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Abstract

Suppose we observe a geometrically ergodic Markov chain with a parametric model for the marginal, but
no (further) information about the transition distribution. Then the empirical estimator for a linear functional
of the joint law of two successive observations is no longer e�cient. We construct an improved estimator
and show that it is e�cient. The construction is similar to a recent one for bivariate models with parametric
marginals. The result applies to discretely observed parametric continuous-time processes.
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1. Introduction

Let X0; : : : ; Xn be observations from a geometrically ergodic Markov chain with arbitrary state
space. We want to estimate a linear functional E[h(X0; X1)] of the joint stationary law of two succes-
sive observations. If nothing is known about the distribution of the chain, then the empirical estimator
Ĥ = 1=n

∑n
k=1 h(Xk−1; Xk) is e�cient; see Penev (1990, 1991), Bickel (1993), and Greenwood and

Wefelmeyer (1995). Suppose now that we have a Bnite-dimensional parametric model F#; #∈�,
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for the marginal stationary law of the chain, but that we cannot or do not want to specify anything
(else) about the transition distribution. Then we can construct better estimators for E[h(X0; X1)].
This includes the case where the transition distribution follows a parametric model involving the
parameter # and perhaps further parameters, but that we do not know this model or are not sure that
it is correct. Our model is nonparametric, with a constraint that involves the unknown parameter #.

Our results apply in particular to parametric continuous-time Markov processes that are discretely
observed at Bxed time intervals. Under such an observation scheme, estimators for the parameter
# were constructed in parametric di:usion processes by Pedersen (1995a,b), Bibby and SHrensen
(1995, 1996, 1997, 2001), Kessler and SHrensen (1999) and Kessler (2000), and in general para-
metric continuous-time processes by Kessler and SHrensen (2002), see also SHrensen (1997). These
estimators could be used to estimate the coe�cients of the di:usion and then linear functionals
E[h(X0; X1)] as considered here. If the di:usion model is correctly speciBed, and if the estimators
for # are e�cient (or nearly so), this would lead to better estimators for E[h(X0; X1)] than ours.
However, the marginals of a discretely observed process can be modeled much better than the
dynamics. Estimators of E[h(X0; X1)] based on a misspeciBed continuous-time model will usually
be inconsistent. In contrast, our estimator uses only the information in the parametric model for
the marginal law and is always n1=2-consistent and asymptotically normal unless the marginals are
misspeciBed.

Our results are closely related to results for bivariate models, which we recall Brst. Let (Y1; Z1); : : : ;
(Yn; Zn) be i.i.d. bivariate random variables with joint law Q. We want to estimate a linear functional
E[h(Y; Z)] =

∫
h dQ for a Bxed function h∈L2(Q). A natural estimator is the empirical estimator

Ĥ biv = 1=n
∑n

k=1 h(Yk; Zk). If additional structural assumptions on the joint law hold, this estimator
can be improved.

Assume Brst that the marginals F and G of Q are known. In this case there is a large class of
unbiased estimators. Indeed,

Ĥ biv(a; b) =
1
n

n∑
k=1

(h(Yk; Zk)− a(Yk)− b(Zk))

is unbiased for each a∈L2;0(F) and b∈L2;0(G). Here, for any measure �,

L2;0(�) =
{
h∈L2(�) :

∫
h d� = 0

}
:

The smallest variance is achieved by Ĥ biv(aQ; bQ), where aQ and bQ minimize E[(h(Y; Z)− a(Y )−
b(Z))2] over a∈L2;0(F) and b∈L2;0(G). Bickel, Ritov and Wellner (1991) have shown that any
estimator equivalent to Ĥ biv(aQ; bQ) is e�cient, and have obtained such an estimator using the
modiBed minimum chi-square estimator of Deming and Stephan (1940). Peng and Schick (2002)
give a more direct construction, estimating aQ and bQ by a series estimator in terms of orthonormal
bases v1; v2; : : : of L2;0(F) and w1; w2; : : : of L2;0(G). Their estimator is of the form

1
n

n∑
k=1


h(Yk; Zk)−

Mn∑
i=1

�̂nivi(Yk)−
Nn∑
j=1

�̂njwj(Zk)


 ;
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where Mn and Nn are integers that tend slowly to inBnity with the sample size n, and �̂n1; : : : ; �̂nMn ;
�̂n1; : : : ; �̂nNn are chosen to minimize

n∑
k=1


h(Yk; Zk)−

Mn∑
i=1

�ivi(Yk)−
Nn∑
j=1

�jwj(Zk)




2

:

Of course, �̂n1; : : : ; �̂nMn ; �̂n1; : : : ; �̂nNn are simply least-squares estimators for the response vector H =
(h(Y1; Z1); : : : ; h(Yn; Zn))� and the design matrix with kth row formed by

(v1(Yk); : : : ; vMn(Yk); w1(Zk); : : : ; wNn(Zk)):

The assumption of known marginals is not always justiBable. A more realistic assumption is that
the marginals depend on some unknown parameter #, i.e., F = F# and G = G#. This model is
considered by Peng and Schick (2003). They replace, in the above construction, vi by vi(·; #̂) and
wi by wi(·; #̂), where v1(·; #); v2(·; #); : : : is a basis for L2;0(F#); w1(·; #); w2(·; #); : : : is a basis for
L2;0(G#); and #̂ is a n1=2-consistent estimator of #. They show under mild assumptions on the bases
that the resulting estimator Ĥ ∗

biv has an expansion

Ĥ ∗
biv =

1
n

n∑
k=1

(h(Yk; Zk)− aQ(Yk)− bQ(Zk)) + D�
biv(#̂− #) + op(n−1=2) (1.1)

if the parametric models for the marginals are Hellinger di:erentiable at # with derivatives �# and
�#, say. Here

Dbiv = E[aQ(Y )�#(Y )] + E[bQ(Z)�#(Z)]:

Bickel and Kwon (2001) have suggested that results on e�cient estimation for bivariate models
carry over to geometrically ergodic Markov chains. They point out that the calculation of e�cient
in8uence functions is identical if one parametrizes the Markov chain by the joint law of two suc-
cessive observations, which corresponds to the description of the bivariate model by the joint law of
(Y; Z). See also the discussion of Greenwood et al. (2001). Bickel and Kwon also suggest that the
construction of e�cient estimators for bivariate models should carry over to corresponding Markov
chain models. In this paper we carry out this program for Markov chains with a parametric model
F#; #∈�, for the marginal stationary law. For the corresponding bivariate model we have G# =F#.
Recall that the observations for the Markov chain are X0; : : : ; Xn. The Markov chain analog Ĥ ∗ of
Ĥ ∗

biv is obtained by replacing the pairs (Yk; Zk) by pairs (Xk−1; Xk) of successive observations. We
show in Section 2 that the analog of (1.1) is

Ĥ ∗ =
1
n

n∑
k=1

(h(Xk−1; Xk)− aQ(Xk−1)− bQ(Xk)) + D�(#̂− #) + op(n−1=2) (1.2)

under the assumption that the parametric model for the marginal stationary law is Hellinger di:er-
entiable at # with derivative �#. Now aQ and bQ are minimizers of E[(h(X0; X1)− a(X0)− b(X1))2]
over a and b in L2;0(F#), and

D = E[(aQ(X0) + bQ(X0))�#(X0)]:

Kessler et al. (2001) have constructed an e�cient estimator #̂ of #. If such an estimator is used,
Ĥ ∗ is also e�cient, as shown in Section 3.
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We note that the results of this paper can be adapted to the case of a reversible chain. If the
chain is known to be reversible, then Q is symmetric, Q(dx; dy) = Q(dy; dx), and we can improve
the empirical estimator Ĥ = 1=n

∑n
k=1 h(Xk−1; Xk) by symmetrization,

Ĥ sym =
1
2n

n∑
k=1

(h(Xk−1; Xk) + h(Xk; Xk−1)):

If Q is completely unknown, Ĥ sym is e�cient; see Greenwood and Wefelmeyer (1999) and, for a
simpler argument, Greenwood et al. (2001). If we have a parametric model F# for the marginal, it
is natural to consider the symmetric improvement

Ĥ ∗
sym = Ĥ sym − 1

2n

n∑
k=1

Mn∑
i=1

�̂ni(vi(Xk−1; #̂) + vi(Xk; #̂));

where �̂n1; : : : ; �̂nMn are chosen to minimize

n∑
k=1

(
h(Xk−1; Xk) + h(Xk; Xk−1)−

Mn∑
i=1

�i(vi(Xk−1; #̂) + vi(Xk; #̂))

)2

:

If #̂ is e�cient, so is Ĥ ∗
sym. E�cient estimators for # in reversible Markov chain models with

parametric marginals are constructed in Kessler et al. (2001). We note that the di:usion models
referred to above are reversible.

2. Stochastic expansion of the estimator

Let X0; : : : ; Xn be observations from a stationary Markov chain on an arbitrary state space S with
countably generated #-Beld, transition distribution K(x; dy), and marginal law F#(dx), with # in
an open subset of Rr . Let Q(dx; dy) denote the law of two successive observations. We want to
estimate an expectation E[h(X0; X1)] =

∫
h dQ for a Bxed Q-square-integrable function h.

Let v1(·; #); v2(·; #); : : : be an orthonormal basis for L2;0(F#), and let #̂ be a n1=2-consistent estimator
of #. Our estimator for

∫
h dQ is

Ĥ ∗ =
1
n

n∑
k=1


h(Xk−1; Xk)−

Mn∑
i=1

�̂nivi(Xk−1; #̂)−
Nn∑
j=1

�̂njvj(Xk; #̂)


 ;

where Mn and Nn are integers, and �̂n1; : : : ; �̂nMn ; �̂n1; : : : ; �̂nNn are chosen to minimize

n∑
k=1


h(Xk−1; Xk)−

Mn∑
i=1

�ivi(Xk−1; #̂)−
Nn∑
j=1

�jvj(Xk; #̂)




2

:

We prove a stochastic expansion for Ĥ ∗ for a Bxed parameter #0 under the following assumptions
on the Markov chain, the parametric model, and the basis.
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Assumption 1. The chain is geometrically ergodic in the L2 sense: There is a &¡ 1 such that for
all f∈L2;0(F#0),∫ (∫

K(x; dy)f(y)
)2

F#0(dx)6 &
∫

f2 dF#0 :

Assumption 2. The chain fulBlls the following minorization criterion: There is an )¿ 0 such that
for F#0 -a.a. x and all measurable B,

K(x; B)¿ )F#0(B):

Assumption 3. The parametric model is Hellinger di:erentiable at #0: There is a function ’∈L2;0

(F#0)
r such that∫ (√

dF#0+t −
√

dF#0 −
1
2
t�’

√
dF#0

)2
= o(‖t‖2):

Moreover, the Fisher information matrix
∫
’’�dF#0 is positive deBnite.

Assumption 4. The basis elements are bounded: For each i = 1; 2; : : : and each #∈�,

sup
x∈S

|vi(x; #)|¡∞:

Assumption 5. The basis elements are locally Lipschitz: There are a neighborhood of #0 and
constants L1; L2; : : : such that, for all s and t in the neighborhood,

sup
x∈S

|vi(x; t)− vi(x; s)|6Li‖t − s‖:

Assumptions 1 and 3 were used in Kessler et al. (2001). Assumption 2 is equivalent to

Q(A× B)¿ )F#0(A)F#0(B)

for all measurable A and B. This version was used for corresponding bivariate models in Bickel
et al. (1991) and Peng and Schick (2002, 2003). Assumption 2 is used by Glynn and Ormoneit
(2002) to prove a Hoe:ding inequality for Markov chains that will be applied in the proof of our
result. Assumptions 4 and 5 are as in Peng and Schick (2003).
To state our result, set mn =Mn ∨ Nn, and let

1n =
mn∑
i=1

sup
x∈S

|vi(x; #0)|2 and 2n =
mn∑
i=1

L2
i :

Theorem 1. Let Assumptions 1–5 hold, and let #̂ be a n1=2-consistent estimator for #0. Assume
that Mn and Nn tend to in=nity, and

m2
n(1n + 2n)

n
→ 0 and

2n log(1 + 2n)
n

→ 0: (2.1)
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Then Ĥ ∗ has the stochastic expansion

Ĥ ∗ =
1
n

n∑
k=1

(h(Xk−1; Xk)− aQ(Xk−1)− bQ(Xk)) + D�(#̂− #0) + op(n−1=2);

where aQ and bQ minimize∫
(h(x; y)− a(x)− b(y))2Q(dx; dy)

over a; b∈L2(F#0), and

D =
∫

(aQ + bQ)’ dF#0 :

A speciBc basis with these properties in the case of real state space and continuous distribution
functions F# is given in Peng and Schick (2003). It is of the form vi(x; #) =

√
2 cos(i4F#(x)). For

this basis, Assumption 4 holds, and Assumption 5, with Li = ci, follows from Assumption 3. In this
case the rate conditions (2.1) are equivalent to m5

n=n → 0.
Suppose now that #̂ is asymptotically linear, i.e.,

n1=2(#̂− #0) = n−1=2
n∑

k=1

J (Xk−1; Xk) + op(1)

for some J ∈Lr
2(Q) with E(J (X0; X1)|X0) = 0. Then Ĥ ∗ is asymptotically normal. We show in

Section 3 that Ĥ ∗ is also e�cient if #̂ is e�cient.
Our proof is similar to that for the bivariate model in Peng and Schick (2003). Their exponential

inequality, Lemma 2, must be replaced by an appropriate version for Markov chains, which we state
Brst.

Lemma 1. Let B = {t ∈Rq : ‖t‖6C} be the closed ball of radius C in Rq. Let ut , t ∈B, be a
family of functions on S such that u0 = 0 and, for some L¿ 0,

|ut(x)− us(x)|6L‖t − s‖; x∈ S; s; t ∈B:

Suppose Assumption 2 holds. Then

Un(t) =
1
n

n∑
k=1

(
ut(Xk)−

∫
ut dF#0

)
; t ∈B;

ful=lls, for each ;¿ 0 and n;¿ 2LC=),

P
(
sup
t∈B

|Un(t)|¿ 3;
)
6 2

(
1 +

2q1=2LC
;

)q
exp
(
−)2(n;− 2LC=))2

2nL2C2

)
:

The proof of this result is identical to that of Lemma 2 in Peng and Schick (2003) for the case of
independent observations. Instead of the classical Hoe:ding inequality we now use the Markovian
extension given by Glynn and Ormoneit (2002).
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Proof of Theorem 1. It su�ces to show

1
n

n∑
k=1

Mn∑
i=1

(�̂nivi(Xk−1; #̂)− aQ(Xk−1)) +
(∫

aQ’� dF#0

)
(#̂− #0) = op(n−1=2); (2.2)

1
n

n∑
k=1

Nn∑
j=1

(�̂njvj(Xk; #̂)− bQ(Xk)) +
(∫

bQ’� dF#0

)
(#̂− #0) = op(n−1=2): (2.3)

We only show (2.2); (2.3) is similar. Let Vm denote the linear span of v1(·; #0); : : : ; vm(·; #0). Let an=∑Mn
i=1 �nivi(·; #0) and bn=

∑Nn
j=1 �njvj(·; #0) be chosen to minimize

∫
(h(x; y)−a(x)−b(x))2Q(dx; dy)

over a∈VMn and b∈VNn . As shown in Peng and Schick (2002), an and bn are uniquely determined,
and an → aQ and bn → bQ in L2(F#0). Assumption 1 and the Cauchy–Schwarz inequality imply that
for k = 3; 4; : : : and f∈L2(Q)

|E[f(X0; X1)f(Xk−1; Xk)]|= |E[f(X0; X1)K(Kf)(Xk−2)]|6 &(k−2)=2E[f2(X0; X1)]:

Thus we obtain for C = 1 + 2=(1− &1=2) that

E


(1

n

n∑
k=1

f(Xk−1; Xk)

)2

6 C

n
E[f2(X0; X1)] for f∈L2;0(Q): (2.4)

This immediately gives

1
n

n∑
k=1

an(Xk−1) =
1
n

n∑
k=1

aQ(Xk−1) + op(1):

As in Peng and Schick (2003) we have

Mn∑
i=1

�ni

∫
vi(x; #̂)F#0(dx) +

(∫
aQ’� dF#0

)
(#̂− #0) = op(1):

Thus it su�ces to show

1
n

n∑
k=1

Mn∑
i=1

(�̂ni − �ni)vi(Xk−1; #̂) = op(n−1=2); (2.5)

1
n

n∑
k=1

Mn∑
i=1

�ni

(
vi(Xk−1; #̂)− vi(Xk−1; #0)−

∫
vi(x; #̂)F#0(dx)

)
= op(n−1=2): (2.6)

As in Peng and Schick (2003) one can show

Mn∑
i=1

(�̂ni − �ni)2 = Op

(
Mn(2n + 1n)

n

)
: (2.7)
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The proof is essentially the same, but now using (2.4) to deal with the appropriate averages. It is
shown in Peng and Schick (2003) that

n
Mn∑
i=1

(∫
vi(x; #̂)F#0(dx)

)2
= Op(Mn): (2.8)

It follows from (2.4) that

n
Mn∑
i=1

(
1
n

n∑
k=1

vi(Xk−1; #0)

)2

= Op(Mn): (2.9)

In view of (2.7)–(2.9), statement (2.5) is equivalent to

1
n

n∑
k=1

Mn∑
i=1

(�̂ni − �ni)
(
vi(Xk−1; #̂)− vi(Xk−1; #0)−

∫
vi(x; #0)F#0(dx)

)
= op(n−1=2): (2.10)

Relations (2.5) and (2.6) are veriBed as in Peng and Schick (2003), but now using the above
Lemma 1 instead of their Lemma 2.

3. E ciency of the estimator

Let us now prove that Ĥ ∗ is e�cient if an e�cient estimator #̂ for #0 is used. We need the
following notation. Let OK(y; dx) denote the transition distribution of the reversed chain, deBned
by F#0(dx)K(x; dy) = OK(y; dx)F#0(dy). For a function g∈L2;0(Q) write Kg(x) =

∫
K(x; dy)g(x; y)

and OKg(y) =
∫

OK(y; dx)g(x; y). Let Kj and OKj be the operators on L2;0(F#0) deBned by Kjf(X0) =
E(f(Xj) |X0) and OKjf(Xj)=E(f(X0) |Xj), j=1; 2; : : : : Let U =

∑∞
j=0 Kj and OU =

∑∞
j=0

OKj be the
corresponding potentials. Let now

T= {t ∈L2(Q) : Kt = 0};
and let A be the operator from L2;0(F#0) into T deBned by Af(x; y) = Uf(y)− KUf(x).

We can now recall the characterization of e�cient estimators in Kessler et al. (2001). Consider
(Hellinger di:erentiable) perturbations Knt(x; dy)

:= K(x; dy)(1 + n−1=2t(x; y)) consistent with the
parametric model for the stationary law. The space T∗ of all such functions t is called the tangent
space for our model. It is a subset of T. An r-dimensional functional ? of K is called di?erentiable
with gradient g if g∈Tr and

n1=2(?(Knt)− ?(K)) →
∫

gt dQ for all t ∈T∗:

The canonical gradient is the (componentwise) projection g∗ of g onto Tr∗ . An estimator ?̂ for ?
is called regular if there is a random vector L such that

n1=2(?̂ − ?(Knt)) ⇒ L under Knt for all t ∈T∗:
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An estimator ?̂ for ? is called asymptotically linear with in@uence function h if h∈Tr and

n1=2(?̂ − ?(K)) = n−1=2
n∑

k=1

h(Xk−1; Xk) + op(1):

An estimator is regular and e�cient if and only if it is asymptotically linear with in8uence func-
tion equal to the canonical gradient. Moreover, an asymptotically linear estimator is regular if and
only if its in8uence function is a gradient. In particular, the canonical gradient can be obtained as
the projection onto Tr∗ of the in8uence function of an arbitrary regular and asymptotically linear
estimator.

As shown in Kessler et al. (2001), the tangent space for our model is

T∗ = {t ∈T : OU OKt ∈ [’]};
where [’] is the linear span of the Hellinger derivative ’. Moreover, the in8uence function of an
e�cient estimator #̂ of #0 is

g∗(x; y) =
(∫

e∗’� dF#0

)−1

Ae∗ with e∗ = ( OU OKA)−1’:

Note that OU OK corresponds to OV in Kessler et al. (2001). If an e�cient estimator #̂ is used, then by
Theorem 1 the in8uence function of our estimator Ĥ ∗ is

h∗(x; y) = h0(x; y)− aQ(x)− bQ(y) + D�g∗(x; y);

where h0=h−∫ h dQ. E�ciency of Ĥ ∗ follows if we show that h∗ is in T∗ and equals the projection
of the in8uence function of the empirical estimator Ĥ , which is

h̃(x; y) = h0(x; y)− Kh0(x) + AKh0(x; y)

by Greenwood and Wefelmeyer (1995). Showing these two properties amounts to showing that
Kh∗ = 0 and

∫
h̃t dQ =

∫
h∗t dQ for all t ∈T∗.

By deBnition of aQ and bQ we have that hQ(X0; X1) = h0(X0; X1)− aQ(X0)− bQ(X1) is orthogonal
to a(X0) + b(X1) for all a; b∈L2;0(F#0). Thus E(hQ(X0; X1) |X0) = 0 and E(hQ(X0; X1)|X1) = 0. The
former shows that Kh∗ = KhQ + D�Kg∗ = 0. It also gives Kh0 − aQ − KbQ = 0, which implies

aQ + bQ = (I − K)bQ + Kh0: (3.1)

Now Bx t ∈T∗. Then OU OKt = ’�u for some u∈R. We have∫
h̃t dQ =

∫
h0t dQ +

∫
AKh0 · t dQ =

∫
hQt dQ +

∫
(A(I − K)bQ + AKh0)t dQ:

Here we have used that b=U (I − K)b and that Kt = 0. It was shown in Kessler et al. (2001) that∫
g∗t dQ = u and∫

tAf dQ =
∫

OU OKt · f dF#0 =
∫

f’�u dF#0 :
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In particular, if f = aQ + bQ, we get from (3.1) that∫
(A(I − K)bQ + AKh0)t dQ = D�u= D�

∫
g∗t dQ:

Hence, we get
∫
h̃t dQ =

∫
h∗t dQ.

For the case r = 1, Kessler et al. (2001) construct an e�cient estimator #̂ of #0 under the
additional assumption of continuous Hellinger di:erentiability of F#. The construction carries over
to r-dimensional #.
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