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Introduction

◮ Negative Binomial. Consider a sequence of IID binary trials.
Let Y be the number of trials required to get the first r
successes. Then

P(Y = y) =

(

y − 1

r − 1

)

λr (1 − λ)y−r , y = r , r + 1, ...

where λ is the probability of success.

◮ A substitute for Poisson distribution because the mean and
variance are not equal:

E(Y ) = r/λ and Var(Y ) = r(1 − λ)/λ2.

◮ The NB does not assume a fixed sample size, so it provides an
alternative sequential approach in modelling binary responses.
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Introduction

◮ Independence assumption is not appropriate in many areas,
e.g. in developmental toxicity study. Offspring from the same
litter are correlated and may respond more similarly to a
stimulus than fetuses from different litters.

◮ Relaxing independence to exchangebility, George and Bowman
(1995) proposed the full likelihood procedure for analyzing
correlated binary data.

◮ Under exchangebility, Rayner and Peng (2006), Wang and
Peng (2006) proposed mixture of negative binomial to study
correlated binary data.
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Introduction

◮ A sequence X1,X2, ... is exchangeable if for any finite subset
Xi1 , · · ·,Xin ,

P(Xπ1 = x1, · · ·, Xπn = xn) = P(Xi1 = x1, · · ·, Xin = xn),

where π1...πn is a permutation of i1...in and xi = 0, 1,∀i .

◮ Rayner, Peng and Wang (2006) derived that the probability
that the first r successes is realized in y trials is given by

P(Y = y) =

(

y − 1

r − 1

) y−r
∑

k=0

(−1)k
(

y − r

k

)

λr+k , y = r , r + 1, ...
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Introduction

◮ By the celebrated de Finetti representation theorem,

λk =

∫ 1

0
uk dQ(u), k = 0, 1, · · · ,

where Q is the probability measure on [0, 1] uniquely
determined by the infinite exchangeable sequence.

◮ Immediately it follows

P(Y = y) =

∫ 1

0

(

y − 1

r − 1

)

ur (1−u)y−r dQ(u), y = r , r+1, · · · .

◮ Written Y ∼ MNB(λ, r) with λ = (λr , λr+2, ...) where

λk = P(X1 = 1, · · ·,Xk = 1), k = 1, 2, ....
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◮ The case r = 1 is the mixture of geometric distributions (MG).

◮ Interestingly, MNB is equivalent to a “parametric
distribution” with countably infinitely many parameters. i.e.,
MNB has infinitely many parameters.

◮ In this talk, we are interested in the efficient estimation of the
infinitely many parameters.

◮ The efficiency criterion is that of least dispersed regular
estimates based on the convolution theorems, see e.g. Schick
(1986) or van der Vaart (1998).

◮ In this talk, we also shall give an MLE of the mixing measure
Q.

◮ Estimating mixing measure, e.g., van der Geer (1996 (J.
Nonparametric Statist.), 2003(Compu. Statist. & Data
Analy.)), Genovese and Wasserman (2000, Ann. Statist.)
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◮ {λk : k = 0, 1, 2, ...} (λ0 = 1) is complete monotone:

(−1)k∆lλk ≥ 0, l = 0, 1, 2, .....

where ∆ is the difference operator:

∆ai = ai+1 − ai , ∆2ai = ∆(∆ai ) = ai+2 − 2ai+1 + ai ,

for a sequence {a1, a2, ...}.
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◮ Using de Finetti representation, the moment generating
function of Y is

MY (t) = etr

∫ 1

0
ur [1 − (1 − u)et ]−rQ(u),

in some neighborhood of the origin.

◮ We formally define

λ−k =

∫ 1

0

dQ(u)

uk
, k = 1, 2, ....
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Moments

Theorem

◮ If λ−1 <∞, then the mean of Y exists and is given by

E(Y ) = M ′
Y (0) = rλ−1.

If λ−2 <∞, then the second moment of Y exists and is given
by

E(Y 2) = M ′′
Y (0) = r(r + 1)λ−2 − rλ−1.

◮ Then the variance of Y is simply

Var(Y ) = E(Y 2)−
(

E(Y )
)2

= r(r +1)λ−2 − rλ−1 − (rλ−1)
2.
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Moments

◮ If the mixing measure Q is a point mass concentrated on
p ∈ (0, 1), then the resulting distribution is the negative
binomial NB(p, r). Indeed,

λk =

1
∫

0

uk dQ(u) = pk , λ−k =

1
∫

0

dQ(u)

uk
=

1

pk
,

Hence, all moments exists.

◮ In particular, we recover the mean and variance of
Y ∼ NB(p, r),

E(Y ) = rλ−1 = r/p,

Var(Y ) = r(r + 1)λ−2 − rλ−1 − (rλ−1)
2 = r(1 − p)/p2.
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Moments

Suppose Q has a density q w.r.t. the Lesbegue measure.

1 If q(u) = 1, then

λk =

1
∫

0

uk(1) du =
1

k + 1
k = 0, 1, 2, · · · .

In this case, for all k = 1, 2, · · · , λ−k =
1
∫

0

dQ(u)
uk =

1
∫

0

1
uk du,

does not exist; therefore, none of the moments of the MNB
exist either.
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Moments

2 Now suppose q(u) = 2u. Then we have

λk =

1
∫

0

uk(2u) du =
2

k + 2
k = 0, 1, 2, · · · .

In this case, λ−1 =
1
∫

0

2u
u

du = 2. Consequently, the mean of

Y is given by E(Y ) = rλ−1 = 2r . However, the variance and
higher moments still do not exist.
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Moments

3 Finally, suppose q(u) = 4u3. Then we have

λk =

1
∫

0

uk(4u3) du =
4

k + 4
k = 0, 1, 2, · · · .

In this case,

λ−1 =

1
∫

0

4u3

u
du =

4

3
, λ−2 =

1
∫

0

4u3

u2
du = 4

1
∫

0

u du = 2.

Consequently, the mean and variance of Y are given by
E(Y ) = rλ−1 = 4r

3 and

Var(Y ) = r(r + 1)λ−2 − rλ−1 − (rλ−1)
2 = 2r2

9 + 2r
3 .
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Maximum Likelihood Estimation

◮ Let Y ∼ MNB(λ, r). Then for y = r , r + 1, ...,

f (y ; λy , r) = P(Y = y) =

(

y − 1

r − 1

) y−r
∑

k=0

(−1)k
(

y − r

k

)

λr+k ,

where λy = (λr , · · ·, λy ). Note that the number of parameters
varies with observation y .

◮ For Y1,Y2, · · ·,Yn i.i.d. copies of Y , the average of the
log-likelihood function is

ln(λY ∗

n
) =

1

n

n
∑

i=1

log f (Yi ; λYi
, r)

where Y ∗
n = max(Y1, · · ·,Yn). Assume for now r is known.
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Maximum Likelihood Estimation

◮ The MLE λ̂ of λ is the maximizer of ln(λY ∗

n
) subject to

λr ≤ 1, (−1)l∆lλi ≥ 0, i ≥ r , l ≥ 0.

◮ Let πy = P(Y = y) =
(

y−1
r−1

)

py where

py =

y−r
∑

k=0

(−1)k
(

y − r

k

)

λr+k , y = r , r + 1, ...

Reversing these equations yields

λt =
t−r
∑

i=0

(−1)i
(

t − r

i

)

pr+i =
t−r
∑

i=0

(−1)ict,i+rπr+i , t = r , r+1, ...

where ct,i =
(

t−r
i−r

)

/
(

i−1
r−1

)

.
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Maximum Likelihood Estimation

◮ In terms of p = {pk : k = r , r + 1, ...}, we write ln(λY ∗

n
) as

ℓn(pY ∗

n
) =

1

n

n
∑

i=1

log pYi
+ Cn,

◮ The MLE p̂ of p is the maximizer of the above subject to

py ≥ 0, y ≥ r ,

∞
∑

y=r

(

y − 1

r − 1

)

py = 1.

◮ By the Lagrange multipliers, the MLE can be found as

p̂y = Ay/

(

y − 1

r − 1

)

n, y = r , r+1, · · ·,Y ∗
n ; p̂y = 0, y > Y ∗

n ,

where Ay =
∑n

i=1 1[Yi = y ].
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Moments

◮ Thus, the MLE λ̂ of λ can be obtained as

λ̂t =
t−r
∑

i=0

(−1)i
(

t − r

i

)

p̂r+i , t = r , r + 1, · · ·,Y ∗
n .

and λ̂t = 0, t > Y ∗
n .
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Unbiasedness

◮ Easily verified

Theorem
For every t = r , r + 1, ..., λ̂t is unbiased est. of λt : E(λ̂t) = λt .

◮ The asymptotic variance of λ̂t for t = r , r + 1, ...,

σ2
t = nVar(λ̂t) =

1

n

t
∑

i=r

c2
tiVar(Ai ) =

t
∑

i=r

c2
tiπi − λ2

t .

◮ The asymptotic covariance is

Cst ≡ nCov(λ̂s , λ̂t) =
s∧t
∑

i=r

csictiπi − λsλt , s, t = r , r + 1, ....

where
∑′

i 6=j denotes
∑s

i=r

∑t
j 6=i ,j=1 and s ∧ t = min(s, t).

Peng Efficient Inference In The Mixture of Negative Binomial Distributions



Mixture of Negative Bin
Moments of MNB Distribution

Maximum Likelihood Estimation in MNB

Asymptotic Behavior
Estimating the Mixing Measure

Asymptotic Normality

◮ To stress the dependence of λ̂t on the n observations
Y1, · · ·,Yn, we write λ̂t = λ̂nt . For d positive integers
tk ≥ r where k = 1, · · ·, d , let λd = (λt1 , · · ·, λtd )

⊤ and
λ̂nd = (λ̂d1 , · · ·, λ̂td )

⊤. Denote Σd the dxd matrix with the
(i , j)th entry Cti tj when ti 6= tj and the (i , i) entry σ2

ti
.

◮ An application of the usual multivariate central limit theorem
yields the asymptotic normality.

Theorem*

√
n(λ̂d − λd) =⇒ N (0,Σd), n → ∞.
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Asymptotic behavior of the Stochastic Process

◮ We now study the asymptotic efficiency of the stochastic

process λ̂ =
{

λ̂k : k = r , r + 1, ...
}

. The following theorem

states that we can estimate almost the parameters
asymptotically.

Theorem
If 0 < λ1 < 1 then P(limn→∞ Y ∗

n = ∞) = 1.

◮ By asymptotic theory of semiparametric models (e.g. Bickel,
Klassen, Ritov and Wellner (1991), or van der Vaart(1998)),
we can show

Theorem
λ̂ is an efficient estimate of λ.
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Asymptotic behavior of the Stochastic Process

Sketches of Proof:

◮ Recall that a sequence of random elements Yn with values in
a metric space converges in distribution to a random element
Y if

Ef (Yn) → Ef (Y), n → ∞
for every bounded, continuous f from the metric space to
reals R.

◮ Let S be a nonempty set and ℓ∞(S) be a set of bounded
functions on S . Let P be a collecdtion of probability
measures.
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Asymptotic behavior of the Stochastic Process

Sketches of Proof: Theorem 25.48, van der Vaart(1998).

Theorem
(Efficiency in ℓ∞(S)) Suppose ψ : P 7→ ℓ∞(S) is differentiable at
P, and suppose that Tn(s) is asymptotically efficient at P for
estimating ψ(P)(s), for every s ∈ S. Then Tn is asymptotically
efficient at P provided that the sequence

√
n(Tn − ψ(P))

converges under P in distribution to a tight limit in ℓ∞(S).
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Asymptotic behavior of the Stochastic Process

Sketches of Proof:

◮ Let Xn = {Xn,k : k = r , r + 1, · · ·} be the stochastic process
given by

Xn,k = n−1/2
n

∑

i=1

(1[Yi = k] − πk), k = r , r + 1, · · ·

Let X be the Gaussian process with marginal zero mean and
the marginal covariance by Cst , σ

2
t .

◮ Define Πm the coordinate projection given by
ΠmY = (Yk : k = r , r + 1, · · ·, r + m − 1) for a stochastic
sequence Y = (Yk : k = r , r + 1, · · · ).

◮ By Theorem*, the m-dimensional vector Xn ◦ Πm converges in
distribution to X ◦ Πm for every positive integer m.
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Asymptotic behavior of the Stochastic Process

Sketches of Proof:

◮ Suffices to show

Ef (Xn) → Ef (X), n → ∞,

for every bounded and Lipschitz continuous function f .

◮ Fix integer m. Then

|Ef (Xn) − Ef (X)| ≤ |Ef (Xn) − Ef (Xn ◦ Πm)|
+|Ef (Xn ◦ Πm) − Ef (X ◦ Πm)| + |Ef (X ◦ Πm) − Ef (X)|.

Now the last term goes to zero as m tends to infinity by the
Lipschitz continuity of f and the boundedness of Gaussian
process X. The second term goes to zero by the Portmanteau
theorem and Theorem*.
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Asymptotic behavior of the Stochastic Process

Sketches of Proof:

◮ Fix ǫ > 0. For the first term, we have, with L a Lipschitz
constant,

|Ef (Xn) − Ef (Xn ◦ Πm)| ≤ Lǫ+ LP(‖Xn − Xn ◦ Tm‖ ≤ ǫ)

≤ Lǫ+ LP(m ≤ Y ∗
n , ‖Xn − Xn ◦ Tm‖ ≤ ǫ) + LP(m > Y ∗

n )

≤ Lǫ+ L1[m <∞] + LP(m > Y ∗
n ) → Lǫ,

by first fix m and let n → ∞ and then m → ∞ and noting
Y ∗

n → ∞ a.s. Here L is the Lipschitz constant. Because ǫ is
arbitrary, the desired result follows.
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Mixture of Geometric Distribution

◮ When r = 1, we have the mixture of geometric distribution
MGB(λ), where λ = (λk : k = 1, 2, ...). The probability is

P(Z = z) =
z−1
∑

k=0

(−1)k
(

z − 1

k

)

λ1+k , z = 1, 2, ... (1)

◮ Denote F the distribution function under the mixing measure
Q. Based on the estimates λ̂1, λ̂2, ..., we propose to estimate
F (θ) by

F̂n(θ) =
∑

1≤s≤[nθ]

(

n

s

)

(−1)n−s∆n−s λ̂s , θ ∈ [0, 1]. (2)
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Unbiasedness

◮ Because λ̂i is an unbiased estimator of λi , we readily have
EF̂n(θ) = Fn(θ), where

Fn(θ) =
∑

s≤[nθ]

(

n

s

)

(−1)n−s∆n−sλs , θ ∈ [0, 1]. (3)

◮ It is well known that

Fn(θ) → F (θ) (4)

for every θ in the set C (F ) of continuity points of F , see
Feller(page 227, 1971).
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Consistency

◮ Accordingly,

Theorem
At every continuous point θ in C (F ),

F̂n(θ) → F (θ), a.s.

◮ For θ ∈ [0, 1], let Vn(θ) = nVar(F̂n(θ) − Fn(θ)). Then

Vn(θ) = An(θ) − F 2
n (θ).

where

An(θ) =

n
∑

i=[nθ̄]+1

πi





[nθ]
∑

s=n−i+1

(−1)s
(

n

s

)(

s − 1

n − i

)





2

.
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Asymptotic Normality

◮ By CLT,

Theorem
For every θ ∈ [0, 1], F̂n(θ) is asymptotically normal:

Vn(θ)
−1/2√n(F̂n(θ) − Fn(θ))

D
=⇒ N (0, 1).

◮ Tough job 1: limn→inf Vn(θ) =?
◮ Tough job 2: Convergence Rate of the MLE of the mixing

measure: λ̂ determines an estimate Q̂ of Q. How to construct
Q̂? How fast does Q̂ converges to Q? In terms of Hellinger
distance:

h2(P,Q) = (1/2)

∫

(
√

dP −
√

dQ)2.
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THANK YOU
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