> Asymptotics of Maximum Partial Likelihood Estimators in General Semiparametric Multiplicative Hazard Models Under First Order Differentiability

Hanxiang Peng

Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis

Joint work with Fei Tan, FAMU

November 11, 2009

Outline

Free Knot Spline Cox Models

Counting Process Framework and Assumptions

Concavity, Consistency and Asymptotic Normality

Asymptotic Normality in Free-Knot Polynomial Spline Models

Sketches of Proofs

Free Knot Spline Cox Models

Consider a parametric Cox model:

$$h(t) = h_0(t) \exp(g_\theta(t, Z(t))), \qquad (1)$$

where g_{θ} is a "smooth" function. Our candidate of g_{θ} is a **free knot spline**.

イロン イヨン イヨン イヨン

Free Knot Spline Cox Models

Consider a parametric Cox model:

$$h(t) = h_0(t) \exp(g_\theta(t, Z(t))), \qquad (1)$$

where g_{θ} is a "smooth" function. Our candidate of g_{θ} is a **free knot spline**.

i A quadratic free-knot polynomial spline with knots in time:

$$g_{\theta}(t,z) = (\beta_1 + \beta_2 t + \beta_3 t^2 + \beta_4 (t-\gamma)_+^2)z,$$

where $\theta = [\beta_1, \beta_2, \beta_3, \beta_4, \gamma]^{\top}$ is the parameter of interest. The knot γ can be a **threshold value** such as a changepoint.

ii A quadratic free-knot polynomial spline with knots in covariates:

$$g_{\theta}(z) = \beta_1 z + \beta_2 z^2 + \beta_3 (z - \kappa)_+^2, \qquad (2)$$

where $\theta = [\beta_1, \beta_2, \beta_3, \kappa]^{\top}$ is the parameter of interest. The knot κ can be a **threshold value** such as a nadir (of BMI), a changepoint, etc.

・ロン ・四マ ・ヨマ ・ヨマ

ii A quadratic free-knot polynomial spline with knots in covariates:

$$g_{\theta}(z) = \beta_1 z + \beta_2 z^2 + \beta_3 (z - \kappa)_+^2,$$
 (2)

where $\theta = [\beta_1, \beta_2, \beta_3, \kappa]^{\top}$ is the parameter of interest. The knot κ can be a **threshold value** such as a nadir (of BMI), a changepoint, etc.

iii Applications? B-splines? Natural Splines?

・ロン ・回と ・ヨン

iv g_{θ} has first continuous derivative,

$$\dot{g_{ heta}}(z) = [z, z^2, (z - \kappa)^2 \mathbb{1}_{\{z > \kappa\}}, -2\beta_3(z - \kappa)\mathbb{1}_{\{z > \kappa\}}]^{ op},$$

but the 2nd derivative does not exist at knot κ .

・ロト ・回ト ・ヨト ・ヨト

iv g_{θ} has first continuous derivative,

$$\dot{g_{\theta}}(z) = [z, z^2, (z - \kappa)^2 \mathbb{1}_{\{z > \kappa\}}, -2\beta_3(z - \kappa)\mathbb{1}_{\{z > \kappa\}}]^{\top},$$

but the 2nd derivative does not exist at knot κ .

v Consistency? Asymptotic Normality? Under continuous first derivative, we have obtained.

iv g_{θ} has first continuous derivative,

$$\dot{g_{\theta}}(z) = [z, z^2, (z - \kappa)^2 \mathbb{1}_{\{z > \kappa\}}, -2\beta_3(z - \kappa)\mathbb{1}_{\{z > \kappa\}}]^{\top},$$

but the 2nd derivative does not exist at knot κ .

- v Consistency? Asymptotic Normality? Under continuous first derivative, we have obtained.
- vi Consistency? Asymptotic Normality? Knots in covariates:

$$g_{ heta}(z) = eta_1 z + eta_2(z-\kappa)_+, \quad g_{ heta}(z) = eta(\mathbf{1}_{z\geq\kappa}-\mathbf{1}_{z<\kappa}).$$

Knots in time:

$$g_{ heta}(t,z) = (eta_0 + eta_1 t + eta_2 (t-\gamma)_+)z, \quad g_{ heta}(t,z) = eta(\mathbf{1}_{t\geq \gamma} - \mathbf{1}_{t<\gamma})z,$$

Counting Process Framework

Consider a semiparametric multiplicative hazard model,

$$h(t) = h_0(t)r_{\theta}(t, Z(t)), \quad t \ge 0,$$
 (3)

where r_{θ} is parametric with $\theta \in \mathbb{R}^{p}$, h_{0} is nonparametric baseline hazard, and Z(t) is a covariate process.

Counting Process Framework

Consider a semiparametric multiplicative hazard model,

$$h(t) = h_0(t)r_{\theta}(t, Z(t)), \quad t \ge 0,$$
 (3)

where r_{θ} is parametric with $\theta \in \mathbb{R}^{p}$, h_{0} is nonparametric baseline hazard, and Z(t) is a covariate process.

• *n* independent individuals continuously monitored over time $t \ge 0$, each corresponds to a process $(N_i(t), Y_i(t), Z_i(t))$, where $N_i(t)$ is a counting proc. recording events (such as deaths), $Y_i(t)$ is the at-risk proc. taking values 1 and 0 depending on whether the individual is under observation, $Z_i(t)$ is a vector covariate proc., all up to time *t*.

Counting Process Framework

Set $g_{\theta}(t, Z(t)) = \log r_{\theta}(t, Z(t))$. As usual, assume

- $(N_1, ..., N_n)$ is a multivariate counting proc.
- ► Each $M_i = N_i A_i$ is a local martingale w.r.t. a right-cont. filtration, where g_θ a predictable proc., A_i is the compensator $A_i = \int Y_i(s) \exp(g_{\theta_0}(s, Z_i(s))) h_0(s) ds$, and θ_0 is the true parameter value.
- ▶ Each Y_i and Z_i is predictable w.r.t. a right-cont. filtration.

Counting Process Framework

Set $g_{\theta}(t, Z(t)) = \log r_{\theta}(t, Z(t))$. As usual, assume

- $(N_1, ..., N_n)$ is a multivariate counting proc.
- ► Each $M_i = N_i A_i$ is a local martingale w.r.t. a right-cont. filtration, where g_θ a predictable proc., A_i is the compensator $A_i = \int Y_i(s) \exp(g_{\theta_0}(s, Z_i(s))) h_0(s) ds$, and θ_0 is the true parameter value.

• Each Y_i and Z_i is predictable w.r.t. a right-cont. filtration. The usual partial likelihood function is

$$PL_n(\theta) = \prod_{i=1}^n \left\{ \frac{\exp\left[g_{\theta}(T_i, Z_i(T_i))\right]}{\sum_{j \in R_i} \exp\left[g_{\theta}(T_i, Z_j(T_i))\right]} \right\}^{\delta_i},$$

where δ_i is the indicator that the failure of individual *i* was observed and R_i is the at-risk set at the time of the *i*th failure.

Assumptions

Let \mathbb{S}_n be the operator defined by

$$\mathbb{S}_n(t,g)[h] = \frac{1}{n} \sum_{i=1}^n h(t,Z_i(t)) Y_i(t) \exp(g(t,Z_i(t))),$$

where g is a function and h is a scalar, vector or matrix function. Formally, let $S_n^{(0)}(\theta, t) = \mathbb{S}_n(t, g_\theta)[i]$, where i is the identity map; $S_n^{(1)}(\theta, t) = \mathbb{S}_n(t, g_\theta)[\dot{g}_\theta]; \ S_n^{(2)}(\theta, t) = \mathbb{S}_n(t, g_\theta)[\dot{g}_\theta^{\otimes 2}].$

Assumptions

Let \mathbb{S}_n be the operator defined by

$$S_n(t,g)[h] = \frac{1}{n} \sum_{i=1}^n h(t, Z_i(t)) Y_i(t) \exp(g(t, Z_i(t))),$$

where g is a function and h is a scalar, vector or matrix function. Formally, let $S_n^{(0)}(\theta, t) = \mathbb{S}_n(t, g_\theta)[i]$, where i is the identity map; $S_n^{(1)}(\theta, t) = \mathbb{S}_n(t, g_\theta)[\dot{g}_\theta]$; $S_n^{(2)}(\theta, t) = \mathbb{S}_n(t, g_\theta)[\dot{g}_\theta^{\otimes 2}]$. The following assumptions are needed.

(1) There exists time τ such that $\int_0^{\tau} h_0(x) dx < \infty$.

(II) For any compact neighborhood Θ_0 of θ_0 , there exists a scalar $s^{(0)}$, a vector $s^{(1)}$ and a matrix $s^{(2)}$ on $\Theta_0 \times [0, \tau]$ such that for j = 0, 1, 2, $\sup_{t \in [0,\tau], \theta \in \Theta_0} \|S_n^{(j)}(\theta, t) - s^{(j)}(\theta, t)\| \xrightarrow{P} 0$,where $\|B\| \equiv \max\{|B_{ij}| : \forall i, j\}$ is a matrix norm.

Assumptions

(III) Define
$$e \equiv s^{(1)}/s^{(0)}$$
 and $v \equiv s^{(2)}/s^{(0)} - e^{\otimes 2}$. Then for $\theta \in \Theta_0$ and $t \in [0, \tau]$, $\frac{\partial}{\partial \theta} s^{(0)}(\theta, t) = s^{(1)}(\theta, t)$.

- (IV) For j = 0, 1, 2, the functions $s^{(j)}(\theta, x)$ are bounded; the function families $s^{(j)}(\cdot, t)$, $t \in [0, \tau]$ are equicontinuous at $\theta = \theta_0$; and $s^{(0)}(\theta, t)$ is bounded away from zero on $\Theta_0 \times [0, \tau]$.
- (V) $\Sigma(\theta_0, \tau) = \int_0^{\tau} v(\theta_0, x) s^{(0)}(\theta_0, x) h_0(x) dx$ is positive definite. (VI) There exists $\delta > 0$ such that as *n* tends to infinity,

$$\sup_{1 \le i \le n, 0 \le x \le \tau} \|\dot{g}_{\theta_0}(x, Z_i(x))\| Y_i(x) \mathbf{1}_{\{g_{\theta_0}(x, Z_i(x)) > -\delta \|\dot{g}_{\theta_0}(x, Z_i(x))\|\}}$$

= $o_p(n^{1/2}).$

Sufficient Conditions

Let *T* and *U* be the failure and censoring time and *Z* be a covariate. Suppose (X_i, δ_i, Z_i) are *n* i.i.d. observations, where $X_i \equiv \min(T_i, U_i)$, representing the observed time; $\delta_i \equiv 1_{\{T_i \leq U_i\}}$, indicating that the observed time is a death time not a censoring. The counting process $N_i(t) \equiv 1_{\{X_i \leq t, \delta_i = 1\}}$, the at-risk process $Y_i(t) \equiv 1_{\{X_i \geq t\}}$.

Sufficient Conditions

Let *T* and *U* be the failure and censoring time and *Z* be a covariate. Suppose (X_i, δ_i, Z_i) are *n* i.i.d. observations, where $X_i \equiv \min(T_i, U_i)$, representing the observed time; $\delta_i \equiv 1_{\{T_i \leq U_i\}}$, indicating that the observed time is a death time not a censoring. The counting process $N_i(t) \equiv 1_{\{X_i \leq t, \delta_i = 1\}}$, the at-risk process $Y_i(t) \equiv 1_{\{X_i \geq t\}}$.

The following is sufficient condition for Assumption.

Proposition Suppose each covariate Z_i is constant in time and takes value in a compact set \mathbb{Z} of \mathbb{R}^q ; T_i and U_i are conditionally independent given Z_i ; and $\mathbb{P}\{Y_i(\tau) > 0\} > 0$ for some $\tau > 0$. Suppose $g_{\theta}(Z)$ has continuous first derivative for $Z \in \mathbb{Z}, \theta \in \Theta$ with Θ a compact neighborhood of θ_0 . Then ASSUMPTION holds with the exception of (V).

・ロト ・回ト ・ヨト ・ヨト

Concavity

Theorem 1 Suppose that ASSUMPTION (I)–(V) hold. Assume that there exist a neighborhood Θ_0 of θ_0 and a bounded matrix function $s^{(3)}$ on $\Theta_0^3 \mathbf{x}[0, \tau]$ such that

$$\sup_{t\in[0,\tau],\,\forall\theta_i\in\Theta_0}\|\mathbb{S}_n(t,g_{\theta_1})[\dot{g}_{\theta_2}\dot{g}_{\theta_3}^{\top}]-s^{(3)}(\theta_1,\theta_2,\theta_3,t)\|\stackrel{P}{\longrightarrow}0,\quad(4)$$

and the family of matrix functions $s^{(3)}(\cdot, \cdot, \cdot, x)$, $x \in [0, \tau]$ is equicontinuous at $(\theta_0, \theta_0, \theta_0)$. Then there exists a neighborhood Θ of the true parameter value θ_0 such that the log-partial likelihood function $I_n(\theta) = \log PL_n(\theta)$ is concave in Θ in probability.

Concavity

For the linear log-relative risk, g_θ(t, Z(t)) = θ^TZ(t), the concavity of I_n(θ) is a folklore (Andersen and Gill, 1983).

Concavity

- For the linear log-relative risk, g_θ(t, Z(t)) = θ^TZ(t), the concavity of I_n(θ) is a folklore (Andersen and Gill, 1983).
- If the usual exponential form is relaxed to an arbitrary non-negative twice continuously differentiable function, the global concavity of *l_n*(*θ*) is reduced to the local concavity (Prentice and Self, 1983).

Concavity

- For the linear log-relative risk, g_θ(t, Z(t)) = θ^TZ(t), the concavity of I_n(θ) is a folklore (Andersen and Gill, 1983).
- If the usual exponential form is relaxed to an arbitrary non-negative twice continuously differentiable function, the global concavity of *l_n*(*θ*) is reduced to the local concavity (Prentice and Self, 1983).
- O'Sullivan (1993) investigated nonparametric estimation in the Cox model,

$$h(t) = h_0(t) \exp[\theta(Z(t)))], \quad t \ge 0,$$

where θ is a nonparametric function. O'Sullivan shows that $I_n(\theta)$ and its limit $I(\theta)$ are concave in θ in some Sobolev space.

Peng

Consistency

Theorem 2 Assume that the assumptions in **Theorem 1** hold. Suppose that there exist a neighborhood Θ_0 of θ_0 and scalar functions m_i on $\Theta \mathbf{x}[0, \tau]$ such that

$$\sup_{x\in[0,\tau],\,\theta\in\Theta_0}\|\mathbb{S}_n(x,g_\theta)[g_\theta^j]-m_j(\theta,x)\|\stackrel{P}{\longrightarrow}0,\quad j=1,2.$$
 (5)

Suppose that differentiation can pass integration, i.e.,

$$\frac{\partial}{\partial \theta} \int_0^\tau s(x, g_{\theta_0})[g_{\theta}] h_0(x) \, dx \Big|_{\theta = \theta_0} =$$

$$\frac{\partial}{\partial \theta} \int_0^\tau \log s^{(0)}(\theta, x) s^{(0)}(\theta_0, x) h_0(x) \, dx \Big|_{\theta = \theta_0},$$

Then the MPLE $\hat{\theta}_n$ is consistent, i.e., $\hat{\theta}_n \xrightarrow{p} \theta_0$.

・ロト ・同ト ・ヨト ・ヨト

The Score Process

• The score function $U_n(\theta)$ is

$$U_n(\theta) \equiv \frac{\partial I_n(\theta)}{\partial \theta} = \sum_{i=1}^n \int_0^\infty \left[\dot{g_\theta}(t, Z_i(t)) - \frac{S_n^{(1)}(\theta, t)}{S_n^{(0)}(\theta, t)} \right] dN_i(t).$$

- Since $dA_i(t) = Y_i(t) \exp(g_{\theta_0}(t, Z_i(t)))h_0(t)dt$, it follows $\sum_{i=1}^n \int_0^\infty \left[\dot{g}_{\theta_0}(t, Z_i(t)) - \frac{S_n^{(1)}(\theta_0, t)}{S_n^{(0)}(\theta_0, t)} \right] dA_i(t) = 0$, so that $U_n(\theta_0) = \sum_{i=1}^n \int_0^\infty \left[\dot{g}_{\theta_0}(t, Z_i(t)) - \frac{S_n^{(1)}(\theta_0, t)}{S_n^{(0)}(\theta_0, t)} \right] dM_i(t)$ is a martingale.
- Let the score process be $U_n(\theta_0, t) = \sum_{i=1}^n \int_0^t \left[\dot{g}_{\theta_0}(x, Z_i(x)) - \frac{S_n^{(1)}(\theta_0, x)}{S_n^{(0)}(\theta_0, x)} \right] dM_i(x).$

Asymptotic Normality of the Score Proc.

Theorem 3 Suppose that ASSUMPTION is satisfied. Then (a) $n^{-1/2}U_n(\theta_0, t)$ converges in distribution to a Gaussian process, where each component of the Gaussian process has independent increments, the mean of the limiting process is zero and the covariance matrix of the limiting process at time t is

$$\Sigma(\theta_0,t) = \int_0^t v(\theta_0,x) s^{(0)}(\theta_0,x) h_0(x) \, dx.$$

Asymptotic Normality of the Score Proc.

Theorem 3 Suppose that ASSUMPTION is satisfied. Then (a) $n^{-1/2}U_n(\theta_0, t)$ converges in distribution to a Gaussian process, where each component of the Gaussian process has independent increments, the mean of the limiting process is zero and the covariance matrix of the limiting process at time t is

$$\Sigma(\theta_0,t) = \int_0^t v(\theta_0,x) s^{(0)}(\theta_0,x) h_0(x) \, dx.$$

(b) If $\hat{\theta}_n$ is a consistent estimator of θ_0 , then the plug-in estimator $\Sigma(\hat{\theta}_n, t) = \frac{1}{n} \sum_{i=1}^n \int_0^t V_n(\hat{\theta}_n, x) dN_i(x)$ of $\Sigma(\theta_0, t)$ satisfies

$$\sup_{t\in[0,\tau]} \|\frac{1}{n}\sum_{i=1}^n \int_0^t V_n(\hat{\theta}_n,x) \, dN_i(x) - \Sigma(\theta_0,x)\| \xrightarrow{P} 0, \quad n\to\infty.$$

Asymptotic Normality of the MPLE

Theorem 4 Suppose $\operatorname{Assumption}$ holds. Assume

$$\mathbb{E}\left\{\int_0^\tau \|\dot{g}_{\theta} - \dot{g}_{\theta_0}\|^2(x, Z(x)) \, dA(x)\right\} = o(1), \, \theta \to \theta_0.$$
 (6)

Assume that there allows a two-term Taylor expansion:

$$\mathbb{E}[n^{-1}l_n(\theta)] = \mathbb{E}[n^{-1}l_n(\theta_0)] - (1/2)(\theta - \theta_0)^\top \Sigma(\theta_0, \tau)(\theta - \theta_0) + o_p(\|\theta - \theta_0\|^2).$$
(7)

If (4) holds, then $\hat{\theta}_n$ satisfies the equivalence relation:

$$n^{1/2}(\hat{\theta}_n - \theta_0) = \Sigma^{-1}(\theta_0, \tau) n^{-1/2} U_n(\theta_0, \tau) + o_p(1).$$
(8)

Hence, $\hat{\theta}_n$ is asymptotically normal:

$$n^{1/2}(\hat{\theta}_n - \theta_0) \Longrightarrow \mathcal{N}(0, \Sigma^{-1}(\theta_0, \tau)).$$

Asymptotic Normality in Free-knot Quadratic Splines

Theorem 5 Consider the free-knot quadratic spline polynomial model (2). Suppose that the assumptions in **Proposition** are satisfied. Assume the distribution function Q of Z and the integral $\int_{\kappa_0}^{\kappa} z \, dQ(z)$ are continuous at the true knot value κ_0 . Then the MPLE $\hat{\theta}_n$ is asymptotic normal with mean θ_0 and covariance $\Sigma(\theta_0, \tau)$, i.e.,

$$n^{1/2}(\hat{\theta}_n - \theta_0) \Longrightarrow \mathcal{N}\left(0, \Sigma^{-1}(\theta_0, \tau)\right).$$

Sketches of Proof of Concavity: Special Case

Suppose $heta\mapsto g_ heta(t,z)$ has continuous second derivative. Then

$$\frac{\partial^2 \log \operatorname{PL}_n(\theta)}{\partial \theta \partial \theta^{\top}} = \sum_{i=1}^n \int_0^\tau \left[\ddot{g}_{\theta}(t, Z_i(t)) + \left(\frac{S_n^{(1)}(\theta, t)}{S_n^{(0)}(\theta, t)} \right)^{\otimes 2} - \frac{S_n^{(2)}(\theta, t)}{S_n^{(0)}(\theta, t)} - \frac{\sum_{j=1}^n \ddot{g}_{\theta}(t, Z_j(t)) Y_j(t) \exp(g_{\theta}(t, Z_j(t)))}{S_n^{(0)}(\theta, t)} \right] dN_i(t).$$

Sketches of Proof of Concavity: Special Case

Suppose $\theta \mapsto g_{\theta}(t, z)$ has continuous second derivative. Then

$$\begin{split} \frac{\partial^2 \log \operatorname{PL}_n(\theta)}{\partial \theta \partial \theta^{\top}} &= \sum_{i=1}^n \int_0^\tau \Big[\ddot{g}_{\theta}(t, Z_i(t)) + \Big(\frac{S_n^{(1)}(\theta, t)}{S_n^{(0)}(\theta, t)} \Big)^{\otimes 2} \\ &- \frac{S_n^{(2)}(\theta, t)}{S_n^{(0)}(\theta, t)} - \frac{\sum_{j=1}^n \ddot{g}_{\theta}(t, Z_j(t)) Y_j(t) \exp(g_{\theta}(t, Z_j(t)))}{S_n^{(0)}(\theta, t)} \Big] dN_i(t). \end{split}$$

In terms of the urn model, the above can be expressed as

Peng

$$-\frac{1}{n}\frac{\partial^{2}\log\operatorname{PL}_{n}(\theta)}{\partial\theta\partial\theta^{\top}} = \frac{1}{n}\sum_{i=1}^{n}\int_{0}^{\tau}V_{n}(\theta,t)dN_{i}(t)$$
$$-\frac{1}{n}\sum_{i=1}^{n}\int_{0}^{\tau}\left\{\ddot{g}_{\theta}(t,Z_{i}(t)) - E_{\theta,t}^{I}[\ddot{g}_{\theta}(t,Z_{l}(t))]\right\}dN_{i}(t),$$

Sketches of Proof of Concavity: Special Case

where $E_{\theta_1,x}^{I}[\ddot{g}_{\theta_2}(t, Z_I(t))] = \sum_{i=1}^{n} \ddot{g}_{\theta_2}(t, Z_i(t))p_i(\theta_1, x), \ \theta_1, \theta_2 \in \Theta$ is the expectation calculated under the discrete distribution

$$p_i(\theta_1, x) \equiv \frac{Y_i(x) \exp(g_{\theta_1}(x, Z_i(x)))}{\sum_{j=1}^n Y_j(x) \exp(g_{\theta_1}(x, Z_j(x)))}, \quad i = 1, ..., n.$$
(9)

Hence, the urn-model variance:

$$\begin{split} /_{n}(\theta, x) &= \frac{S_{n}^{(2)}(\theta, x)}{S_{n}^{(0)}(\theta, x)} - \left[\frac{S_{n}^{(1)}(\theta, x)}{S_{n}^{(0)}(\theta, x)}\right]^{\otimes 2} \\ &= E_{\theta, x}^{I}[\dot{g}_{\theta}(x, Z_{I}(x))^{\otimes 2}] - \left(E_{\theta, x}^{I}[\dot{g}_{\theta}(x, Z_{I}(x))]\right)^{\otimes 2} \\ &= Var_{\theta, x}^{I}[\dot{g}_{\theta}(x, Z_{I}(x))] \end{aligned}$$

Peng

(D) (A) (A) (A) (A)

Sketches of Proof of Concavity: General case

For $t \in [0, \tau]$, let $X_n(\theta, t)$ be defined by

$$\frac{1}{n}\sum_{i=1}^{n}\int_{0}^{t}\left[(g_{\theta}-g_{\theta_{0}})(x,Z_{i}(x))-\log\left(S_{n}^{(0)}(\theta,x)/S_{n}^{(0)}(\theta_{0},x)\right)\right] dN_{i}(x).$$

It suffices to show

$$(heta_1- heta_2)^{ op}\left[\dot{X}_n(heta_1,t)-\dot{X}_n(heta_2,t)
ight]\leq 0, \quad heta_1, heta\in\Theta,$$

as *n* is sufficiently large and the neighborhood Θ of θ_0 is small.

イロン イヨン イヨン イヨン

Sketches of Proof of Asymptotic Normality of the MPLE

Convexity Lemma (Anderson and Gill, 1982; Pollard, 1991) Let $\{\lambda_n(\theta) : \theta \in \Theta\}$ be a seq. of random functions defined on a convex, open subset Θ of \mathbb{R}^d . Suppose there exists a seq. $\{C_n\}$ of measurable sets with $P(C_n) \to 1$ such that each $\lambda_n(\theta)$ is convex on C_n for every $\theta \in \Theta$. Suppose $\lambda(\cdot)$ is a real-valued function on Θ for which $\lambda_n(\theta) \xrightarrow{P} \lambda(\theta)$ for each $\theta \in \Theta$. Then

Sketches of Proof of Asymptotic Normality of the MPLE

Convexity Lemma (Anderson and Gill, 1982; Pollard, 1991) Let $\{\lambda_n(\theta) : \theta \in \Theta\}$ be a seq. of random functions defined on a convex, open subset Θ of \mathbb{R}^d . Suppose there exists a seq. $\{C_n\}$ of measurable sets with $P(C_n) \to 1$ such that each $\lambda_n(\theta)$ is convex on C_n for every $\theta \in \Theta$. Suppose $\lambda(\cdot)$ is a real-valued function on Θ for which $\lambda_n(\theta) \xrightarrow{p} \lambda(\theta)$ for each $\theta \in \Theta$. Then (1) For each compact subset K of Θ ,

$$\sup_{\theta\in K} |\lambda_n(\theta) - \lambda(\theta)| \xrightarrow{p} 0.$$

The function $\lambda(\cdot)$ is necessarily convex in Θ .

Sketches of Proof of Asymptotic Normality of the MPLE

Convexity Lemma (Anderson and Gill, 1982; Pollard, 1991) Let $\{\lambda_n(\theta) : \theta \in \Theta\}$ be a seq. of random functions defined on a convex, open subset Θ of \mathbb{R}^d . Suppose there exists a seq. $\{C_n\}$ of measurable sets with $P(C_n) \to 1$ such that each $\lambda_n(\theta)$ is convex on C_n for every $\theta \in \Theta$. Suppose $\lambda(\cdot)$ is a real-valued function on Θ for which $\lambda_n(\theta) \xrightarrow{P} \lambda(\theta)$ for each $\theta \in \Theta$. Then (1) For each compact subset K of Θ ,

$$\sup_{\theta \in K} |\lambda_n(\theta) - \lambda(\theta)| \stackrel{p}{\to} 0.$$

The function $\lambda(\cdot)$ is necessarily convex in Θ . (2) If λ_n has a unique maximum at θ_n and λ has one at θ_0 , then $\theta_n \xrightarrow{p} \theta_0$ as $n \to \infty$.

(日) (周) (王) (王) (王)

Let $X_n(\theta) = X_n(\theta, \tau)$. For $\alpha \in \mathbb{R}^p$, let $\alpha_n = n^{-1/2}\alpha$ and $D_n(\alpha) = n(X_n(\theta_0 + \alpha_n) - \alpha_n^\top \dot{X}_n(\theta_0))$. Then one shows $\mathbb{V}ar(D_n(\alpha)) \to 0$, so that

$$D_n(\alpha) = \mathbb{E}(D_n(\alpha)) + o_p(1).$$

Let $X_n(\theta) = X_n(\theta, \tau)$. For $\alpha \in \mathbb{R}^p$, let $\alpha_n = n^{-1/2}\alpha$ and $D_n(\alpha) = n(X_n(\theta_0 + \alpha_n) - \alpha_n^\top \dot{X}_n(\theta_0))$. Then one shows $\mathbb{V}ar(D_n(\alpha)) \to 0$, so that

$$D_n(\alpha) = \mathbb{E}(D_n(\alpha)) + o_p(1).$$

By the two-term Taylor expansion (7), we obtain

$$D_n(\alpha) = -(1/2)\alpha^{\top} \Sigma(\theta_0, \tau) \alpha + o_p(1), \quad \alpha \in \mathbb{R}^p$$
(10)

Let $X_n(\theta) = X_n(\theta, \tau)$. For $\alpha \in \mathbb{R}^p$, let $\alpha_n = n^{-1/2}\alpha$ and $D_n(\alpha) = n(X_n(\theta_0 + \alpha_n) - \alpha_n^\top \dot{X}_n(\theta_0))$. Then one shows $\mathbb{V}ar(D_n(\alpha)) \to 0$, so that

$$D_n(\alpha) = \mathbb{E}(D_n(\alpha)) + o_p(1).$$

By the two-term Taylor expansion (7), we obtain

$$D_n(\alpha) = -(1/2)\alpha^{\top} \Sigma(\theta_0, \tau) \alpha + o_p(1), \quad \alpha \in \mathbb{R}^p$$
(10)

Since $-X_n(\theta)$ is convex in θ in a small neighborhood Θ of θ_0 , it follows from **Convexity Lemma** that for any M > 0,

$$\sup_{\|\alpha\| \le M} \left| n \left\{ X_n(\theta_0 + n^{-1/2}\alpha) - n^{-1/2}\alpha^\top \dot{X}_n(\theta_0) \right\} + \frac{1}{2}\alpha^\top \Sigma(\theta_0, \tau)\alpha \right| = o_p(1)$$

Let
$$\tilde{X}_n(\alpha) = X_n(\theta_0 + n^{-1/2}\alpha)$$
 and $\hat{\alpha}_n = \arg \max_{\alpha \in \mathbb{R}^p} \tilde{X}_n(\alpha)$. Then $\hat{\alpha}_n = n^{1/2}(\hat{\theta}_n - \theta_0)$. For any *random* variable γ_n bounded in probability,

$$\tilde{X}_n(\gamma_n) = \gamma_n^\top n^{-1/2} U_n(\theta_0) - \frac{1}{2} \gamma_n^\top \Sigma(\theta_0, \tau) \gamma_n + o_p(1).$$
(11)

<ロ> (四) (四) (三) (三) (三) (三)

Let
$$\tilde{X}_n(\alpha) = X_n(\theta_0 + n^{-1/2}\alpha)$$
 and $\hat{\alpha}_n = \arg \max_{\alpha \in \mathbb{R}^p} \tilde{X}_n(\alpha)$. Then $\hat{\alpha}_n = n^{1/2}(\hat{\theta}_n - \theta_0)$. For any *random* variable γ_n bounded in probability,

$$\tilde{X}_n(\gamma_n) = \gamma_n^\top n^{-1/2} U_n(\theta_0) - \frac{1}{2} \gamma_n^\top \Sigma(\theta_0, \tau) \gamma_n + o_p(1).$$
(11)

This shows that $\tilde{X}_n(\gamma_n)$ can be approximated by a quadratic function in γ_n , maximized at $\hat{\gamma}_n = \Sigma^{-1}(\theta_0, \tau)n^{-1/2}U_n(\theta_0)$, with the maximized value approximately $\tilde{X}_n(\hat{\gamma}_n) = \frac{1}{2}\hat{\gamma}_n^{\top}\Sigma(\theta_0, \tau)\hat{\gamma}_n$.

Let
$$\tilde{X}_n(\alpha) = X_n(\theta_0 + n^{-1/2}\alpha)$$
 and $\hat{\alpha}_n = \arg \max_{\alpha \in \mathbb{R}^p} \tilde{X}_n(\alpha)$. Then $\hat{\alpha}_n = n^{1/2}(\hat{\theta}_n - \theta_0)$. For any *random* variable γ_n bounded in probability,

$$\tilde{X}_n(\gamma_n) = \gamma_n^\top n^{-1/2} U_n(\theta_0) - \frac{1}{2} \gamma_n^\top \Sigma(\theta_0, \tau) \gamma_n + o_p(1).$$
(11)

This shows that $\tilde{X}_n(\gamma_n)$ can be approximated by a quadratic function in γ_n , maximized at $\hat{\gamma}_n = \Sigma^{-1}(\theta_0, \tau)n^{-1/2}U_n(\theta_0)$, with the maximized value approximately $\tilde{X}_n(\hat{\gamma}_n) = \frac{1}{2}\hat{\gamma}_n^{\top}\Sigma(\theta_0, \tau)\hat{\gamma}_n$. By (11),

$$\tilde{X}_n(\gamma_n) = \tilde{X}_n(\hat{\gamma}_n) - \frac{1}{2}(\hat{\gamma}_n - \gamma_n)^{\top} \Sigma(\theta_0, \tau)(\hat{\gamma}_n - \gamma_n) + o_p(1) \quad (12)$$

for any γ_n bounded in probability.

Fix $\epsilon > 0$. If $\|\hat{\alpha}_n - \hat{\gamma}_n\| > \epsilon$, then there exists $\hat{\gamma}_n^*$ on the line segment joining $\hat{\alpha}_n$ and $\hat{\gamma}_n$ such that $\hat{\gamma}_n^* - \hat{\gamma}_n = \epsilon \upsilon_n$, where υ_n is a unit vector.

イロト イポト イヨト イヨト

Fix $\epsilon > 0$. If $\|\hat{\alpha}_n - \hat{\gamma}_n\| > \epsilon$, then there exists $\hat{\gamma}_n^*$ on the line segment joining $\hat{\alpha}_n$ and $\hat{\gamma}_n$ such that $\hat{\gamma}_n^* - \hat{\gamma}_n = \epsilon v_n$, where v_n is a unit vector. From this equality and the boundedness of $\hat{\gamma}_n$ in probability it follows that $\hat{\gamma}_n^*$ is bounded in probability,

> Fix $\epsilon > 0$. If $\|\hat{\alpha}_n - \hat{\gamma}_n\| > \epsilon$, then there exists $\hat{\gamma}_n^*$ on the line segment joining $\hat{\alpha}_n$ and $\hat{\gamma}_n$ such that $\hat{\gamma}_n^* - \hat{\gamma}_n = \epsilon v_n$, where v_n is a unit vector. From this equality and the boundedness of $\hat{\gamma}_n$ in probability it follows that $\hat{\gamma}_n^*$ is bounded in probability, so that we can substitute $\hat{\gamma}_n^*$ in (12) to obtain

$$\tilde{X}_n(\hat{\gamma}_n^*) = \tilde{X}_n(\hat{\gamma}_n) - \frac{1}{2} \epsilon^2 \upsilon_n^\top \Sigma(\theta_0, \tau) \upsilon_n + o_p(1).$$
(13)

Fix $\epsilon > 0$. If $\|\hat{\alpha}_n - \hat{\gamma}_n\| > \epsilon$, then there exists $\hat{\gamma}_n^*$ on the line segment joining $\hat{\alpha}_n$ and $\hat{\gamma}_n$ such that $\hat{\gamma}_n^* - \hat{\gamma}_n = \epsilon \upsilon_n$, where υ_n is a unit vector. From this equality and the boundedness of $\hat{\gamma}_n$ in probability it follows that $\hat{\gamma}_n^*$ is bounded in probability, so that we can substitute $\hat{\gamma}_n^*$ in (12) to obtain

$$\tilde{X}_n(\hat{\gamma}_n^*) = \tilde{X}_n(\hat{\gamma}_n) - \frac{1}{2} \epsilon^2 \upsilon_n^\top \Sigma(\theta_0, \tau) \upsilon_n + o_p(1).$$
(13)

Since $\tilde{X}_n(\cdot)$ is concave and $\tilde{X}_n(\hat{\alpha}_n) \geq \tilde{X}_n(\hat{\gamma}_n)$, it follows that $\tilde{X}_n(\hat{\gamma}_n^*) \geq \tilde{X}_n(\hat{\gamma}_n)$. Accordingly, (13) implies

Peng

$$(1/2)\epsilon^2 \upsilon_n^\top \Sigma(\theta_0, \tau) \upsilon_n + o_p(1) \leq 0.$$

Hence $\mathbb{P}(\|\hat{\alpha}_n - \hat{\gamma}_n\| > \epsilon) \leq \mathbb{P}(\frac{1}{2}\epsilon^2 \upsilon_n^\top \Sigma(\theta_0, \tau)\upsilon_n + o_p(1) \leq 0) \to 0$, so that $\hat{\alpha}_n = \hat{\gamma}_n + o_p(1)$ and the desired (8) follows. \Box

すℋイハメリ

イロン 不同 とくほど 不良 とうほ