θ, t)

S
(0)
n (θ, t)

]

dNi (t).

◮ Since dAi (t) = Yi (t) exp(gθ0(t, Zi (t)))h0(t)dt, it follows
∑n

i=1

∫ ∞
0

[

ġθ0(t, Zi (t)) −
S

(1)
n (θ0,t)

S
(0)
n (θ0,t)

]

dAi (t) = 0, so that

Un(θ0) =
∑n

i=1

∫ ∞
0

[

ġθ0(t, Zi (t)) −
S

(1)
n (θ0,t)

S
(0)
n (θ0,t)

]

dMi (t)

is a martingale.

◮ Let the score process be

Un(θ0, t) =
∑n

i=1

∫ t

0

[

ġθ0(x , Zi (x)) − S
(1)
n (θ0,x)

S
(0)
n (θ0,x)

]

dMi (x).
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Asymptotic Normality of the Score Proc.

Theorem 3 Suppose that Assumption is satisfied. Then
(a) n−1/2Un(θ0, t) converges in distribution to a Gaussian process,
where each component of the Gaussian process has independent
increments, the mean of the limiting process is zero and the
covariance matrix of the limiting process at time t is

Σ(θ0, t) =
∫ t

0 v(θ0, x)s(0)(θ0, x)h0(x) dx .

Peng Asymptotic MPLE in Semiparametric Hazard Models



Free Knot Spline Cox Models
Counting Process Framework and Assumptions

Concavity, Consistency and Asymptotic Normality
Asymptotic Normality in Free-Knot Polynomial Spline Models

Sketches of Proofs

Asymptotic Normality of the Score Proc.

Theorem 3 Suppose that Assumption is satisfied. Then
(a) n−1/2Un(θ0, t) converges in distribution to a Gaussian process,
where each component of the Gaussian process has independent
increments, the mean of the limiting process is zero and the
covariance matrix of the limiting process at time t is

Σ(θ0, t) =
∫ t

0 v(θ0, x)s(0)(θ0, x)h0(x) dx .

(b) If θ̂n is a consistent estimator of θ0, then the plug-in estimator
Σ(θ̂n, t) = 1

n

∑n
i=1

∫ t

0 Vn(θ̂n, x)dNi (x) of Σ(θ0, t) satisfies

sup
t∈[0,τ ]

‖
1

n

n
∑

i=1

∫ t

0
Vn(θ̂n, x) dNi (x) − Σ(θ0, x)‖

P
−→ 0, n → ∞.
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Asymptotic Normality of the MPLE

Theorem 4 Suppose Assumption holds. Assume

E

{
∫ τ

0
‖ġθ − ġθ0‖

2(x , Z (x)) dA(x)

}

= o(1), θ → θ0. (6)

Assume that there allows a two-term Taylor expansion:

E[n−1ln(θ)] = E[n−1ln(θ0)]−(1/2)(θ−θ0)
⊤Σ(θ0, τ)(θ−θ0)+op(‖θ−θ0‖

2).
(7)

If (4) holds, then θ̂n satisfies the equivalence relation:

n1/2(θ̂n − θ0) = Σ−1(θ0, τ)n−1/2Un(θ0, τ) + op(1). (8)

Hence, θ̂n is asymptotically normal:

n1/2(θ̂n − θ0) =⇒ N (0, Σ−1(θ0, τ)).
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Asymptotic Normality in Free-knot Quadratic Splines

Theorem 5 Consider the free-knot quadratic spline polynomial
model (2). Suppose that the assumptions in Proposition are
satisfied. Assume the distribution function Q of Z and the integral
∫ κ
κ0

z dQ(z) are continuous at the true knot value κ0. Then the

MPLE θ̂n is asymptotic normal with mean θ0 and covariance
Σ(θ0, τ), i.e.,

n1/2(θ̂n − θ0) =⇒ N
(

0, Σ−1(θ0, τ)
)

.
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Sketches of Proof of Concavity: Special Case

Suppose θ 7→ gθ(t, z) has continuous second derivative. Then

∂2 log PLn(θ)

∂θ∂θ⊤
=

n
∑

i=1

∫ τ

0

[

g̈θ(t, Zi (t)) +
(S

(1)
n (θ, t)

S
(0)
n (θ, t)

)⊗2

−
S

(2)
n (θ, t)

S
(0)
n (θ, t)

−

∑n
j=1 g̈θ(t, Zj(t))Yj(t) exp(gθ(t, Zj(t)))

S
(0)
n (θ, t)

]

dNi (t).
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Sketches of Proof of Concavity: Special Case

Suppose θ 7→ gθ(t, z) has continuous second derivative. Then

∂2 log PLn(θ)

∂θ∂θ⊤
=

n
∑

i=1

∫ τ

0

[

g̈θ(t, Zi (t)) +
(S

(1)
n (θ, t)

S
(0)
n (θ, t)

)⊗2

−
S

(2)
n (θ, t)

S
(0)
n (θ, t)

−

∑n
j=1 g̈θ(t, Zj(t))Yj(t) exp(gθ(t, Zj(t)))

S
(0)
n (θ, t)

]

dNi (t).

In terms of the urn model, the above can be expressed as

−
1

n

∂2 log PLn(θ)

∂θ∂θ⊤
=

1

n

n
∑

i=1

∫ τ

0
Vn(θ, t)dNi (t)

−
1

n

n
∑

i=1

∫ τ

0

{

g̈θ(t, Zi (t)) − E I
θ,t [g̈θ(t, ZI (t))]

}

dNi (t),
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Sketches of Proof of Concavity: Special Case

where E I
θ1,x

[g̈θ2(t, ZI (t))] =
∑n

i=1 g̈θ2(t, Zi (t))pi (θ1, x), θ1, θ2 ∈ Θ
is the expectation calculated under the discrete distribution

pi (θ1, x) ≡
Yi (x) exp(gθ1(x , Zi (x)))

∑n
j=1 Yj(x) exp(gθ1(x , Zj(x)))

, i = 1, ..., n. (9)

Hence, the urn-model variance:

Vn(θ, x) =
S

(2)
n (θ, x)

S
(0)
n (θ, x)

−
[S

(1)
n (θ, x)

S
(0)
n (θ, x)

]⊗2

= E I
θ,x [ġθ(x , ZI (x))⊗2] −

(

E I
θ,x [ġθ(x , ZI (x))]

)⊗2

= Var I
θ,x [ġθ(x , ZI (x))]
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Sketches of Proof of Concavity: General case

For t ∈ [0, τ ], let Xn(θ, t) be defined by

1

n

n
∑

i=1

∫ t

0

[

(gθ − gθ0)(x , Zi (x)) − log
(

S
(0)
n (θ, x)/S

(0)
n (θ0, x)

)]

dNi (x).

It suffices to show

(θ1 − θ2)
⊤

[

Ẋn(θ1, t) − Ẋn(θ2, t)
]

≤ 0, θ1, θ ∈ Θ,

as n is sufficiently large and the neighborhood Θ of θ0 is small.
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Sketches of Proof of Asymptotic Normality of the MPLE

Convexity Lemma (Anderson and Gill, 1982; Pollard, 1991) Let
{λn(θ) : θ ∈ Θ} be a seq. of random functions defined on a
convex, open subset Θ of R

d . Suppose there exists a seq. {Cn} of
measurable sets with P(Cn) → 1 such that each λn(θ) is convex on
Cn for every θ ∈ Θ. Suppose λ(·) is a real-valued function on Θ for

which λn(θ)
p
→ λ(θ) for each θ ∈ Θ. Then
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Sketches of Proof of Asymptotic Normality of the MPLE

Convexity Lemma (Anderson and Gill, 1982; Pollard, 1991) Let
{λn(θ) : θ ∈ Θ} be a seq. of random functions defined on a
convex, open subset Θ of R

d . Suppose there exists a seq. {Cn} of
measurable sets with P(Cn) → 1 such that each λn(θ) is convex on
Cn for every θ ∈ Θ. Suppose λ(·) is a real-valued function on Θ for

which λn(θ)
p
→ λ(θ) for each θ ∈ Θ. Then

(1) For each compact subset K of Θ,

supθ∈K |λn(θ) − λ(θ)|
p
→ 0.

The function λ(·) is necessarily convex in Θ.
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Sketches of Proof of Asymptotic Normality of the MPLE

Convexity Lemma (Anderson and Gill, 1982; Pollard, 1991) Let
{λn(θ) : θ ∈ Θ} be a seq. of random functions defined on a
convex, open subset Θ of R

d . Suppose there exists a seq. {Cn} of
measurable sets with P(Cn) → 1 such that each λn(θ) is convex on
Cn for every θ ∈ Θ. Suppose λ(·) is a real-valued function on Θ for

which λn(θ)
p
→ λ(θ) for each θ ∈ Θ. Then

(1) For each compact subset K of Θ,

supθ∈K |λn(θ) − λ(θ)|
p
→ 0.

The function λ(·) is necessarily convex in Θ.
(2) If λn has a unique maximum at θn and λ has one at θ0, then

θn
p
→ θ0 as n → ∞.
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Let Xn(θ) = Xn(θ, τ). For α ∈ R
p, let αn = n−1/2α and

Dn(α) = n
(

Xn(θ0 + αn) − α⊤
n Ẋn(θ0)

)

. Then one shows
Var(Dn(α)) → 0, so that

Dn(α) = E(Dn(α)) + op(1).
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Let Xn(θ) = Xn(θ, τ). For α ∈ R
p, let αn = n−1/2α and

Dn(α) = n
(

Xn(θ0 + αn) − α⊤
n Ẋn(θ0)

)

. Then one shows
Var(Dn(α)) → 0, so that

Dn(α) = E(Dn(α)) + op(1).

By the two-term Taylor expansion (7), we obtain

Dn(α) = −(1/2)α⊤Σ(θ0, τ)α + op(1), α ∈ R
p (10)
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Let Xn(θ) = Xn(θ, τ). For α ∈ R
p, let αn = n−1/2α and

Dn(α) = n
(

Xn(θ0 + αn) − α⊤
n Ẋn(θ0)

)

. Then one shows
Var(Dn(α)) → 0, so that

Dn(α) = E(Dn(α)) + op(1).

By the two-term Taylor expansion (7), we obtain

Dn(α) = −(1/2)α⊤Σ(θ0, τ)α + op(1), α ∈ R
p (10)

Since −Xn(θ) is convex in θ in a small neighborhood Θ of θ0, it
follows from Convexity Lemma that for any M > 0,

sup
‖α‖≤M

∣

∣

∣
n

{

Xn(θ0 + n−1/2α) − n−1/2α⊤Ẋn(θ0)
}

+
1

2
α⊤Σ(θ0, τ)α

∣

∣

∣
= op(1)
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Let X̃n(α) = Xn(θ0 + n−1/2α) and α̂n = arg maxα∈Rp X̃n(α). Then
α̂n = n1/2(θ̂n − θ0). For any random variable γn bounded in
probability,

X̃n(γn) = γ⊤
n n−1/2Un(θ0) −

1

2
γ⊤

n Σ(θ0, τ)γn + op(1). (11)
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Let X̃n(α) = Xn(θ0 + n−1/2α) and α̂n = arg maxα∈Rp X̃n(α). Then
α̂n = n1/2(θ̂n − θ0). For any random variable γn bounded in
probability,

X̃n(γn) = γ⊤
n n−1/2Un(θ0) −

1

2
γ⊤

n Σ(θ0, τ)γn + op(1). (11)

This shows that X̃n(γn) can be approximated by a quadratic
function in γn, maximized at γ̂n = Σ−1(θ0, τ)n−1/2Un(θ0), with the
maximized value approximately X̃n(γ̂n) = 1

2 γ̂⊤
n Σ(θ0, τ)γ̂n.
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Let X̃n(α) = Xn(θ0 + n−1/2α) and α̂n = arg maxα∈Rp X̃n(α). Then
α̂n = n1/2(θ̂n − θ0). For any random variable γn bounded in
probability,

X̃n(γn) = γ⊤
n n−1/2Un(θ0) −

1

2
γ⊤

n Σ(θ0, τ)γn + op(1). (11)

This shows that X̃n(γn) can be approximated by a quadratic
function in γn, maximized at γ̂n = Σ−1(θ0, τ)n−1/2Un(θ0), with the
maximized value approximately X̃n(γ̂n) = 1

2 γ̂⊤
n Σ(θ0, τ)γ̂n. By (11),

X̃n(γn) = X̃n(γ̂n) −
1

2
(γ̂n − γn)

⊤Σ(θ0, τ)(γ̂n − γn) + op(1) (12)

for any γn bounded in probability.
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Fix ǫ > 0. If ‖α̂n − γ̂n‖ > ǫ, then there exists γ̂∗
n on the line

segment joining α̂n and γ̂n such that γ̂∗
n − γ̂n = ǫυn, where υn is a

unit vector.
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Fix ǫ > 0. If ‖α̂n − γ̂n‖ > ǫ, then there exists γ̂∗
n on the line

segment joining α̂n and γ̂n such that γ̂∗
n − γ̂n = ǫυn, where υn is a

unit vector. From this equality and the boundedness of γ̂n in
probability it follows that γ̂∗

n is bounded in probability,
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Fix ǫ > 0. If ‖α̂n − γ̂n‖ > ǫ, then there exists γ̂∗
n on the line

segment joining α̂n and γ̂n such that γ̂∗
n − γ̂n = ǫυn, where υn is a

unit vector. From this equality and the boundedness of γ̂n in
probability it follows that γ̂∗

n is bounded in probability, so that we
can substitute γ̂∗

n in (12) to obtain

X̃n(γ̂
∗
n) = X̃n(γ̂n) −

1

2
ǫ2υ⊤

n Σ(θ0, τ)υn + op(1). (13)
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Fix ǫ > 0. If ‖α̂n − γ̂n‖ > ǫ, then there exists γ̂∗
n on the line

segment joining α̂n and γ̂n such that γ̂∗
n − γ̂n = ǫυn, where υn is a

unit vector. From this equality and the boundedness of γ̂n in
probability it follows that γ̂∗

n is bounded in probability, so that we
can substitute γ̂∗

n in (12) to obtain

X̃n(γ̂
∗
n) = X̃n(γ̂n) −

1

2
ǫ2υ⊤

n Σ(θ0, τ)υn + op(1). (13)

Since X̃n(·) is concave and X̃n(α̂n) ≥ X̃n(γ̂n), it follows that
X̃n(γ̂

∗
n) ≥ X̃n(γ̂n). Accordingly, (13) implies

(1/2)ǫ2υ⊤
n Σ(θ0, τ)υn + op(1) ≤ 0.

Hence P(‖α̂n − γ̂n‖ > ǫ) ≤ P(1
2ǫ2υ⊤

n Σ(θ0, τ)υn + op(1) ≤ 0) → 0,
so that α̂n = γ̂n + op(1) and the desired (8) follows. �
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