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The Problem

◮ Let (X ,Y ) ∼ Q, X ∼ F and Y ∼ G . Assume F and G are
continuous. We want to estimate

Qh = Eh(X ,Y ) =

∫
h dQ

for some Q-square integrable h based on n independent
observations: (X1,Y1), ..., (Xn,Yn).
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The Problem

◮ Let (X ,Y ) ∼ Q, X ∼ F and Y ∼ G . Assume F and G are
continuous. We want to estimate

Qh = Eh(X ,Y ) =

∫
h dQ

for some Q-square integrable h based on n independent
observations: (X1,Y1), ..., (Xn,Yn).

◮ Examples:

P(X > Y ), P(X ≤ s,Y ≤ t)

P(min(X ,Y ) > s), P(max(X ,Y ) < t).
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The Problem

◮ The usual estimator of Qh is the empirical estimator:

Q̂h =
1

n

n∑

j=1

h(Xj ,Yj)

It is efficient if no additional knowledge is available.

Peng Efficient Estimation In Constrained Models



Efficient Estimation Under Symmetry
Efficient Estimation Under Marginal Knowledge

Efficient Estimation Under Parametric Marginals

The Problem

◮ The usual estimator of Qh is the empirical estimator:

Q̂h =
1

n

n∑

j=1

h(Xj ,Yj)

It is efficient if no additional knowledge is available.

◮ Better estimators exist if we know more about Q.
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Additional knowledge: Symmetry

◮ Exchangeability: (X ,Y )
d
= (Y ,X )

1

2n

n∑

j=1

h(Xj ,Yj) + h(Yj ,Xj)
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Additional knowledge: Symmetry

◮ Exchangeability: (X ,Y )
d
= (Y ,X )

1

2n

n∑

j=1

h(Xj ,Yj) + h(Yj ,Xj)

◮ Central Symmetry: −(X ,Y )
d
= (X ,Y )

1

2n

n∑

j=1

h(Xj ,Yj) + h(−Xj ,−Yj)
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Additional knowledge: Dependence

◮ Independence: X ⊥⊥ Y .

1

n2

n∑

i=1

n∑

j=1

h(Xi ,Yj)
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Additional knowledge: Dependence

◮ Independence: X ⊥⊥ Y .

1

n2

n∑

i=1

n∑

j=1

h(Xi ,Yj)

◮ IID: X ⊥⊥ Y and X
d
= Y .

1

2n(2n − 1)

∑

1≤i 6=j≤n

h(Zi ,Zj)

where Zi = Xi and Zn+i = Yi for i = 1, ..., n.

Peng Efficient Estimation In Constrained Models



Efficient Estimation Under Symmetry
Efficient Estimation Under Marginal Knowledge

Efficient Estimation Under Parametric Marginals

Additional knowledge: Dependence

◮ Uncorrelated: Cov(X ,Y ) = 0. Consider unbiased estimators

Ĥ(c) =
1

n

n∑

j=1

h(Xj ,Yj) − cĈ , c ∈ R

where Ĉ = 1
n

∑n
j=1(Xj − X̄ )(Yj − Ȳ ) is the sample covariance.
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Additional knowledge: Dependence

◮ Uncorrelated: Cov(X ,Y ) = 0. Consider unbiased estimators

Ĥ(c) =
1

n

n∑

j=1

h(Xj ,Yj) − cĈ , c ∈ R

where Ĉ = 1
n

∑n
j=1(Xj − X̄ )(Yj − Ȳ ) is the sample covariance.

◮ With µ = EX and ν = EY ,

Ĉ =
1

n

n∑

j=1

(Xj − µ)(Yj − ν) − (X̄ − µ)(Ȳ − ν)

=
1

n

n∑

j=1

(Xj − µ)(Yj − ν) + Op(n
−1).
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◮ Thus the asymptotic variance of Ĥ(c) is

σ2(c) = Var(h(X ,Y )) − 2cA + c2B,

where

A = Cov[h(X ,Y ), (X − µ)(Y − ν)], B = E(X − µ)2(Y − ν)2
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◮ Thus the asymptotic variance of Ĥ(c) is

σ2(c) = Var(h(X ,Y )) − 2cA + c2B,

where

A = Cov[h(X ,Y ), (X − µ)(Y − ν)], B = E(X − µ)2(Y − ν)2

◮ The asymptotic variance σ2(c) is minimized at c = c∗ = A/B,
suggesting a plut-in estimator:

Ĥ = Ĥ(ĉ) =
1

n

n∑

j=1

h(Xj ,Yj) − ĉ Ĉ

where

ĉ =
Â

B̂
=

1
n

∑n
j=1 h(Xj ,Yj)(Xj − X̄ )(Yj − Ȳ )
1
n

∑n
j=1(Xj − X̄ )2(Yj − Ȳ )2
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◮ Easy to show

√
n(Ĥ(ĉ) − Ĥ(c∗)) = op(1).

Thus Ĥ is asymptotically equivalent to the best estimator
among Ĥ(c) : c ∈ R. Consequently it will be at least as good
as the empirical estimator and better if c∗ 6= 0.
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◮ Easy to show

√
n(Ĥ(ĉ) − Ĥ(c∗)) = op(1).

Thus Ĥ is asymptotically equivalent to the best estimator
among Ĥ(c) : c ∈ R. Consequently it will be at least as good
as the empirical estimator and better if c∗ 6= 0.

◮ The variance reduction is

A2

B
.
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◮ Easy to show

√
n(Ĥ(ĉ) − Ĥ(c∗)) = op(1).

Thus Ĥ is asymptotically equivalent to the best estimator
among Ĥ(c) : c ∈ R. Consequently it will be at least as good
as the empirical estimator and better if c∗ 6= 0.

◮ The variance reduction is

A2

B
.

◮ Indeed one can show that Ĥ is efficient.
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Additional knowledge: Marginals

◮ Equal marginal means: EX = EY .

1

n

n∑

j=1

h(Xj ,Yj) − ĉ(X̄ − Ȳ )

where

ĉ =
1
n

∑n
j=1 h(Xj ,Yj)(Xj − Yj)
1
n

∑n
j=1(Xj − Yj)2

One can show this estimator is efficient.
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Additional knowledge: Marginals

◮ Equal marginal means: EX = EY .

1

n

n∑

j=1

h(Xj ,Yj) − ĉ(X̄ − Ȳ )

where

ĉ =
1
n

∑n
j=1 h(Xj ,Yj)(Xj − Yj)
1
n

∑n
j=1(Xj − Yj)2

One can show this estimator is efficient.
◮ Known Marginals: Bickel, Ritov & Wellner (1991):

F = F0,G = G0. Partition plane into rectangles:

Ci ,j = Ai × Bj : i = 1, ..., I , j = 1, ..., J.

Let Ni ,j be # of observations falling into Ci ,j :

Ni ,j =
n∑

1[Xl ∈ Ai ,Yl ∈ Bj ]Peng Efficient Estimation In Constrained Models
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Additional Knowledge: Known Marginals

◮ and ĥi ,j be the average of h over cell Ci ,j :

h̄i ,j =
1

Ni ,j

n∑

l=1

1[Xl ∈ Ai ,Yl ∈ Bj ]h(Xl ,Yl)
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Additional Knowledge: Known Marginals

◮ and ĥi ,j be the average of h over cell Ci ,j :

h̄i ,j =
1

Ni ,j

n∑

l=1

1[Xl ∈ Ai ,Yl ∈ Bj ]h(Xl ,Yl)

◮ BRW propose the esttimator

I∑

i=1

J∑

j=1

p̂i ,j h̄i ,j

where p̂i ,j are chosen to minimize the χ2:

∑

i ,j

(Ni ,j − npi ,j)
2

Ni ,j

subject to constraints:

pi · =

J∑
pi ,j = F0(X ∈ Ai ), p·j =

I∑
pi ,j = G0(X ∈ Bj)
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Additional Knowledge: Known Marginals

◮ subject to constraints:

pi · =
J∑

j=1

pi ,j = F0(X ∈ Ai ), p·j =
I∑

i=1

pi ,j = G0(X ∈ Bj)
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Additional Knowledge: Known Marginals

◮ subject to constraints:

pi · =
J∑

j=1

pi ,j = F0(X ∈ Ai ), p·j =
I∑

i=1

pi ,j = G0(X ∈ Bj)

◮ BRW show that under mild assumptions on the dependence
structure and choice of partitions (nested, I , J → ∞):

∑

i ,j

p̂i ,j h̄i ,j =
1

n

n∑

l=1

h(Xl ,Yl) − a∗(Xl) − b∗(Yl) + op(n
−1/2)

where a∗ and b∗ minimize

E(h(X ,Y ) − a(X ) − b(Y ))2, a ∈ L2,0(F0), b ∈ L2,0(G0).
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Additional Knowledge: Known Marginals

◮ subject to constraints:

pi · =
J∑

j=1

pi ,j = F0(X ∈ Ai ), p·j =
I∑

i=1

pi ,j = G0(X ∈ Bj)

◮ BRW show that under mild assumptions on the dependence
structure and choice of partitions (nested, I , J → ∞):

∑

i ,j

p̂i ,j h̄i ,j =
1

n

n∑

l=1

h(Xl ,Yl) − a∗(Xl) − b∗(Yl) + op(n
−1/2)

where a∗ and b∗ minimize

E(h(X ,Y ) − a(X ) − b(Y ))2, a ∈ L2,0(F0), b ∈ L2,0(G0).

◮ Further, they show their estimator is efficient.
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Alternative Estimate: Known Marginals

◮ Peng and Schick (2002): For a ∈ L2,0(F0), b ∈ L2,0(G ),

Ĥ(a, b) =
1

n

n∑

l=1

h(Xl ,Yl) − a(Xl) − b(Yl)

is an unbiased estimator with possible smallest variance for
(a, b) = (a∗, b∗).
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Alternative Estimate: Known Marginals

◮ Peng and Schick (2002): For a ∈ L2,0(F0), b ∈ L2,0(G ),

Ĥ(a, b) =
1

n

n∑

l=1

h(Xl ,Yl) − a(Xl) − b(Yl)

is an unbiased estimator with possible smallest variance for
(a, b) = (a∗, b∗).

◮ This motivates to use the estimator

1

n

n∑

l=1

[
h(Xl ,Yl) −

I∑

i=1

α̂ivi (Xl) −
J∑

j=1

β̂jwj(Yl)
]

where α̂i and β̂j minimize

1

n

n∑

l=1

[
h(Xl ,Yl) −

I∑

i=1

αivi (Xl) −
J∑

j=1

βjwj(Yl)
]2
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Alternative estimates: Known Marginals

◮ where v1, v2, ... is an ONS for L2,0(F0) and w1,w2, ... an ONS
for L2,0(G0).
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Alternative estimates: Known Marginals

◮ where v1, v2, ... is an ONS for L2,0(F0) and w1,w2, ... an ONS
for L2,0(G0).

◮ PS (’02) show their estimator is also asymptotically efficient

under mild assumptions on the ONS, I , J → ∞ at certain
rates and the dependence conditions of BRW.
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Alternative estimates: Known Marginals

◮ where v1, v2, ... is an ONS for L2,0(F0) and w1,w2, ... an ONS
for L2,0(G0).

◮ PS (’02) show their estimator is also asymptotically efficient

under mild assumptions on the ONS, I , J → ∞ at certain
rates and the dependence conditions of BRW.

◮ One can take the usual trigo-bases:

vk(x) = uk(F0(x)), wk(y) = uk(G0(y)),

where uk(x) =
√

2 cos(iπx), 0 ≤ x ≤ 1, k = 1, 2, ...
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Additional Knowledge: Equal Marginals

◮ Peng and Schick (2005): L(X ) = L(Y ), so for a ∈ L2,0(F ),
we have E[a(X ) − a(Y )] = 0. Thus for each such a,

Ĥ(a) =
1

n

n∑

l=1

h(Xl ,Yl) − a(Xl) + a(Yl)

is an unbiased estimator with smallest possible variance for
a = a∗, which minimizes

E[h(X ,Y ) − a(X ) + a(Y )]2.
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Additional Knowledge: Equal Marginals

◮ Peng and Schick (2005): L(X ) = L(Y ), so for a ∈ L2,0(F ),
we have E[a(X ) − a(Y )] = 0. Thus for each such a,

Ĥ(a) =
1

n

n∑

l=1

h(Xl ,Yl) − a(Xl) + a(Yl)

is an unbiased estimator with smallest possible variance for
a = a∗, which minimizes

E[h(X ,Y ) − a(X ) + a(Y )]2.

◮ This motivates to use the estimator

1

n

n∑

l=1

(
h(Xl ,Yl) −

I∑

i=1

α̂i [ui (F̂ (Xl)) − ui (F̂ (Yl))]

)
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Additional Knowledge: Equal Marginals

◮ where α̂i is the unique minizer to

1

n

n∑

l=1

(
h(Xl ,Yl) −

I∑

i=1

αi [ui (F̂ (Xl)) − ui (F̂ (Yl))]

)2

Here F̂ is the pooled empirical distribution function:

F̂ (x) =
1

2n

n∑

l=1

1[Xl ≤ x ] + 1[Yl ≤ x ].
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Additional Knowledge: Equal Marginals

◮ where α̂i is the unique minizer to

1

n

n∑

l=1

(
h(Xl ,Yl) −

I∑

i=1

αi [ui (F̂ (Xl)) − ui (F̂ (Yl))]

)2

Here F̂ is the pooled empirical distribution function:

F̂ (x) =
1

2n

n∑

l=1

1[Xl ≤ x ] + 1[Yl ≤ x ].

◮ PS (’05) show that their estimator is asymptotically
equivalent to the best unbiased estimator Ĥ(a∗) and is
efficient as I → ∞ slowly with n and under the depedence
structure of BRW.
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Additional Knowledge: Parametric Marginals

◮ Peng and Schick (2004): assume F = Fϑ1
and G = Gϑ2

for
unknown parameters ϑ1 and ϑ2. Suppose we can estimate ϑ1

and ϑ2 by ϑ̂1 and ϑ̂2 at the square root rate. Then an
estimator of Qh is

1

n

n∑

l=1

h(Xl ,Yl) −
I∑

i=1

α̂ivi (Fϑ̂1
(Xl)) −

J∑

j=1

β̂jwj(Gϑ̂2
(Yl))

where α̂i and β̂j minimize

1

n

n∑

l=1

(
h(Xl ,Yl) −

I∑

i=1

αivi (Fϑ̂1
(Xl)) −

J∑

j=1

βjwjGϑ̂2
(Yl))

)2

.
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Additional Knowledge: Parametric Marginals

◮ Peng and Schick (’04) show that their estimator is
asymptotically equivalent to

1

n

n∑

l=1

h(Xl ,Yl) − a∗(Xl) − b∗(Yl) + D1(ϑ̂1 − ϑ1) + D2(ϑ̂2 − ϑ2)

for some matrices D1,D2 under mild regularity conditions.
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Additional Knowledge: Parametric Marginals

◮ Peng and Schick (’04) show that their estimator is
asymptotically equivalent to

1

n

n∑

l=1

h(Xl ,Yl) − a∗(Xl) − b∗(Yl) + D1(ϑ̂1 − ϑ1) + D2(ϑ̂2 − ϑ2)

for some matrices D1,D2 under mild regularity conditions.

◮ By the general plug-in principle (Klasseen and Putter (2005))
this estimator will be efficient if ϑ̂1, ϑ̂2 are efficient.
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Estimation of Maringal Parameters

◮ PS (’08): Suppose bivariate Q has two smooth marginals
X ∼ Fα with score κ̇1(·, α) and Y ∼ Gβ with score κ̇2(·, β).
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Estimation of Maringal Parameters

◮ PS (’08): Suppose bivariate Q has two smooth marginals
X ∼ Fα with score κ̇1(·, α) and Y ∼ Gβ with score κ̇2(·, β).

◮ Efficient estimate α̂n of α0 based only the X observations may
not be efficient in the bivariate model because the information
from Y is not used. Similarly for β̂n of β0.
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Estimation of Maringal Parameters

◮ PS (’08): Suppose bivariate Q has two smooth marginals
X ∼ Fα with score κ̇1(·, α) and Y ∼ Gβ with score κ̇2(·, β).

◮ Efficient estimate α̂n of α0 based only the X observations may
not be efficient in the bivariate model because the information
from Y is not used. Similarly for β̂n of β0.

◮ Choose W (y , β0) ∈ L2,0(Gβ0
) and W ⊥ κ̇2. Then

α̂n(D) = α̂n −
1

n

n∑

j=1

DW (Yj , β̂n)

is an unbiased estimator of α0 for any matrix D with possible
smallest variance

Ψ(D) = J−1
1 − DD⊤

where J1 is the X -marginal information.
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Estimation of Maringal Parameters

◮ The dispersion matrix is minimized at

D = D∗ = E[ψ1(X , α0)W
⊤(Y , β0)]

where ψ1(x , α) = J−1
1 κ̇1(x , α).

◮ The gain in efficiency is D∗D
⊤
∗ .
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Estimation of Maringal Parameters

◮ The dispersion matrix is minimized at

D = D∗ = E[ψ1(X , α0)W
⊤(Y , β0)]

where ψ1(x , α) = J−1
1 κ̇1(x , α).

◮ The gain in efficiency is D∗D
⊤
∗ .

◮ Since D∗ is unknown, we estimate by

D̂∗ =
1

n

n∑

j=1

ψ1(Xj , α̂n)W
⊤(Yj , β̂n).

Peng Efficient Estimation In Constrained Models



Efficient Estimation Under Symmetry
Efficient Estimation Under Marginal Knowledge

Efficient Estimation Under Parametric Marginals

Estimation of Maringal Parameters

◮ The dispersion matrix is minimized at

D = D∗ = E[ψ1(X , α0)W
⊤(Y , β0)]

where ψ1(x , α) = J−1
1 κ̇1(x , α).

◮ The gain in efficiency is D∗D
⊤
∗ .

◮ Since D∗ is unknown, we estimate by

D̂∗ =
1

n

n∑

j=1

ψ1(Xj , α̂n)W
⊤(Yj , β̂n).

◮ Our proposed estimate of α is

α̂∗
n = α̂n − D̂∗

1

n

n∑

j=1

W (Yj , β̂n).
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Examples

◮ Choose Q the Farlie-Gumbel-Morgenstern copula density,

q(x , y) = [1+ρu(x−α)v(y−β)]f (x−α)g(y−β), x , y ∈ R,

where f , g are the densities of the location models with finite
Fisher informations, and ρ ∈ [−1, 1].

◮ For standard normal marginals, we have

ARE = 1 − ρ2
2

π

(∫ ∞

0

x exp(−x
2/2)dx

)2

= 1 − 2ρ2

π
.

It can be as large as 36 perent.
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Examples

◮ Choose Q the Farlie-Gumbel-Morgenstern copula density,

q(x , y) = [1+ρu(x−α)v(y−β)]f (x−α)g(y−β), x , y ∈ R,

where f , g are the densities of the location models with finite
Fisher informations, and ρ ∈ [−1, 1].

◮ For standard normal marginals, we have

ARE = 1 − ρ2
2

π

(∫ ∞

0

x exp(−x
2/2)dx

)2

= 1 − 2ρ2

π
.

It can be as large as 36 perent.
◮ For the double exponential, we have

ARE = 1 − ρ2

(∫ ∞

0

e
−x

dx

)2

= 1 − ρ2.

It varies from 0 to 1.
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MELE: Finitely Many Constraints: m < ∞
◮ Put Ψm(z , ϑ) = (ψ1(z , ϑ), ..., ψm(z , ϑ))⊤. Then

∫
Ψm(z , ϑ) dQ(z) = 0
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MELE: Finitely Many Constraints: m < ∞
◮ Put Ψm(z , ϑ) = (ψ1(z , ϑ), ..., ψm(z , ϑ))⊤. Then

∫
Ψm(z , ϑ) dQ(z) = 0

◮ Fix integer m, Qin and Lawless (1994) showed that the MELE
ϑ̂n of ϑ0 is asymptotically efficient:

ϑ̂n = arg max
ϑ

n∏

j=1

ωj(ϑ), ωj(ϑ) =
1

n

1

1 + ζ(ϑ)⊤Ψm(Zj , ϑ)

where ζ = ζ(ϑ) is the solution to:

1

n

n∑

j=1

Ψm(Zj , ϑ)

1 + ζ⊤Ψm(Zj , ϑ)
= 0.
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Q with parametric marginals as Infinitely Many Constraints

Q =
{

Q << µ :

∫
u dQ =

∫
u dFα, u ∈ U ,

∫
v dQ =

∫
v dGβ , v ∈ V

}

where U = {uk ◦ Fα : k = 0, 1, 2, ...} and
V = {uk ◦ Gβ : k = 0, 1, 2, ...}.
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MELE: Infinitely Many Constraints: m = ∞

Theorem 1 Under regularity condistions,

ϑ̂n = ϑ0 +
1

n

n∑

i=1

J−1
# ϑ̇#(Zi , ϑ0) + oP(n−1/2)

provided m = mn tends slowly to infinity with the sample size n.
Here ϑ̇# = Π(ϑ̇♮|V) and J# = Eϑ̇#(Z1, ϑ0)

⊗2. Hence

√
n(ϑ̂n − ϑ0) ⇒ N (0, J−1

# ).
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