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Abstract

In this paper, we obtain the strong consistency and asymptotic distribution of the

Theil-Sen estimator in simple linear regression models with arbitrary error distri-

butions. We show that the Theil-Sen estimator is super-efficient when the error

distribution is discontinuous and that its asymptotic distribution may or may not

be normal when the error distribution is continuous. We give an example in which

the Theil-Sen estimator is not asymptotically normal. A small simulation study is

conducted to confirm the super-efficiency and the non-normality of the asymptotic

distribution.
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1 Introduction

We consider a simple linear regression model

Yi = βxi + ǫi, i = 1, . . . , n, (1.1)
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where xi are nonidentical constants and ǫi independent and identically dis-

tributed (iid) random errors with an unknown cumulative distribution func-

tion (cdf) F . A well-known robust estimator of the slope β is the Theil-Sen

estimator that was first proposed by Theil (1950) and then extended by Sen

(1968). More precisely, we define

Bn =

{

bij : bij =
Yj − Yi

xj − xi

, if xi 6= xj, 1 ≤ i < j ≤ n

}

. (1.2)

Then the Theil-Sen estimator β̃n is defined as the median of all slopes in Bn,

β̃n = med(Bn), where “med” stands for “median”.

We deliberately leave out the intercept in model (1.1). Nonetheless, our model

covers the linear regression model with an unknown intercept

Yi = α + βxi + εi, i = 1, . . . , n,

by simply letting ǫi = α + εi, where εi is an error satisfying certain iden-

tifiability conditions. Our formulation in Model (1.1) does not impose any

assumptions about the error. The intercept α can be estimated, for example,

using the median of
{

Yi − β̃nXi : i = 1, . . . , n
}

under the identifiability condi-

tion that the error has a unique median. For the regression model with a zero

intercept, a more robust estimator of the slope β is the median of the slopes of

lines joining the origin with all observations (xi, Yi). This is the least absolute

deviation estimator of the slope, which has a bounded influence function and

a large-sample high breakdown point of 0.5. Since our principal focus in this

paper is the asymptotic behavior of the slope estimator β̃n for the general

regression model (1.1), we stop here the discussion of intercept estimations

and the linear regression model through the origin.

The Theil-Sen estimator is robust with a high breakdown point of about 0.293

and also has a bounded influence function. It compares favorably with the

ordinary least squares estimator in small-sample efficiency (Wilcox, 1998) and

is competitive in terms of mean squared error with alternative slope estimators

(Dietz, 1987).
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The univariate Theil-Sen estimator has numerous multivariate extensions. Oja

and Niinimaa (1984) generalized the Theil-Sen estimator to multiple regres-

sion models using pseudo observations and the Oja’s median (1983). The Oja’s

median is a special spatial median. For the asymptotic properties of spatial

medians, see Arcones et al. (1994) and Bose (1998). Zhou and Serfling (2006)

gave another natural extension of the Theil-Sen estimator based on multivari-

ate spatial U-quantiles. It is interesting to establish some of the properties of

the univariate Theil-Sen estimator for its multivariate spatial extensions in

multiple regression models, including semi-parametric generalized linear mod-

els, partially linear models and single index models. We pursue this matter in

a separate study.

In review of the asymptotic results of the Theil-Sen estimator in the litera-

ture, we found that further study on this classical estimator was worthwhile.

For instance, the consistency of the estimator has, to our knowledge, not been

studied thus far. Sen (1968) investigated the asymptotic normality of the es-

timator only for absolutely continuous cdf F . However, as we point out in this

paper, there is a gap in Sen’s proof. Sen used a theorem from Hoeffding(1948),

but his set-up does not satisfy the assumptions of the theorem.

In this paper we establish the strong consistency and asymptotic distribution

of the Theil-Sen estimator for a general error distribution F (i.e., the cdf F

of the error ǫ is arbitrary, thus including both discontinuous and continuous

ones). To our surprise, the Theil-Sen estimator turns out to be super-efficient

for discontinuous error distributions (See Section 2). We also obtain a general

theorem on the asymptotic distribution (Theorem 3) when the error distri-

bution is continuous (not necessarily absolutely continuous). The asymptotic

normality claimed by Sen (1968) follows as a special case. We find that the

Theil-Sen estimator is not asymptotically normal in general, though it does

converge in distribution. We also give the conditions under which it is asymp-

totically normal (Remark 2 in Section 3). We provide two sets of conditions

under which the general theorem holds. These conditions are easy to verify

and satisfied by most common distributions; furthermore, they enable us to
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obtain an explicit formula for the scaling constant. Under these conditions, we

show that the asymptotic distribution is normal when the cdf F is absolutely

continuous and may not be normal when the cdf F is not absolutely continu-

ous. An example is given in which the Theil-Sen estimator has a non-normal

asymptotic distribution. We conduct a small simulation study that confirms

the super-efficiency and the asymptotic non-normality.

The Theil-Sen estimator has been widely acknowledged in several popular

textbooks on nonparametric statistics and robust regression. See, e.g., Sprent

(1993), Hollander and Wolfe (1973 and 1999), and Rousseeuw and Leroy

(2003). It also has been extensively studied in the literature. Sen (1968)

and Wilcox (1998) investigated its asymptotic relative efficiency to the least

squares estimator. Akritas et al. (1995) applied it to astronomy and Fernan-

des and Leblanc (2005) to remote sensing. Wang (2005) studied its asymptotic

properties for Model (1.1) with a random covariate. Many of its extensions can

be found in the literature, for example, in censored data; for details, see, e.g.,

Akritas et al. (1995), Jones (1997), and Mount and Netanyahu (2001).

The rest of this paper is organized as follows: In Section 2, we investigate

consistency. In Section 3, we address asymptotic normality, present an example

and conduct a small simulation study. In Section 4, we prove Theorem 3. Some

technical details are given in the appendix.

2 Strong Consistency

In this section, we establish the strong consistency of the Theil-Sen estima-

tor for both discontinuous and continuous error distributions. We start by

introducing a general lemma.

First, for each 0 < r ≤ ∞, we divide the slope set Bn defined in (1.2) into two

subsets B+
n,r and B−

n,r:

B+
n,r = {bij ∈ Bn : bij > β + 1/r} , B−

n,r = {bij ∈ Bn : bij < β − 1/r} ,
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and define N+
n,r = #(B+

n,r) and N−
n,r = #(B−

n,r) as the cardinalities of B+
n,r and

B−
n,r, respectively.

Under Model (1.1), we can write bij = β +eij, eij = (ǫi− ǫj)/(xi−xj), xi 6= xj.

Then we have two U-statistics

N̄+
n,r =

2

n(n − 1)
N+

n,r =
2

n(n − 1)

∑

1≤i<j≤n
ψ+

r (Zi, Zj) and

N̄−
n,r =

2

n(n − 1)
N−

n,r =
2

n(n − 1)

∑

1≤i<j≤n
ψ−

r (Zi, Zj),

with kernels given by

ψ+
r (Zi, Zj) = 1[eij > 1/r] and ψ−

r (Zi, Zj) = 1[eij < −1/r],

respectively, where 1[A] denotes the indicator of event A and Zi = (xi, ǫi).

Noticing that ǫi and ǫj are iid, we have

Eψ−
r (Zi, Zj) = Eψ+

r (Zi, Zj) = P ((ǫi − ǫj)/(xi − xj) > 1/r)

= P (ǫi − ǫj > (xi − xj)/r)1[xi > xj]+P (ǫi − ǫj < (xi − xj)/r)1[xi < xj]

= 1[xi 6= xj](1 − F2(|xi − xj|/r)), i < j,

here F2 is the cdf of ǫi − ǫj.

Now let an be the number of unequal pairs (xi, xj), namely, an =
∑

1≤i<j≤n 1[xi 6=
xj]; and let ān = 2an/n(n − 1). Define

qn,r =
1

an

∑

1≤i<j≤n

1[xi 6= xj](1 − F2(|xi − xj|/r)). (2.1)

Then

E{N̄−
n,r} = E{N̄+

n,r} = ānqn,r. (2.2)

The next lemma gives the asymptotic behavior of the U-statistics, and its

proof is put off to the last section.

Lemma 1 Suppose that the nonrandom covariates x1, x2, . . . , xn satisfy

n−1 log n

ā2
n

= o(1). (2.3)
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Then for 0 < r ≤ ∞,

lim
n→∞

(

N̄+
n,r/ān − qn,r

)

= 0, lim
n→∞

(

N̄−
n,r/ān − qn,r

)

= 0, a.s.

where a.s. denotes convergence with probability one (strong consistency).

Let us now consider the special case r = ∞. Write N+
n = N+

n,∞, B+
n = B+

n,∞,

ψ+ = ψ+
∞, etc., so that, in particular, N+

n = # {B+
n }, N−

n = # {B−
n }, where

B+
n = {bij ∈ Bn : bij > β}, B−

n = {bij ∈ Bn : bij < β} .

The two U-statistics are

N̄+
n =

2

n(n − 1)
N+

n =
2

n(n − 1)

∑

1≤i<j≤n
1[(ǫi − ǫj)(xi − xj) > 0] and

N̄−
n =

2

n(n − 1)
N−

n =
2

n(n − 1)

∑

1≤i<j≤n
1[(ǫi − ǫj)(xi − xj) < 0]

with kernels ψ+(Zi, Zj) = 1[(ǫi − ǫj)(xi − xj) > 0] and ψ−(Zi, Zj) = 1[(ǫi −
ǫj)(xi − xj) < 0], respectively. Since q = qn,∞ = P (ǫ1 > ǫ2), (2.2) simplifies to

E
{

N̄−
n

}

= E
{

N̄+
n

}

= qān = P (ǫ1 > ǫ2)ān. (2.4)

Apparently 0 ≤ q ≤ 1/2. In fact, we have a stronger result for a discontinuous

cdf F .

Remark 1 If F is discontinuous, then 0 ≤ q < 1/2.

Indeed, if F is discontinuous at t0, i.e., F (t0) − F (t0−) > 0, then

P (ǫ1 = ǫ2) =
∫

P (ǫ1 = t) dF (t) =
∫

(F (t) − F (t−)) dF (t)

≥ (F (t0) − F (t0−))2 > 0,

hence q = P (ǫ1 > ǫ2) = (1/2)(1 − P (ǫ1 = ǫ2)) < 1/2, proving Remark 1.

As an illustration, let us see an example. Suppose that ǫ1 and ǫ2 are indepen-

dent Bernoulli trials with probability of success p. Then

P (ǫ1 = ǫ2) = P (ǫ1 = ǫ2 = 0) + P (ǫ1 = ǫ2 = 1) = (1 − p)2 + p2 > 0.
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The theorem below gives an interesting result when F is discontinuous, which

implies the strong consistency. Let Ωo be the set of all ω ∈ Ω at which β̃n(ω) 6=
β happens only finitely many times, i.e., Ωo = {ω : β̃n(ω) = β for n > nω}.

Theorem 1 Suppose that F is discontinuous. If the nonrandom covariates

x1, x2, ..., xn satisfy (2.3), then P{Ωo} = 1. Consequently, the Theil-Sen

estimator is strongly consistent, i.e., β̃n → β a.s.

Proof. Denote

Ω
′

o =

{

ω :
N+

n (ω)

an

→ q ,
N−

n (ω)

an

→ q and an → ∞
}

.

Because of (2.3), we have P (Ω
′

o) = 1 by Lemma 1. Fix ω ∈ Ω′
0 and set q0

= (1
2

+ q)/2. Since F is discontinuous, we have q < q0 < 1/2 by Remark 1.

Thus, there exists an integer nω such that N+
n (ω)/an < qo and N−

n (ω)/an < qo

whenever n ≥ nω, which implies that the median of Bn is inside the difference

Bn \ (B−
n ∪ B+

n ). Otherwise, either N+
n (ω)/an or N+

n (ω)/an should be not less

than 1/2. Since all random variables in Bn\(B−
n ∪B+

n ) are equal to β, it follows

that the median β̃n of Bn satisfies β̃n(ω) = β for ω ∈ Ω′
o. But Ω′

o ⊂ Ωo and

P(Ω′
o) = 1; hence, P(Ωo) = 1. This completes the proof.

From the theorem we see surprisingly that the Theil-Sen estimator β̃n equals

β for sufficiently large n almost surely when the cdf F is discontinuous. An

immediate consequence of this is that β̃n is super-efficient as discussed in Case

I of Section 3 below. Our simulation study also confirms this finding.

We now consider continuous cdf F . The next lemma is needed and its proof

is given in appendix.

Lemma 2 Suppose that F is continuous. Then the cdf F2 of ǫ1 − ǫ2 satisfies

F2(t) = E[F (ǫ + t)] = 1 − E[F (ǫ − t)], t ∈ R, (2.5)

hence F2(0) = 1/2. Furthermore,

F2(t) 6= 1/2, for t 6= 0. (2.6)

Theorem 2 Suppose that F is continuous. If the nonrandom covariates x1, x2, . . .
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satisfy (2.3) and

ρ ≡ lim
n→∞

inf {|xi − xj| : xi 6= xj, 1 ≤ i < j ≤ n} > 0, (2.7)

then the Theil-Sen estimator is strongly consistent, i.e., β̃n → β a.s.

Proof. Fix r = 1, 2, . . . . It follows from Lemma 1 that

lim
n→∞

(

N+
n,r/an − qn,r

)

= 0, lim
n→∞

(

N−
n,r/an − qn,r

)

= 0, a.s., (2.8)

where qn,r is given in (2.1). Let Ω
′

o =
⋂

r≥1 Ω
′

r, where

Ω
′

r =
{

ω : N+
n,r(ω)/an − qn,r → 0, N−

n,r(ω)/an − qn,r → 0, an → ∞
}

.

Then by (2.8) we have P (Ω
′

r) = 1, r = 1, 2, . . . , implying the complement

satisfies P (Ω
′c
r ) = 0. Therefore,

P (Ω
′c
o ) = P

(

⋃

r≥1

Ω
′c
r

)

≤
∑

r≥1

P (Ω
′c
r ) = 0.

This proves P (Ω
′

o) = 1.

We observe that qn,r ≤ 1− F2(ρn/r) holds for all r, n, where ρn is defined like

ρ in (2.7) but without limit, i.e.,

ρn = inf {|xi − xj| : xi 6= xj, 1 ≤ i 6= j ≤ n} .

Then we have

lim sup
n→∞

qn,r ≤ 1 − lim inf
n→∞

F2(ρn/r) = 1 − F2(lim inf
n→∞

ρn/r) = 1 − F2(ρ/r).

Since ρ > 0, it follows from Lemma 2 that lim supn→∞ qn,k < 1/2.

Analogous to the proof of Theorem 1, one may show that for each fixed r and

each ω ∈ Ω
′

r, there exists nr,ω such that the median of Bn falls in the difference

Bn\(B−
n,r∪B+

n,r) for n > nr,ω. In other words, |β̃n(ω)−β| ≤ 1/r. Letting r → ∞
yields the desired strong consistency and the proof is complete.
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3 Asymptotic Distribution

In this section, we study the asymptotic distribution of the Theil-Sen estimator

for both discontinuous and continuous error cdf F . For discontinuous cdf F ,

we show that the Theil-Sen estimator is super-efficient; for continuous cdf F ,

we establish a general theorem on the asymptotic distribution. We provide

two sets of sufficient conditions that satisfy the general theorem and permit

explicit formulas of the scaling constants as well. We also present a sufficient

condition for non-normal asymptotic distribution and an example of the error

distribution F when that condition holds. We end this section with a small

simulation study.

Case I Suppose that F is discontinuous. From the proof (at the end) of

Theorem 1 we have

nν(β̃n − β) → 0, a.s.

for every ν ∈ [0,∞). This implies that β̃n is super-efficient in the case of

discontinuous cdf F . A well-known super-efficient estimator was given by J. L.

Hodges. For more details, see page 134 of Ferguson (1996). The simulation

results at the end of this section confirm this asymptotic behavior.

Case II Now suppose that F is continuous. Denote

ci =
n

∑

j=1

1[xj > xi] − 1[xj < xi], C2
n =

n
∑

i=1

c2
i .

We now state the general theorem on the asymptotic distribution of the Theil-

Sen estimator and defer its proof to the next section.

Theorem 3 Suppose that F is continuous. If {kn} is such a sequence that

kn → ∞, that max1≤i,j≤n |xi − xj|/kn → 0, that lim infn→∞ Cn/n
3/2 > 0, and

that
1

Cn

∑

1≤i<j≤n

(1 − 2F2(t|xi − xj|/kn)) → m(t), t ∈ R, (3.1)

then

lim
n→∞

P
{

kn(β̃n − β) ≤ t
}

= Φ(−
√

3m(t)), t ∈ R, (3.2)

where Φ is the cdf of the standard normal distribution N (0, 1).
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Remark 2 The asymptotic distribution in Theorem 3 is a composite of the

standard normal distribution z 7→ Φ(z), z ∈ R and the function t 7→ −
√

3m(t), t ∈
R. Hence, it is not normal in general. It is normal if and only if m(t) = At, t ∈
R for some constant A 6= 0.

We now turn to seek sufficient conditions that enable us to find explicit for-

mulas for the scaling sequence {kn} in Theorem 3. To this end, the continuity

of function F2(t) at 0 is not sufficient. We need F2(t)− 1/2 = F2(t)−F2(0) to

tend to 0 fast enough. One such sufficient condition is as follows: There exist

constants γ > 0 and α > 0 such that

F2(t) − 1/2 = γsign(t)|t|α + o(|t|α), t ∈ ∆, (3.3)

for some neighborhood ∆ of the origin, where sign(t) is the sign function of t

such that sign(t) = 1 if t > 0 and sign(t) = −1 if t ≤ 0. The condition (3.3)

appears in Smirnov (1952).

This condition is mild and satisfied by most of the common distributions.

For example, Cauchy distribution function F with density f(t) = 1/π(1 + t2)

satisfies (3.3) with γ = 1/2π and α = 1. We summarize some properties of

(3.3) in Remark 3 below.

Remark 3 (i) Apparently, condition (3.3) implies the continuity of F at zero;

otherwise, for t > 0, F2(t) − 1/2 ≥ 1
2
P (ǫ1 = ǫ2) > 0.

(ii) If F2 satisfies (3.3), then it is Hölder continuous with index α; if further

0 < α < 1, then F2 is not differentiable at 0.

(iii) F2 has a derivative F ′
2(0) at 0 if and only if (3.3) holds with α = 1 for

some constant γ > 0; thereby γ = F ′
2(0).

(iv) If F has a square-integrable density, then γ = F ′
2(0) = B(F ) =

∫

f 2(t) dt.

The power distribution function with power less than 1/2 satisfies condition

(3.3) with 0 < α < 1; see Example 1 below.

For α > 0, let

dα
i =

n
∑

j=1

|xi − xj|α, Dα
n =

n
∑

i=1

dα
i , bα

n = Dα
n/Cn, bn = b1

n, Dn = D1
n.
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The first set of sufficient conditions that permits explicit formulas of the scaling

sequence {kn} in Theorem 3 is stated in Theorem 4.

Theorem 4 Suppose that F is continuous. Assume that there exist constants

γ > 0, α > 0 such that (3.3) holds. If bα
n → ∞, max1≤i,j≤n |xi − xj|α/bα

n → 0

and lim infn→∞ Cn/n
3/2 > 0, then

(bα
n)1/α(β̃n − β)=⇒ξα,γ ,

where P (ξα,γ < t) = Φ(
√

3γsign(t)|t|α), t ∈ R and =⇒ stands for convergence

in distribution.

Proof. The result follows from an application of Theorem 3 with kn = (bα
n)1/α

and m(t) = −γsign(t)|t|α.

For a related result, see page 150 of Koenker (2005) for non-normal asymptotic

distributions of quantiles. An immediate corollary of Theorem 4 follows.

Corollary 1 Suppose that the assumptions of Theorem 4 hold and that F2

has a positive derivative d at 0. Then

(Dn/Cn)(β̃n − β)=⇒N (0, 1/(3d2)).

Now we consider the second set of sufficient conditions that ensures an ex-

plicit formula for the scaling sequence {kn} in Theorem 3. Suppose that F is

absolutely continuous with a density function f that is square-integrable with

respect to the Lebesgue measure, i.e.,

B(F ) =
∫

f 2(t) dt < ∞. (3.4)

Under this condition we can calculate the limit m(t) = −tB(F ) and have the

explicit formula kn = Dn/Cn. Thus we have shown the following theorem,

which can also be viewed as a generalization of Corollary 1.

Theorem 5 Suppose that F is absolutely continuous with a density function

f such that (3.4) is true. If lim inf Cn/n
3/2 > 0, then

Dn

Cn

(β̃n − β)=⇒N
(

0,
1

3B2(F )

)

.
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This theorem corresponds to Theorem 6.2 of Sen (1968). Sen (page 1387)

claimed that the asymptotic normality of the Theil-Sen estimator follows from

an application of Theorem 7.1 of Hoeffding (1948), but his setting does not

satisfy the condition that the random variables have an identical distribution

as required in Theorem 7.1.

Suppose now that the covariates x1, . . . , xn are distinct. Then we can calculate

C2
n as follows: Since ci =

∑n
j=1 1[xj > xi] − 1[xj < xi] = (n − i) − (i − 1), it

follows that

C2
n =

n
∑

i=1

c2
i =

n
∑

i=1

[(n − i) − (i − 1)]2 = n(n2 − 1)/3.

Suppose now that there are ties among the covariates x1, . . . , xn. Then C2
n

shall be modified as n(n2 − 1)/3, minus the number of repetitions caused by

those tied xi’s that were counted as distinct values. Suppose that there are

rn distinct values x′
1, . . . , x

′
rn

among x1, . . . , xn. We partition the covariate

set {x1, . . . , xn} into rn subsets Sk, with each Sk containing all xi that equal

x′
k. Suppose that Sk has uk elements. For xi ∈ Sk there are three types of

repetitions resulting from Sk in calculating ci: the first type of repetitions

come from
∑n

j=1 1[xj > xi], the second from
∑n

j=1 1[xj < xi] and the third

from
∑

xj∈Sk
1[xj < xi] − 1[xj < xi]. The first and second types cancel out in

ci and the third type has uk(u
2
k − 1)/3 elements (which is calculated from the

above when n = uk). Therefore, we have

C2
n =

n
∑

i=1

c2
i =

1

3

(

n(n2 − 1) −
rn
∑

k=1

uk(u
2
k − 1)

)

.

An algebraic proof of this equality can also be derived from the identity (5.7)

given in the appendix.

Next we have a special case as a corollary.

Corollary 2 Suppose that F is absolutely continuous with a square-integrable

density function f . If the covariates x1, ..., xn are distinct, then

Dn

n3/2
(β̃n − β)=⇒N

(

0,
1

9B2(F )

)

.
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From Theorem 4, we see that if α 6= 1, then the asymptotic distribution of the

Theil-Sen estimator is not normal. An important question to ask is whether

a distribution F exists for 0 < α < 1. The following example answers this

question positively.

Example 1 Consider the power distribution function F (t) = tθ, 0 ≤ t ≤ 1,

with 0 < θ < 1/2. From (2.5) we have F2(t) =
∫

F (s + t) dF (s) =
∫ 1−t
0 (s +

t)θ dF (s) and F2(t) − F2(0) = F2(t) − 1/2 =
∫ 1−t
0 (s + t)θ dsθ − ∫ 1

0 sθ dsθ. As

a result, it is easy to see that F2 is not differentiable at 0 for 0 < θ < 1/2.

Indeed, F2 is differentiable at 0 if and only if θ > 1/2. But condition (3.3) is

satisfied with α = 2θ for 0 < θ < 1/2 and γ =
∫ ∞
0 [(1 + x1/θ)θ − x] dx as is

shown below. For 0 < t < 1,

F2(t) − 1/2

t2θ
=

∫ 1−t

0

(s + t)θ − sθ

t2θ
dsθ −

∫ 1

1−t

sθ

t2θ
dsθ

=
∫ (1−t)θ/tθ

0
[(1 + u1/θ)θ − u] du + o(1)

=
∫ ∞

0
[(1 + u1/θ)θ − u] du, t → 0.

The last improper integral is convergent because

(1 + u1/θ)θ − u = u[(1 + u−1/θ)θ − 1] = O(u1−1/θ), u → ∞,

while
∫ ∞
1 u1−1/θ du < ∞ as 0 < θ < 1/2. Combining the above yields the

desired result. It is interesting to point out that θ = 1/2 is a breaking point

at which neither F2 is differentiable at 0 nor condition (3.3) is satisfied.

A small simulation study. We conduct two simulations to confirm (1) the

super-efficiency and (2) non-normality of the asymptotic distribution.

(1) In order to investigate how large the sample size n needs to be such that

β̃n = β in the regression Model (1.1) with discontinuous errors, we conduct

the following simulation. For sample size n, we first generate the covariates

x1, . . . , xn from some distribution and treat them as nonrandom fixed numbers.

For this fixed set of covariates {x1, . . . , xn}, we then generate N = 500 samples

of random errors ǫ1, . . . , ǫn from some discontinuous distribution. For each

sample, we calculate the responses Yi with a chosen β value according to

Model (1.1) and the Theil-Sen estimator β̃n. Based on the calculation from

13



the 500 samples, we compute the proportion of these samples that β̃n = β.

We use various distributions for the covariates and random errors. The results

are reported in Table 1. In the upper part of the table, the covariates xi are

generated from binomial (Bin) distribution with size 100 and probability 0.75

of success, while the random errors are generated from uniform distribution on

the set {−1, 1} (±1), Poisson distribution with unit mean (Pios) and binomial

distribution with size 100 and probability 0.75 of success, respectively. In the

table’s lower left panel, the covariates are generated from the standard normal

distribution (N ) and the errors from the same aforementioned three error

distributions, whereas in the lower right panel, the errors are generated from

Poisson distribution with unit mean and the covariates are generated from

binomial distribution with size 100 and probability 0.75 of success, standard

normal distribution and negative binomial (NB) distribution with size 5 and

probability 0.4 of success, respectively. From the table we see that the value of

n, at which β̃n = β, relies tremendously on the distributions of the covariates

and random errors. For example, in the upper part of the table, where the

covariates xi are generated from binomial distribution, the proportion reaches

1 at sample size n = 50 for ±1 and Poisson random errors, while it only

reaches 0.910 at n = 400 for binomial random errors. It is worthwhile to point

out that these simulation results should be interpreted conditionally given the

particular set of covariate values xi.

(2) Similar to the above, we also generate 500 samples with sample size n = 200

according to Model (1.1), with covariates xi generated from the standard nor-

mal distribution (treated as nonrandom) and random errors from the power

distribution F (t) = t1/4 in Example 1. The true value of β is 1. We calculate

the responses for β = 1 and the estimator β̃n for each sample. Figure 1 shows

the normality plot and the histogram of the simulated Theil-Sen estimator.

The normality plot is S-shaped, indicating that the sampling distribution is ex-

tremely heavy-tailed. In addition, both the Shapiro and Kolmogorov-Smirnov

tests of normality give 0 p-value, supporting the non-normal asymptotic dis-

tribution of the estimator.
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Table 1

Proportions of β̃n = β with N = 500 replicates and different sample sizes.

x Err 5 20 50 80 100 150 250 400

±1 0.564 0.998 1.000 1.000 1.000 1.000 1.000 1.000

Bin Pois 0.222 0.932 1.000 1.000 1.000 1.000 1.000 1.000

Bin 0.034 0.270 0.472 0.580 0.664 0.724 0.862 0.910

x Err 5 20 50 80 Err x 5 20 50 80

±1 .484 .998 1.000 1.000 Bin .290 .930 .996 1

N Pois .252 .942 0.998 1.000 Pois N .212 .918 .996 1

Bin .028 .312 0.514 0.592 NB .268 .932 .994 1
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Fig. 1. Simulated Theil-Sen estimator β̃n. Left: Normality plot. Right: Histogram.

Both plots indicate the non-normality.

4 Proof of Theorem 3

In the proof of Theorems 1 and 2, we constructed several U-statistics to es-

tablish the strong consistency of the Theil-Sen estimator β̃. One significant
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feature of our U-statistics is that the kernels vary with the sample size n,

which presents us some technical challenges. These U-statistics are different

from the so called Kendall’s tau, which was used by Sen (1968). Further-

more, when the covariates x1, . . . , xn are nonidentical nonrandom constants,

neither our U-statistics nor the Kendall’s tau are the usual U-statistics which

do not depend on the sample size n. We remind the readers here the notation

Z1 = (x1, ǫ1), . . . , Zn = (xn, ǫn) are independent but not identically distributed

random vectors. When establishing the asymptotic normality of the Theil-Sen

estimator, Sen (1968) applied a theorem from Hoeffding (1948) that requires

these Zi’s to be independent and identically distributed random vectors.

Based on Z1, . . . , Zn, we define a U-statistic Vn(t) by

Vn(t) =
2

n(n − 1)

∑

1≤i<j≤n

ψ(Zi, Zj; t), t ∈ R, (4.1)

with kernel

ψ(Zi, Zj; t) = (1[(ǫi − ǫj)/(xi − xj2) > t] − 1/2)1[xi 6= xj]. (4.2)

The asymptotic behavior of Vn(tn) as tn → 0 is given below and the proof

is defered to the last section. Schick and Wefelmeyer (2004) investigate the

asymptotic behavior of U-statistics with kernel depending on the sample size,

but with iid Z1, ..., Zn.

Before we prove Theorem 3, let us introduce two useful lemmas.

Lemma 3 Suppose that F is continuous. Then for every sequence {tn} such

that

tn max
1≤i,j≤n

|xi − xj| → 0, (4.3)

we have

Vn(tn) = µn(tn) +
1

n2

n
∑

i=1

(

1 − 2F (ǫi)
)

ci + op(n
−1/2),

where

µn(tn) =
1

n2

∑

1≤i<j≤n

(1 − 2F2(|xi − xj|tn)) .
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Lemma 4 (Wang 2005) Let y1, . . . , yN be real numbers and ymed be their

median. If N is an odd integer, then

ymed > t ⇔ # {i : yi > t} ≥ N/2, t ∈ R;

If N is an even integer, then

# {i : yi > t} ≥ (N + 1)/2 ⇒ ymed > t ⇒ # {i : yi > t} ≥ N/2, t ∈ R.

We are now ready to show Theorem 3.

Proof of Theorem 3. Fix t ∈ R and let tn = tk−1
n . From Lemma 3, we have

the stochastic expansion

√
3n2

Cn

[Vn(tn) − µn(tn)] =
n

∑

i=1

√
3ci

Cn

[1 − 2F (ǫi)] +
n3/2

Cn

op(1).

Since F (ǫi) is uniformly distributed on interval (0,1), it follows that E {F (ǫi)} =

1/2 and V ar {F (ǫi)} = 1/12. In view of lim infn→∞ Cn/n
3/2 > 0, we have the

asymptotic normality

√
3n2

Cn

[Vn(tn) − µn(tn)] =⇒ N (0, 1). (4.4)

Here “=⇒” denotes convergence in distribution. Write tn = tk−1
n and

P
{

kn(β̃n − β) > t
}

= P
{

β̃n − β > tn
}

.

Recall that β̃n = med(Bn) = med({bij : xi 6= xj, 1 ≤ i < j ≤ n}) and

bij = (Yi − Yj)/(xi − xj) = β + (ǫi − ǫj)/(xi − xj) = β + eij, xi 6= xj.

From Lemma 4, we have, with Nn = n(n − 1)/2,

P
{

kn(β̃n − β) > t
}

≤ P







∑

1≤i<j≤n

1[eij > tn]1[xi 6= xj] ≥ Nn/2







,

and

P
{

kn(β̃n − β) > t
}

≥ P







∑

1≤i<j≤n

1[eij > tn]1[xi 6= xj] ≥
Nn + 1

2







.
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From (4.1) and (4.2),

∑

1≤i<j≤n

1[eij > tn]1[xi 6= xj] − Nn/2 =
∑

1≤i<j≤n

(

1[eij > tn] − 1/2
)

1[xi 6= xj]

=
∑

1≤i<j≤n

ψ(Zi, Zj; tn) =
n(n − 1)

2
Vn(tn).

Thus,

P
{

kn(β̃n − β) > t
}

≤ P

{√
3n2

Cn

[Vn(tn) − µn(tn)] ≥ −
√

3n2

Cn

µn(tn)

}

,

and

P
{

kn(β̃n − β) > t
}

≥ P

(√
3n2

Cn

[Vn(tn) − µn(tn)] ≥ −
√

3n2

Cn

µn(tn) +

√
3√

nCn

)

.

The last two equalities, (4.4) and (3.1) yield the desired (3.2) and the proof is

complete.

5 Appendix

Here we provide the proofs of some lemmas that were used in the proofs of

Theorems 1–4. Lemma 1 is a SLLN for the U-statistics used in the proofs of

Theorems 1 and 2. Lemma 2 states an interesting property of the cdf F2 of the

difference of two iid random errors. Lemma 3 gives the asymptotic normality

of the U-statistic Vn(tn) used in the proof of Theorem 4.

Proof of Lemma 1. We only show the first limit because the second is

similar. Observing that N̄+
n,r is a U-statistic with a bounded kernel ψ+

r (Z1, Z2),

an application of the Hoeffding inequality for a U-statistic (inequality (5.7) of

Hoeffding, 1963) yields

P
(

N̄+
n,r − E(N̄+

n,r) ≥ t
)

≤ exp(−nt2), t > 0.

It follows that

P
(∣

∣

∣N̄+
n,r/ān − qn,r

∣

∣

∣ ≥ t
)

≤ 2 exp
(

−nā2
nt2

)

, t > 0. (5.1)
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In order to show the first limit using the Borel-Cantelli lemma, it suffices to

show that for every t > 0,

∞
∑

n=2

P
(∣

∣

∣N̄+
n,r/ān − qn,r

∣

∣

∣ ≥ t
)

< ∞. (5.2)

Since n−1 log n/ā2
n = o(1), it follows that for every arbitrarily fixed t > 0,

there exists nt such that nā2
nt

2 ≥ 2 log n for n > nt, therefore

∞
∑

n=nt

exp
(

−nā2
nt2

)

≤
∞
∑

n=nt

exp (−2 log n) =
∞
∑

n=nt

1

n2
< ∞.

Hence, (5.1) implies (5.2) and the proof is complete.

Proof of Lemma 2. Inequality (2.6) is from Wang (2005) and (2.5) follows

from

F2(t) = P (ǫ1 − ǫ2 ≤ t) =
∫

P (ǫ1 ≤ t2 + t) dF (t2) = E[F (ǫ + t)], and

F2(t) = P (ǫ1 − ǫ2 ≤ t) =
∫

P (ǫ2 ≥ t1 − t) dF (t1) = 1 − E[F (ǫ − t)],

where ǫ, ǫ1, ǫ2 are iid with common continuous cdf F . This completes the proof.

Proof of Lemma 3. We calculate

µn(tn) = E(Vn(tn)) =
2

n(n − 1)

∑

1≤i<j≤n

E(ψ(Zi, Zj; tn))

=
2

n(n − 1)

∑

i<j

E (1 [(ǫi − ǫj)/(xi − xj) > tn] − 1/2)1 [xi 6= xj]

=
2

n(n − 1)

∑

i<j

[

P
(

(ǫi − ǫj)/(xi − xj) > tn
)

− 1/2
]

1 [xi 6= xj]

=
2

n(n − 1)

∑

i<j

[1/2 − F2(|xi − xj|tn)]1 [xi 6= xj] .

For z = (x, ǫ) ∈ R
2 and t ∈ R, let

ψni(z, t) =
1

n − 1

∑

j 6=i

E (ψ(z, Zj, t)) , Vn1(t) =
1

n

n
∑

i=1

ψni(Zi, t),

and

Rn(t) =
2

n(n − 1)

∑

1≤i<j≤n

ψ(Zi, Zj, t) − 2ψni(Zi, t) + µn(t).
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Since ψ is a symmetric kernel bounded by 1, it follows that Rn(t) = op(n
−1/2).

The Hoeffding decomposition of U-statistic Vn(tn) is

Vn(tn) = µn(tn) + 2(Vn1(tn) − µn(tn)) + op(n
−1/2). (5.3)

Next we show that

Dn(tn) ≡ Vn1(tn) − µn(tn) − Vn1(0) = op(n
−1/2). (5.4)

By straightforward computation we find

ψni(z, t) =
1

n − 1

∑

j 6=i

(

1/2 − F (ǫ + (xj − x)t)
)(

1[xj > x] − 1[xj < x]
)

.

In particular,

ψni(Zi, 0) =
1

n − 1

∑

j 6=i

(

1/2 − F (ǫi)
)(

1[xj > xi] − 1[xj < xi]
)

=
(

1/2 − F (ǫi)
) ci

n − 1
,

and

Vn1(0) =
1

n

n
∑

i=1

ψni(Zi, 0) =
1

n(n − 1)

n
∑

i=1

(

1/2 − F (ǫi)
)

ci. (5.5)

Next we show that

nE
[

D2
n(tn)

]

≤ K
(

F2(|tn|max
i,j

|xi−xj|)−F2(−|tn|max
i,j

|xi−xj|)
)

+K/n (5.6)

for some constant K. This inequality, Lebesgue dominated convergence theo-

rem, Markov inequality, the continuity of F and hence of F2, and (4.3) together

imply (5.4). Furthermore, (5.4) together with (5.5) and (5.3), in turn, yields

the desired result of the lemma.

It is left to show (5.6). It is easy to check that

µn(tn) =
2

n(n − 1)

∑

i6=j

[1/2 − F2(xjitn)]1 [xj > xi] ,

and

Vn1(tn) =
2

n(n − 1)

∑

i6=j

(1/2)[F (ǫj − xjitn) − F (ǫj + xjitn)]1[xj > xi],
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hence, with xji = xj − xi,

Vn1(0) =
2

n(n − 1)

∑

i6=j

(1/2)[F (ǫj) − F (ǫj)]1[xj > xi].

Using these and (2.5), we write
(

n
2

)

Dn(tn) = An − Bn with An =
∑n

i=1 Ani =
∑n

i=1

∑

j 6=i Anij and Bn =
∑n

i=1 Bni =
∑n

i=1

∑

j 6=i Bnij, where

Anij = (1/2)
(

F (ǫj − xjitn) − F (ǫj) − E[F (ǫj − xjitn) − F (ǫj)]
)

1[xj > xi],

Bnij = (1/2)
(

F (ǫj + xjitn) − F (ǫj) − E[F (ǫj + xjitn) − F (ǫj)]
)

1[xj > xi].

Then

E (Anij) = E (Bnij) = 0, Cov (Anij1 , Anij2) = 0, j1 6= j2,

V ar (Anij) ≤ KE (F (ǫ − xjitn) − F (ǫ))2

≤ K (F2(|xjitn|) − F2(−|xjitn|)) ≡ K∆ij,

V ar (Bnij) ≤ K∆ij, E (Ani1j1Ani2j2) = 0, j1 6= j2,

E (Ani1jAni2j) = Cov
(

F (ǫj − xji1tn) − F (ǫj), F (ǫj − xji2tn) − F (ǫj)
)

≤ 2∆
1/2
i1j ∆

1/2
i2j ,

thus,

E (Ani1Ani2) =
∑

j1 6=i1

∑

j2 6=i2

E (Ani1j1Ani2j2) ≤ Kn max
i,j

(∆ij),

where K is a general constant that may denote different values in different

places. Hence,

E
(

A2
ni

)

=
∑

j 6=i

V ar (Anij) +
∑

j1 6=j2 6=i

Cov (Anij1 , Anij2) ≤ Kn, E
(

B2
ni

)

≤ Kn.

Therefore,

E
(

A2
n

)

=
∑

i

E
(

A2
ni

)

+
∑

i1 6=i2

E (Ani1Ani2) ≤ Kn2 + Kn3 max
i,j

(∆ij).

Similarly, E (B2
n) ≤ Kn2 + Kn3 maxi,j(∆ij). Combining this with the above

inequality yields the desired (5.6) and completes the proof.
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Identity: For real numbers u1, u2, ... and positive integer K, we have

1

3





(

K
∑

i=1

ui

)3

−
K

∑

i=1

u3
i



 =
K

∑

i=1

ui





K
∑

j=i+1

uj −
i−1
∑

i=1

uj





2

. (5.7)

Proof. We apply induction on K. For K = 1 the identity is obvious. Suppose

that the identity (5.7) holds for K = k. For K = k + 1, the left hand side of

(5.7) is

1

3





(

k+1
∑

i=1

ui

)3

−
k+1
∑

i=1

u3
i





=
1

3





(

k
∑

i=1

ui

)3

+ 3uk+1

(

k
∑

i=1

ui

)2

+ 3u2
k+1

k
∑

i=1

ui + u3
k+1 −

k+1
∑

i=1

u3
i





=
1

3





(

k
∑

i=1

ui

)3

−
k

∑

i=1

u3
i



 + uk+1

(

k
∑

i=1

ui

)2

+ u2
k+1

k
∑

i=1

ui,

and the right hand side is

k+1
∑

i=1

ui





k+1
∑

j=i+1

uj −
i−1
∑

j=1

uj





2

=
k

∑

i=1

ui



uk+1 +
k

∑

j=i+1

uj −
i−1
∑

j=1

uj





2

+ uk+1

(

k
∑

i=1

ui

)2

= u2
k+1

k
∑

i=1

ui + 2uk+1

k
∑

i=1

ui





k
∑

j=i+1

uj −
i−1
∑

j=1

uj





+
k

∑

i=1

ui





k
∑

j=i+1

uj −
i−1
∑

j=1

uj





2

+ uk+1

(

k
∑

i=1

ui

)2

=
k

∑

i=1

ui





k
∑

j=i+1

uj −
i−1
∑

j=1

uj





2

+ uk+1

(

k
∑

i=1

ui

)2

+ u2
k+1

k
∑

i=1

ui.

By induction, the identity is correct.
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