
The Theil-Sen Estimators in a Multiple Linear

Regression Model

Xin Dang a,1, Hanxiang Peng b,1,∗, Xueqin Wang, c,d,2

Heping Zhang c,2

aDepartment of Mathematics, the University of Mississippi, University, MS
38677-1848, USA

bDepartment of Mathematical Sciences, Indiana University Purdue University
Indianapolis, Indiana 46074, USA

cDepartment of Epidemiology and Public Health, Yale University School of
Medicine, New Haven, CT 06520-8034, USA

dSchool of Mathematics & Computational Science, Zhongshan School of Medicine,
Sun Yat-Sen University, P.R. China

Abstract

In this article, we propose the Theil-Sen estimators of parameters in a multiple lin-
ear regression based on multivariate medians, generalizing the Theil-Sen estimator
in a simple linear regression. We show that the proposed estimators are robust,
consistent, asymptotically normal under mild conditions, and super-efficient when
the error distribution is discontinuous. The estimators can be chosen to allow for
pre-specified robustness and efficiency. Simulations are conducted to compare ro-
bustness and efficiency with least squares estimators and to validate super-efficiency.
Additionally, we show that a random variable is symmetric if and only if the random
vectors whose components are the differences of three i.i.d. copies of the random
variable are symmetric.

AMS 2000 subject classification: primary 62G05; 62G20.

Key words: breakdown point; depth function; efficiency; multiple linear
regression; robustness; spatial median.

∗ Corresponding author.
Email address: hpeng@math.iupui.edu (Hanxiang Peng).

1 This research is supported by the US National Science Foundation under Grant
No. DMS-0707074.
2 This research is supported in part by grants K02DA017713, R01DA016750 and
T32MH014235 from the US National Institute of Health.

April 2, 2015



1 Introduction

In a simple linear regression model, Theil (1950) proposed the median of pair-
wise slopes as an estimator of the slope parameter. Sen (1968) extended this
estimator to handle ties. The Theil-Sen estimator (TSE) is robust with a high
breakdown point 29.3%, has a bounded influence function, and possesses high
asymptotic efficiency. Thus it is very competitive to other slope estimators (e.g.
the least squares estimator), see Sen (1968), Dietz (1989) and Wilcox (1998).
The TSE has been acknowledged in several popular textbooks on nonparamet-
ric and robust statistics, e.g., Sprent (1993), Hollander and Wolfe (1973, 1999),
and Rousseeuw and Leroy (1986). It has important applications, for example,
in astronomy by Akritas et al. (1995) in censored data, in remote sensing by
Fernandes and Leblanc (2005). Sen (1968) obtained unbiasedness and asymp-
totic normality of the estimator for an absolutely continuous error distribution
and a nonidentical covariate. Viewed as a generalized L-statistics, its asymp-
totics can be obtained from Serfling (1984). Wang (2005) investigated the
asymptotic behaviors of the TSE when the covariate is random. Peng, Wang
and Wang (2005) obtained the consistency and asymptotic distribution of the
TSE when the error distribution is arbitrary and the asymptotic normality
obtained by Sen (1968) follows as a special case. They showed further that
the TSE is super-efficient when the error distribution is discontinuous.

Despite its many good properties and clear geometric interpretation, the TSE
is vastly under-developed and -used because it is only formulated for a simple
linear model, although statisticians have made their efforts to extend it, see,
e.g., Oja and Niinima (1984), Zhou and Serfling (2006). While the extension
of TSE to a multiple linear model is geometrically apparent and appealing, it
is technically challenging, delaying the generalization and investigation of the
properties. In this article, we propose the use of multivariate medians to gen-
eralize the Theil-Sen estimator of the slope parameter in a simple linear model
to a multiple linear model in several ways. Multivariate medians (multidimen-
sional medians, as also used by some authors) generalize the univariate median
and are a well established notion in the literature, see, e.g., Small (1990). Our
approach is essentially a hybrid of two principles, i.e., least-squares estimate
and multivariate median. Specifically, for each sub-sample of size k (at least
the number of parameters) from a random sample of size n, calculate the least-
squares(LS) estimate of the parameter vector in a multiple linear regression,

so that we obtain
(
n
k

)
LS estimates. Then a natural robust estimate of the

parameter vector is the multivariate median of these LS estimates. The con-
struction itself manifests that it is robust to outliers and efficient in a certain
extent.

The proposed estimators contain an integer variable k which controls the
amount of robustness and efficiency. The maximal possible robustness (in
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terms of breakdown point) is attained when the integer variable is chosen
to be equal to the number of the parameters to be estimated, while the max-
imal efficiency is achieved when the variable is equal to the sample size. Any
value of the variable taking values between the number of parameters and
the sample size results in an estimator which gives a compromise between
robustness and efficiency.

Our construction applies to any multivariate median including, of course, those
defined via depth functions. Specifically, a depth-defined multivariate median
is a maximizer of the depth function. The theory of depth functions is rela-
tively young and is still under its development. Analogous to linear order in
one dimension, statistical depth functions provide a center-outward ordering
of multidimensional data. Tukey (1975) first introduced halfspace depth. Oja
(1983) defined Oja depth. Liu (1990) proposed simplicial depth. Zuo and Ser-
fling (2000a) considered projection depth. Other notions include Zonoid depth
(Koshevoy and Mosler, 1997), generalized Tukey depth (Zhang 2002), and spa-
tial depth (Chaudhuri 1996) among others. Of the various depths the spatial
depth is especially appealing because of its computational ease and mathe-
matical tractability. Its complexity is indeed n2 for sample size n regardless
of the dimension. In contrast, for example, the computational complexity for
halfspace and simplicial depth is O(nd−1 log n) (Rousseeuw and Ruts, 1996),

for projection depth, it is O([
(

2(d−1)
d−1

)
/d]2n3), where d is the dimension. This is

an NP-hard problem in high dimensional data (Ghosh and Chaudhuri, 2005).

Thus we shall mainly focus on the spatial-depth-based MTSE’s, although
analogs for some of other depths-based MTSE can be easily obtained. We
shall show that the proposed MTSE’s are robust with a relatively high break-
down point and possesses a bounded influence function. We shall establish the
strong consistency under mild conditions, super-efficiency for a discontinuous
error distribution, and asymptotic normality. We shall conduct simulations
to investigate the estimators about its computation, robustness, efficiency,
and super-efficiency. Additionally, we shall prove that a random variable is
symmetric if and only if all the random vectors whose components are the dif-
ferences of three independent and identically distributed copies are symmetric
about zero, see Theorem 1.

The rest of the article is structured as follows. Section 2 gives the proposed
estimators. Section 3 discusses existence and uniqueness. A theorem charac-
terizing the symmetry of a vector is given. Useful facts for the uniqueness are
collected. Section 4 deals with asymptotic consistency. Two useful theorems on
the convergence of U-statistics are given. Section 5 presents asymptotic nor-
mality and super-efficiency. Two useful theorems on the asymptotic normality
of U-statistics are given. Section 6 is devoted to robustness considerations. The
complexity, breakdown points, and influence function are computed. Section 7
reports simulations. We also discuss the relationships of the estimators among

3



robustness, efficiency, and computational complexity. Stochastic sampling of
subpopulation is described. Some of the technical proofs are collected in the
appendix.

2 The Proposed Multivariate Theil-Sen Estimators

In this section, we generalize the TSE in two ways and the third is given in
the next section. Consider a multiple linear regression model

Yi = α +X>i β + εi, i = 1, ..., n, (1)

where α is the intercept and β is a p-dimension parameter, and ε1, ..., εn, ε are
i.i.d. random errors.

We start with the simple linear regression p = 1. Geometrically, in order to
estimate the slope β, only two distinct points (Xi, Yi), (Xj, Yj) (Xi 6= Xj,
say) are needed; an estimator of the slope β is bi,j = (Yi − Yj)/(Xi − Xj).
Alternatively, with every two distinct points, the sum of squares of residuals
is (Yi − α − βXi)

2 + (Yj − α − βXj)
2, which is minimized when α, β satisfy

the equations

Yi − α− βXi = 0, Yj − α− βXj = 0.

The solutions ai,j = Yi − bi,jXi and bi,j = (Yi − Yj)/(Xi − Xj) are the least
squares estimators. A robust estimator β̃n of the slope β is then the median
of these least squares estimates:

β̃n = Med {bi,j = (Yi − Yj)/(Xi −Xj) : Xi 6= Xj, 1 ≤ i < j ≤ n} ,

where Med {Bj : j ∈ J} denotes the median of the numbers {Bj : j ∈ J}. This
is the well known Theil-Sen estimator which is robust with high breakdown
point. If only the estimation of the slope β is concerned, no identifiability
assumption on the error is needed. In order to estimate the intercept, however,
certain identifiability condition on the error distribution is indispensable. We
now assume

Assumption S. The error has a distribution which is symmetric about zero.

This is a sufficient condition and a less restrictive condition is given later.
Then, likewise, the intercept may be estimated by the median of the least
squares estimates:

α̃n = Med {ai,j = (YjXi − YiXj)/(Xi −Xj) : Xi 6= Xj, 1 ≤ i < j ≤ n} .
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These result in a componentwise median estimator (α̃n, β̃n) of the parameter
(α, β). It is known that a componentwise median estimator may be a very
poor estimator, for example, the componentwise median of the points (1, 0, 0),
(0, 1, 0), (0, 0, 1) is (0, 0, 0) which is not even on the plane passing through the
three points. To overcome this flaw, we could use the robust β̃n to construct a
robust estimator of the intercept α, for example, Med{Yi−β̃nXi : 1 ≤ i, j ≤ n}
in Chatterjee and Olkin (2006) among others. Alternatively, we may estimate
(α, β) simultaneously by the multivariate median:

(α̃n, β̃n) = Mmed {(ai,j, bi,j) : Xi 6= Xj, 1 ≤ i < j ≤ n},

where Mmed {Bj : j ∈ J} stands for the multivariate median of the vectors
{Bj ∈ Rd : j ∈ J}, see Sections 1 and 3 for discussion about multivariate
medians. We shall be using the multivariate medians to construct the Theil-
Sen estimators of parameters in a multiple linear regression.

Estimating simultaneous intercept and “slope” vector. Consider a mul-
tiple linear regression with p ≥ 1. Following the above procedure, first, an
estimator of θ = (α, β>)> can be found as the solution to the p+ 1 equations

Yi − α−X>i β = 0, i ∈ kp+1 = {i1, ..., ip+1} , (2)

where kp+1 is a (p+1)-subset of {1, ..., n} such that (p + 1) × (p + 1) matrix
(Xk : k ∈ kp+1) is invertible. To emphasize the dependence on the p + 1

observations, we denote this estimator by θ̂kp+1 . Then a natural extension of
the Theil-Sen estimator from a simple linear regression to a multiple linear
regression is the multivariate median

θ̃n = Mmed
{
θ̂kp+1 : ∀ kp+1

}
.

Note that this θ̂kp+1 is also the least squares estimator of θ based on p + 1
observations {(Xi, Yi) : i ∈ kp+1}. From this point of view and slightly more
generally, one may choose an arbitrary combination of m distinct observations
{(Xi, Yi) : i ∈ km}, where p + 1 ≤ m ≤ n, and construct a least squares
estimator θ̂km . Then a multiple Theil-Sen estimator θ̂n of the parameter θ is
naturally defined to be the multivariate median of all possible least squares
estimators:

θ̂n = Mmed
{
θ̂km : ∀ km

}
. (3)

Herein a possible least squares estimator is such that

θ̂k = (X>kXk)−1X>k Yk, (4)

where X>kXk is assumed invertible with Xk being an (1 + p)×m matrix with
rows (1, X>i ) : i ∈ k and Yk = (Yi : i ∈ k)>. Here for ease of notation we have
written k = km and hereafter we shall use this notation. We shall point out
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here that by choosing the value of m we can compromise between robustness
and efficiency. See more discussion in Section 6.

Estimating the “slope” vector. If one is only interested in estimating the
“slope” parameter β, then the identifiability condition on the distribution
of the error for the intercept α such as the symmetry Assumption S is not
required, as in the univariate TSE. Zhou and Serfling (2006) developed a
theory of spatial U-quantiles and, as an application of the theory, generalized
TSE to MTSE based on pairwise differences of the observations. Here we
briefly review their result (slightly more general, in their construction, m =
p+ 1). Note that their extension of TSE is based on the spatial depth but can
be extended straightforwardly to an arbitrary multivariate median.

Consider the pairwise difference of (1):

Yj − Yk = (Xj −Xk)
>β + εj − εk, j, k = 1, 2, ..., n. (5)

There are N = n(n − 1)/2 pairwise differences. For an integer m ≤ N , let K
be the

(
N
m

)
combinations of (j, k) from O ≡ {(j, k) : j < k, j, k = 1, ..., n} and

write by {(k1,i, k2,i) : i = 1, ...,m} ∈ K a generic combination, kj = (kj,i : i =
1, ...,m) for j = 1, 2, and write k for either k1 or k2. Then (5) can be written
in matrix form

Yk1,k2 = Xk1,k2β + εk1,k2 , (6)

where Yk1,k2 = Yk1 − Yk2 , Xk1,k2 = Xk1 − Xk2 and εk1,k2 = εk1 − εk2 with

εk = (εk : k ∈ k)>. Let β̂k1,k2 be the least squares estimator based on the
subset of the observations, i.e.,

β̂k1,k2 = (Xk1,k2

>Xk1,k2)
−1Xk1,k2

>Yk1,k2 , (7)

Accordingly, Serfling and Zhou (2006) extended the TSE to the MTSE as the
spatial median,

β̂n = Mmed
{
β̂k1,k2 : (k1,k2) ∈ K0

}
. (8)

where K0 is the subset of K in which all the least squares exist.

In a simple linear regression model, Peng, Wang and Wang (2006) studied
the Theil-Sen estimator under no assumption on the distribution of the error
(neither symmetry nor continuity on the error distribution is assumed). They
showed that the TSE is strongly consistent, has an asymptotic distribution
under mild conditions, and is super-efficient if the error distribution is discon-
tinuous. Naturally we might ask whether these results can be extended to the
MTSE’s and under what conditions. Specifically, we have two questions herein.
First, can we remove the assumption of symmetry of the error distribution?
Second, can we have super-efficiency when the error ε is discontinuous? The
answers to the two questions are yes as shall be demonstrated below.
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3 Existence and Uniqueness

In this section, we first give a theorem which characterizes the symmetry of
a vector. We then propose a third construction of the MTSE. The section
is ended with the introduction of the spatial depth and its existence and
uniqueness.

In order to ensure that β̂n converges to the true parameter β as n tends to
infinity, a sufficient condition, as pointed out by Zhou and Serfling (2006) in
their spatial-depth-based MTSE, is that β̂k1,k2 is centrally symmetric about
the true unknown parameter β, i.e.,

β̂k1,k2 − β
cd
= β − β̂k1,k2 , (9)

where
cd
= denotes both sides have an identical distribution. A more general

symmetry is angular symmetry, see Liu (1992). For more details about various
notions of symmetry, see Serfling (2006). They demonstrated that the central
symmetry of β̂k1,k2 about β follows from the central symmetry of εk1,k2 about
zero,

εk1,k2

cd
= −εk1,k2 . (10)

Surprisingly we found that this is equivalent to Assumption S. The argument
is as follows.

Using the method of characteristic function, it is easy to show that Assumption
S implies (10). Let ψ(t) = E exp(iε) be the characteristic function of the
error ε, where i2 = −1 is the unit imaginary number. We now calculate the
characteristic function ϕ(t) = E exp(it>εk1,k2) of εk1,k2 for t = (t1, ..., tm)> ∈
Rm. To this end we identify εj from tl(εk1,l − εk2,l) for l = 1, ...,m and j =
1, ..., n and let dj,l be the identifier and dj = (dj,1, ..., dj,m)>. Then using the
independence of ε1, ..., εn one finds

ϕ(t) = ψ(t>d1) · · ·ψ(t>dn), (11)

where the identifier is given by

dj,l =


0, k1,l 6= j, k2,l 6= j,

1, k1,l = j,

−1, k2,l = j.

(12)

Under Assumption S, ε is symmetric about zero so that ψ(t) = ψ(−t). Thus
the characteristic function of −εk1,k2 is E exp(−it>εk1,k2) = ϕ(−t) = ϕ(t) by
(11). This establishes the symmetry (10) of εk1,k2 .
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To show that (10) implies Assumption S, we present the following theorem,
which gives a little stronger result stating that it only requires the central
symmetry (10) to hold for m = 3.
Theorem 1. Suppose that E1,E2,E3 are independent and identically distributed.
Then E1 is symmetric about its median if and only if E1,E2,E3 satisfy (10) for

(k1,k2) = ({1, 1} , {2, 3}), ({1, 2} , {3, 3}), ({1, 2} , {2, 3}). (13)

Proof: We only need to show the sufficiency. Let φ be the characteristic func-
tion of E1. Since (10) holds for the values of (k1,k2) in (13), it follows

φ(t+ s)φ(−t)φ(−s) = φ(−t− s)φ(t)φ(s), s, t ∈ R. (14)

Let Φ(t) = φ(t)/φ(−t). Then Φ is continuous and, by (14), satisfies the Cauchy
functional equation Φ(t+ s) = Φ(t)Φ(s). It is well known that the solution of
a Cauchy functional equation is exponential, i.e., Φ(t) = ect for some complex
number c among continuous functions. In addition, it is easy to verify by the
definition that the conjugate Φ̄(t) satisfies Φ̄(t)Φ(t) = 1, yielding c̄ + c = 0,
so that c is an imaginary number, i.e., c = ia for some real a. Hence φ(t) =

eiatφ(−t). This is equivalent to ε− a cd
= a− ε. The proof is complete. 2

From the above Theorem 1, we see that Assumption S is necessary and suffi-
cient for the central symmetry of the joint (10) and hence (9), while the latter
ensures that the spatial median converges to the true symmetric center, the
true parameter value β, as the sample size n tends to infinity. In addition,
by Theorem 1, in estimating the “slope” vector β, a slightly more general
assumption of symmetry is that the error ε is essentially symmetric in the
sense that it has a distribution symmetric about its median. Such an example
is the uniform distribution.

Estimating the normal vector using non-overlapping differences. Be-
cause εi − εj and εj − εi have an identical distribution as long as εi, εj are
independent and have a common distribution no matter whether or not this
distribution is symmetric. Without the assumption of central symmetry on
the error ε, (10) is no longer true. What happens is that its components
are correlated, for instance, ε2 − ε1 and ε3 − ε2 are correlated. Therefore one
simple remedy to this problem is to choose its components, the pairwise dif-
ferences, in a way that they are not overlapped, for instance, we may choose
εk1,k2 = (ε1 − ε2, ε3 − ε4, ..., ε2p−1 − ε2p)>. In general we choose the pairwise
difference εk1,k2 in such a way that k1,k2 have no element in common. Then
following the procedure of Zhou and Serfling (2006), we construct the mul-
tiple Theil-Sen estimator, β∗n say, of β for a general depth function. For the
spatial-depth-based median, the asymptotic normality of the MTSE of Zhou
and Serfling, under no assumption of symmetry on the error distribution, fol-
lows from their theory of spatial quantiles. In this article we give the strong
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consistency and asymptotic normality in Theorem 5 under a set of weaker
assumptions as an application of the asymptotic results that we shall present
below in this article.

Existence and Uniqueness for the Spatial Median. As an illustration
and for later applications, let us recall the spatial depth in the literature. Let Z
be a random vector on Rd with probability distribution Q. The spatial median
m of Z is the minimizer of z 7→

∫
(‖t− z‖ − ‖t‖) dQ(t) = EQ(‖Z − z‖ − ‖Z‖)

where ‖ · ‖ is the Euclidean norm. The existence follows from the tightness
of Q. For z ∈ Rd, let S(z) = z/‖z‖(S(0) = 0) be the spatial sign function
(or spatial unit function by Chaudhuri). The statistical spatial depth is then
defined as

Dsp(z,Q) = 1− ‖EQS(z − Z)‖, z ∈ Rd. (15)

For a random sample Z1, ..., Zn of Q, the sample version spatial depth is

Dsp(z,Qn) = 1−
∥∥∥ 1
n

∑n
i=1 S(z − Zi)

∥∥∥ , z ∈ Rd, (16)

where Qn is the empirical distribution. Then the spatial median m is the
multivariate median defined by the spatial depth, which is any maximizer of
the spatial depth, i.e.,

m = arg sup
x∈Rd

Dsp(x,Q). (17)

Note that the above two definitions of the spatial median coincide. The spatial
medianm can be estimated by the sample spatial medianmn, which maximizes
the sample depth, i.e.,

mn = arg sup
x∈Rd

Dsp(x,Qn). (18)

The strong consistency and asymptotic normality of the spatial median are
well established in the literature, see Bose (1998), Chaudhuri (1996), Niemiro
(1992) among others. Other depth-based multivariate medians are defined
analogously, i.e., they are the maximizers of the depths. If a distribution is
symmetric in some sense then the depth-based multivariate median is the cen-
ter of symmetry. There are various notions of symmetry, for example, central
symmetry, angular symmetry, halfspace symmetry, etc. For a systematic dis-
cussion, see Serfling (2006). In the following we summarize some useful facts
about the uniqueness of the spatial medians.
Remark 1. Z has a unique spatial median if one of the following holds.
(1) Q is not concentrated on a line (Milasevic and Ducharme (1987)). Hence,
(2) There are two one-dimensional marginal distributions each of which is not
point mass for d ≥ 2. Further,
(3) There are at least two absolute continuous one-dimensional marginal dis-
tributions.
(4) Q is angularly symmetric about its median and φ′(m) =

∫
S(z−m)P (dz).

Hence,
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(5) Q is centrally symmetric about its median.
(6) Q is angularly symmetric about the its median and Q is absolutely contin-
uous.

Both (2) and (3) are clear and for (5) see Milasevic and Ducharme (1987)
and we give an argument for (4) from which (6) follows. For z ∈ Rd, let
T : Rd → [0,∞) × Sd−1 be the transformation given by the polar coordinate

u = z/‖z‖, r = ‖z‖ where Sd−1 =
{
u ∈ Rd : ‖u‖ = 1

}
is the unit sphere. Let

ν(u) =
∫∞

0 P ◦ T−1(u, dr) be assumed for u on Sd−1. Then Z is angularly
symmetric about zero provided that ν(−u) = ν(u) for every u on Sd−1, so
that φ′(0) =

∫
Sd−1 (u

∫∞
0 P ◦ T−1(u, dr)) du =

∫
Sd−1 uν(u) du = 0. Therefore

minm φ(m) = φ(0) = 0 and this is the desired result. 2

4 Asymptotic consistency

In this section, we first give two theorems which are useful for proving strong
consistency for U -statistics. As an application, the consistency of the spatial
depth-based MTSE and pairwise-difference based MTSE are given, followed
by the super-efficiency.

Let (X ,O) be a probability space on which F is a probability measure. Let
{Xi}∞i=1 be a sequence of independent r.v.’s with common distribution F . Let
Θ be an open subset of Rd and ϑ0 ∈ Θ is fixed. For a positive integer r, denote
the r-tuple product space by X r = X ⊗· · ·⊗X and the r-tuple convolution
by F r = F ⊗ · · · ⊗ F . Let ψ be a kernel which is a symmetric map (invariant
under argument permutation) from X r × Θ into R satisfying the following
conditions C.1–C.5.
(C.1) the map x 7→ ψ(x, ϑ) is measurable for every ϑ ∈ Θ.
(C.2) the map ϑ 7→ ψ(x, ϑ) is continuous for every x ∈X r.
For ϑ ∈ Θ set

Un(ϑ) =

(
n

r

)−1∑
i1<···<ir

ψ(Xi1 , . . . , Xir , ϑ).

A sequence 〈ϑ̂n〉 is called a U-estimate if Un(ϑ̂n) = supϑ∈Θ Un(ϑ). It is called

a generalized U(V)-estimate if Un(ϑ̂n) ≥ supϑ∈Θ Un(ϑ)−OP (n−1) .
(C.3) For every ϑ ∈ Θ, there is an F r-integrable function Hϑ and positive εϑ
such that ψ(x, t) ≤ Hϑ(x) for all x ∈X r and t ∈ Θ with ‖t− ϑ‖ ≤ εϑ.
(C.4) The map µ(ϑ) from Θ into [−∞,∞) defined by

µ(ϑ) =
∫
ψ(x, ϑ) F r(dx), ϑ ∈ Θ

is uniquely maximized at ϑ0.
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(C.5) There exists a compact neighborhood K ⊂ Θ of ϑ0 such that

lim sup
n→∞

sup
ϑ∈Θ\K

Un(ϑ) < µ(ϑ0) a.s.

We have the following theorem and the proof is given later.
Theorem 2. Suppose that (C.1)-(C.5) hold. If 〈ϑ̂n〉 is a generalized U-estimate,
then ϑ̂n → ϑ0 a.s.

The above (C.5) can be replaced with the convexity of ϑ 7→ ψ(x, ϑ). This is
especially useful because some of the depth functions are concave down, for
instance, the spatial depth. This is stated in the following theorem and the
proof is relegated in the last section.
Theorem 3. Suppose that (C.1)-(C.4) hold. If the map ϑ 7→ ψ(x, ϑ) is con-
cave down for every x ∈X r then ϑ̂n → ϑ0 a.s.

Now we apply the above theorems to the spatial depth-based MTSE’s, see
definition and discussion of about the spatial median in Section 1. Denote
ξk = (Xk, Yk), k = 1, ..., n, ξk = {ξk : k ∈ k} and k0 = (1, ...,m) and write
ξk0

= ξ0. For the spatial depth, we apply Theorem 3 with ψ(ξ0;ϑ) = ‖h(ξ0)‖−
‖ϑ − h(ξ0)‖ where h(ξ0) = (X>k0

Xk0)
−1X>k0

Yk0 clearly satisfies (C.1), (C.2),
and (C.3) with integrable H(ξ0) = ‖ϑ0‖+ 1 for ‖ϑ− ϑ0‖ ≤ 1 by the triangle
inequality. By the triangle inequality of the Euclidean norm, the map ϑ 7→
ψ(ξ0, ϑ) is concave down. Thus by Theorem 3 we have the strong consistency
for the spatial-depth based MTSE θ̂n ≡ θ̂n,sp.
Theorem 4. (Consistency for spatial-depth based MTSE under no symmetry.)
Suppose that the distribution of h(ξ0) is not concentrated on a line and the
map ϑ 7→ E‖ϑ − h(ξ0)‖ is maximized at the true θ. Then the spatial-depth
based MTSE θ̂n,sp is strongly consistent, i.e. θ̂n,sp → θ a.s.

Important special cases of the above theorem are given below in view of Re-
mark 1.
Corollary 1. Theorem 4 holds if one of the following is true.
(1) Assumption S is met. The derivative can pass the integral ∆µ(ϑ) = ES(ϑ−
h(ξ0)) for ϑ in a neighborhood of the true θ.
(2) Assumption S is met and the distributions of ε and X are absolutely con-
tinuous.
(3) There are at least two one-dimensional marginal distributions of h(ξ0)
each of which is not point mass for p ≥ 1 and the true parameter θ satisfies
ES(θ − h(ξ0)) = 0. Hence,
(4) The distributions of ε and X are absolutely continuous and the true pa-
rameter θ satisfies ES(θ − h(ξ0)) = 0.

By Theorem 1 and with a similar argument we have the following.
Corollary 2. (Consistency for spatial-depth based MTSE under symmetry,
based on overlapped differences.) Suppose Assumption S is met. Then the
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MTSE β̂n,sp based on the spatial depth and the pairwise (overlapped) differ-

ences is strongly consistent, i.e. β̂n,sp → β a.s.

Peng, Wang and Wang (2006) gave the consistency of the univariate Theil-
Sen estimator under no assumption on the distribution of the error. With
non-overlapping pairwise differences we have a similar result, i.e., Assumption
S is not required for the consistency of β̂∗n,sp of the “slope” vector β.
Theorem 5. (Consistency for spatial-depth under no symmetry.) Suppose the
distribution of the error ε is not concentrated on a point mass. Then the MTSE
β̂∗n,sp based on the spatial depth and the non-overlapping pairwise differences

is strongly consistent, i.e., β̂∗n,sp → β a.s.
Remark 2. Using Theorem 2 or Theorem 3, one can establish the consis-
tency of the MTSE’s whose defining medians are associated with continuous
depth functions. Examples of these include Lp-depth, smoothed Tukey depth,
simplicial value depth, etc.

Super-efficiency. Here we consider the super-efficiency of the spatial-depth
based MTSE β̂n,sp. Let hb(ξ0) = Iph(ξ0) with Ip = diag(0, 1, . . . , 1) a diagonal
matrix and ψb (ξ0;ϑ)=‖hb(ξ0)‖ − ‖ϑ − hb(ξ0)‖ and the resulting U-statistic
Ub,n(ϑ). We have the following theorem and the proof is given in the last
section.
Theorem 6. (Super-efficiency of spatial-depth-based MTSE) Suppose Assump-
tion S holds. Assume hb(ξ0) is not concentrated on a line. Then if the error
distribution is discontinuous,

P (β̂n,sp = β)→ 1.

It follows from the above theorem we have for any ν ≥ 0

nν(β̂n,sp − β)→ 0.

Thus β̂n,sp is super-efficient. This result is true for the TSE in a simple linear
regression model, see Peng, Wang and Wang (2006). Our simulation validates
this fact and exhibits that different samples are required to reach the equality.

5 Asymptotic normality

In this section, we first give a theorem which is useful for proving asymptotic
normality of U-statistics. As an application, the asymptotic normality of the
MTSE and paired MTSE are obtained under weaker assumptions of Zhou and
Serfling (2006). Rates of the remainder are also obtained.
Definition 1. ψ is regular at ϑ0 if there exists a neighborhood Θ0 of ϑ0 such
that

12



(A.1) For every x ∈X r, the map ϑ 7→ ψ(x, ϑ) is twice continuously differen-
tiable on Θ0 with gradient ∇ψ(x, ϑ) and second derivative ∇2ψ(x, ϑ).
(A.2) There is an F r-integrable function H such that supϑ∈Θ0

‖∇2ψ(x, ϑ)‖ ≤
H(x) for all x ∈X r.

For ψ regular at θ and ϑ ∈ Θ0, let

∇Un(ϑ) =

(
n

r

)−1 ∑
i1<···<ir

∇ψ(Xi1 , . . . , Xir , ϑ),

∇ψ̃(x, ϑ) =
∫
∇ψ(x1, . . . , xr−1, x, ϑ) F (dx1) . . . F (dxr−1),

∇2Un(ϑ) =

(
n

r

)−1 ∑
i1<···<ir

∇2ψ(Xi1 , . . . , Xir , ϑ), Mϑ =
∫
∇2ψ(x, ϑ) F r(dx).

Theorem 7. Suppose that ψ is regular at θ, Mθ is invertible,∫
∇ψ(x, ϑ) F r(dx) = 0 and

∫
‖∇ψ(x, ϑ)‖2 F r(dx) <∞.

Let 〈θ̂n〉 be a sequence of Θ-valued random vectors such that ϑ̂n = ϑ0 + op(1)

and
√
n∇Un(ϑ̂n) = op(1). Then

√
n(ϑ̂n − ϑ0) = −

√
nM−1

ϑ0
∇Un(ϑ0) + op(1).

In particular, √
n(ϑ̂n − ϑ0)⇒ N(0, r2M−1

ϑ0
Vϑ0M

−>
ϑ0

),

where Vϑ0 =
∫
∇ψ̃(x, ϑ0)∇ψ̃>(x, ϑ0) F (dx).

If the above condition (A.2) is not met or difficult to verify (for example,
for the spatial depth in a two-dimensional parameter space), the following
theorem gives another set of conditions.
Theorem 8. Suppose the map ϑ 7→ ψ(x, ϑ) is differentiable at ϑ0 for almost
every x ∈ X r with gradient ∇ψ(x, ϑ0) and there exists a neighborhood Θ0 of
ϑ0 and a measurable function L with

∫
‖L(x)‖2 F r(dx) < ∞, such that for

every ϑ1, ϑ1 in Θ0 and every x ∈X r,

|ψ(x, ϑ1)− ψ(x, ϑ2)| ≤ L(x) ‖ϑ1 − ϑ2‖ . (19)

If there exists a positive definite symmetric matrix Mϑ0 such that

µ(ϑ) = µ(ϑ0) +
1

2
(ϑ− ϑ0)TMϑ0(ϑ− ϑ0) + o(‖ϑ− ϑ0‖2). (20)

Then for any sequence of Θ-valued random vectors 〈ϑ̂n〉 satisfying ϑ̂n = ϑ0 +
op(1), and Un(ϑ̂n) ≥ supϑ∈Θ Un(ϑ)− op(n−1), one has

√
n(ϑ̂n − ϑ0) = −

√
nM−1

ϑ0
∇Un(ϑ0) + op(1).
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In particular, √
n(ϑ̂n − ϑ0)⇒ N(0, r2M−1

ϑ0
Vϑ0M

−>
ϑ0

).

Asymptotic normality of the spatial-depth-based MTSE. Zhou and
Serfling (2006) gave the Bahadur-Kiefer representation for multivariate spa-
tial U -quantiles. They obtained the faster rate of the remainder than the
existing results. The asymptotic normality of the MTSE as a special U quan-
tile can be derived from the representation. Bose(1998) gave the Bahadur
presentation of median estimates where the rate of the remainder was also ob-
tained. Here we first give a representation under weak assumptions based on
the above theorems. Then with an application to Bose’s we obtain the rate of
the remainder of the representation. Recall h(ξ0) = (X>k0

Xk0)
−1X>k0

Yk0 , and
µ(ϑ) = E(‖ϑ− h(ξ0)‖ − ‖h(ξ0)‖). Denote Ak0 = (X>k0

Xk0)
−1X>k0

and

D1(ϑ) ≡ E
{

1

‖ϑ− h(ξ0)‖

(
Im −

(ϑ− h(ξ0))⊗2

‖ϑ− h(ξ0)‖2

)}
.

Theorem 9. Suppose that (i) the distributions of ε and Ak0 are absolutely
continuous w.r.t. the Lebesgue measure; (ii) ∆µ(ϑ) is continuously differen-
tiable with derivative ∆2µ(ϑ) = D1(ϑ) in a neighborhood N of θ; (iii) the map
ϑ 7→ E‖ϑ− h(ξ0)‖ is maximized at true θ. Then the MTSE θ̂n,sp satisfies the
stochastic approximation

θ̂n,sp = θ +D−1S̄n +Rn, (21)

where D = D1(θ), S̄n =
∑

k S(θ − h(ξk))/
(
n
m

)
, and Rn = op(n

−1/2), assuming

that D is invertible. Hence θ̂n,sp is asymptotic normal with mean zero and
covariance Σ, i.e., √

n(θ̂n,sp − θ)
D

=⇒ N (0,Σ), (22)

where Σ = m2D−1
1 (θ)E[h̃(ξ1)⊗2]D−1

1 (θ) with h̃(ξ1) = E(S(θ−h(ξ1, ..., ξm))|ξ1).

Proof: The absolute continuity of ε and Ak0 implies that the distribution of
h(ξ0) is also absolutely continuous. The support of the density function of
ε is not congregated at only one point, hence the distribution of h is not
concentrated on a line, see Remark 1, so that the spatial median uniquely
exists. The absolute continuity of h also implies that ϑ 7→ ψ(x, ϑ) = ‖x‖−‖ϑ−
x‖ is differentiable for almost every x ∈ Rm with gradient ∆ψ(x, ϑ) = S(ϑ−x)
and D(ϑ) = ∆µ(ϑ) = ES(ϑ − X) for ϑ ∈ N by the dominated convergence
theorem (S(ϑ − x) is dominated by 1) and ∆µ(θ) = ES(θ − X) = 0 by the
uniqueness. Clearly (19) is satisfied because

|ψ(x;ϑ1)− ψ(x;ϑ2)| ≤ ‖ϑ1 − ϑ2‖, x ∈ Rm, ϑ1, ϑ2 ∈ N.

The differentiability of D(ϑ) with continuous gradient D1(ϑ) in N with Taylor
expansion of µ(ϑ) at θ yield (20). Thus an application of Theorem 8 completes
the proof. 2
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Remark 3. Theorem 9 holds without assuming the boundedness of the densi-
ties Ak0 and ε, while the boundedness is assumed in Chaudhuri and Zhou and
Serfling.
Remark 4. The absolute continuity of Ak0 and ε in Theorem 9 is necessary
for the asymptotic normality, noticing that Peng, Wang and Wang (2005)
demonstrate that the asymptotic distribution is not normal when the abso-
lute continuity is not assumed for the Theil-Sen estimator in a simple linear
regression. We believe the latter shall also hold for MTSE.
Remark 5. Theorem 9 holds if one of the following is true instead of (iii).
(1) Assumption S is met. (2) ES(θ − h(ξ0)) = 0.

Denote ξo,e = ξ(1,3,...,(2m−1)) − ξ(2,4,...,2m). With the non-overlapping pairwise

differences symmetry is automatic so that the MTSE β̂∗n,sp uniquely exists. Let
µ∗(b) = E(‖b− h(ξo,e)‖ − ‖h(ξo,e)‖) and

D∗1(b) = E
{

1

‖b− h(ξo,e)‖

(
Im −

(b− h(ξo,e))⊗2

‖b− h(ξo,e)‖2

)}
.

Theorem 10. Suppose the conditions of Theorem 9 are fulfilled with ∆µ∗(b)
and its derivative ∆2µ∗(b) = D∗1(b) for b in a neighborhood N of β. Then the

MTSE β̂∗n,sp satisfies (21) with D = D∗1(β), S̄n =
∑

k1,k2
S(β−h(ξk1,k2

))/
(
N
m

)
,

assuming that D∗1(β) is invertible. Hence β̂∗n,sp is asymptotic normal with mean

zero and covariance matrix Σ∗ = m2(D∗1)−1(β)Eh̃∗(ξ1 − ξ2)⊗2(D∗1)−1(β) with
h̃∗(ξ1 − ξ2) = E(S(β − h(ξk1,k2

))|ξ1 − ξ2).
Remark 6. For the pairwise overlapped differences we may also derive the
asymptotic distribution of the estimator β̂n,sp. Nevertheless it may be different
from the above because of the following fact. There are at least two types of
errors. One is the overlapped, for example, (ε1− ε2, ε1− ε3, ..., ε1− εm+1), and
the other is the non-overlapped, for example, (ε1 − ε2, ε3 − ε4, ..., ε2m−1 − ε2m).
Thus the the kernels have at least two types, so that the above results do not
apply here.

Using Bose’s proposition 1 we find the rate of the remainder in the stochastic
approximation, which slightly improves the rate given by Zhou and Serfling
(2006) under a slightly weaker assumptions.
Theorem 11. Suppose ε fulfills Assumption S . Assume E‖h(ξ0)−θ‖(3+ν)/2 <
∞ for some 0 ≤ ν ≤ 1. Then the MTSE θ̂n,sp satisfies the stochastic approxi-
mation (21) with the remainder

Rn = O(n−(3+ν)/4(log n)1/2(log log)(1+ν)/4). (23)

Theorem 12. Suppose that ε fulfills Assumption S . Assume E‖h(ξk1,k2
) −

β‖(3+ν)/2 <∞ for some 0 ≤ ν ≤ 1. Then the MTSE β̂∗n,sp satisfies the stochas-
tic approximation (21) with the remainder Rn in (23).
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6 Robustness considerations

In this section, we study the robustness of our estimators in terms of the two
prevailing notions: breakdown point (BP) and influence function (IF).

Breakdown Point. The breakdown point measures the ability of an esti-
mator or a statistic to resist contamination of the data. Roughly speaking,
the finite sample breakdown point of an estimator is the minimum frac-
tion of ‘bad’ samples in a data set that can render the estimator useless.
For our proposed estimator, the finite sample breakdown point is at least
(1− (1/2)1/m)(n−m+ 1)/n. Since the breakdown point of the spatial me-
dian is 1/2, we need at least 1/2 LSE’s to be “good”. Suppose that there is
a fraction ε of ‘bad’ observations in the data set with size n, then there are(

(1−ε)n
m

)
“good” LSE’s out of

(
n
m

)
. So we need

(
(1−ε)n
m

)
/
(
n
m

)
> 1/2. Since

(
(1− ε)n

m

)
/

(
n

m

)
>

(
(1− ε)n−m+ 1

n−m+ 1

)m
,

it follows that if ε ≤ (1/2)1/m(n−m+ 1)/n, our proposed estimator will never
break down. Accordingly, the asymptotic BP is 1− (1/2)1/m.

As one can see, the BP depends on the choice of m. On one hand, a smaller m
results in a higher BP; on the other hand, a smaller m means lower efficiency.
The highest BP is reached when m takes its minimal value m = p + 1 and
this also leads to the lowest efficiency, while the maximal efficiency is attained
when m assumes its maximal value n, where the LSE is recovered, and this
leads to the lowest BP, assuming the error is Gaussian. Any m taking values
in between p + 1 and n results in an estimator which gives the compromise
between robustness and efficiency. Hence one can choose the value of m to
gain the desired robustness and efficiency. It should be noted that the highest
computational intensity is reached at m = bn/2c because the computational

intensity is an order of magnitude
(
n
m

)
.

Influence function. While the breakdown point captures the global robust-
ness properties, the local robustness information is provided by the influence
function. By (21), the influence function of the MTSE β̂n is

IF ((y,x); β̂n) = D−1E
{
β − (X>xXx)−1X>x Yy
‖β − (X>xXx)−1X>x Yy‖

}
, x ∈ Rp, y ∈ R,

where D is the previous D1 or D∗1, Xx = [1m, X(x)] with column 1m ∈ Rm of
all entries 1 and X(x) = [x, X1, ..., Xm−1]> and Yy = (y, Y1, ..., Ym−1)>. The
above expression shows that the estimator is only influenced by the direction
and is irrelevant to the magnitudes of y and x. Consequently our MTSE is
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robust against both x and y outlying. The gross error sensitivity is

γ∗ = sup
y,x
‖IF ((y,x), β̂n)‖ = sup

‖s‖≤1

‖D−1s‖ ≤ maxλ1/2((D−1)>D−1),

where maxλ1/2(M) denotes the square root of the largest eigenvalue of the
matrix M . Since D is invertible, the influence function is bounded.

7 Computation and Simulation Study

In this section, we describe the stochastic sampling of subpopulation to cal-
culate the estimator for a large sample size. A simulation is also conducted.

To investigate the behavior of the proposed MTSE, three simulations are
carried out for robustness, efficiency and super-efficiency. Samples are gen-
erated from the multiple regression model Yi = 1 + 5X1i + 10X2i + εi, where
X1i ∼ N (0, 1), X2i ∼ U(0, 1), and the error εi’s are from different distributions
for different purposes.

Table 1
ROBUSTNESS. (a) The upper part of the table lists the estimators based on a
sample of size n without outliers. (b) The lower part lists the estimators based on
a sample of size n1 + n2 with n2 outliers added to the “good” sample of size n1.

True Parameter β = (5, 10)

MTSE Diff-based MTSE LSE

n = 20 (4.31, 10.43) (4.38, 10.93) (4.38, 10.59)

n = 30 (4.88, 10.38) (4.61, 10.39) (4.91, 10.25)

n = 40 (4.97, 9.88) (4.98, 9.66) (5.01, 9.87)

n1 = 16, n2 = 4 (5.01, 9.95) (5.06, 9.71) (4.18, 7.76)

n1 = 15, n2 = 5 (5.30, 9.46) (5.25, 9.33) (5.65, 2.27)

n1 = 14, n2 = 6 (4.37, 9.68) (4.22, 9.41) (-2.65, 7.72)

n1 = 13, n2 = 7 (4.14, 9.17) (4.88, 9.59) (-2.37, 3.34)

n1 = 12, n2 = 8 (3.98, 9.12) (0.72, 5.65) (-3.37, 5.18)

n1 = 11, n2 = 9 (-2.06, -6.67) (-3.38, 5.85) (-0.33, -2.12)

Computation and Sampling of Stochastic Subpopulation. The algo-
rithm for computing the spatial-depth-based MTSE is very straightforward
and the codes are available upon request. We used these codes to carry out
the simulations. For a sample size less than 50, it takes less than half a minute
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to compute one MTSE. For a large sample, we suggest to use the sampling
of stochastic subpopulation. The details that we used it to conduct our simu-
lations are as follows. Instead of computing the MTSE based on all possible(
n
m

)
LSE’s, we calculate it based on a subpopulation of

(
n
m

)
LSE’s. Specifically,

we take a random sample of size m from the whole sample and compute the
LSE based this random sample and this process is repeated K times, then the
MTSE is calculated based on those K LSE’s. Here K is a pre-specified number
not exceeding

(
n
m

)
. In our example below, we take K to be one percent of

(
n
m

)
and the result seems satisfactory, although it warrants further investigation.
For example, how large should K be so that the probability, conditional on the
sample, of the error that the MTSE is not caught is less than a pre-specified
level. For some discussions, see Rousseeuw and Leroy (1987).

Simulation on Robustness. (1) Samples of size n = 20, 30, 40 are gener-
ated from the multiple linear model with εi ∼ N (0, 0.5). The MTSE, the
pairwise differencing MTSE, and the LSE are calculated and reported at the
upper part of Table 1. (2) Contaminate the data with outliers (Xi, Yi) from
the multiple linear model Yi = 1 − 6X1i − 7X2i + εi, where εi ∼ N (0, 0.5).
Here n1, n2 represent the number of “good”, “bad” (outliers) observations,
respectively. See Table 1. Observe that without contamination, all the MTSE,
the difference-based MTSE and LSE work well. However, with the presence of
outliers, the LSE’s completely break down and are useless, while the difference-
based MTSE’s work well until the fraction of outliers reaches 35%, and the
MTSE’s preform well up to 40%.

Simulation on Super-Efficiency. A simulation is run to exhibit the super-
efficiency. Specifically, we want to investigate how large a sample size n shall be
in order to reach β̂n = β. For the sample size n, generate errors from discrete
distributions: uniform on {−1, 1} (each with probability 1/2), binomial with
parameters (4, 0.5), hypergeometric with parameters (6, 3, 2). Based on the
simulated data, the MTSE β̂n is calculated. Repeat this procedure N = 200
times, the ratio of the frequency for which β̂n = β is computed. See Table
2. For the sample size 80 and 100, a stochastic procedure is used for the
calculation of the spatial median.

Table 2
SUPER-EFFICIENCY. Proportions of β̂n = β with repetitions N = 200 for differ-
ent sample sizes n and different error distributions: uniform on {−1, 1}, binomial
(4, 0.5) and hypergeometric (6, 3, 2).

n 10 20 30 50 80 100

Unif on{−1, 1} 0.405 0.680 0.840 0.930 0.995 1.000

Bin(4, 0.5) 0.210 0.335 0.385 0.500 0.630 0.765

HyperGeo(6, 3, 2) 0.360 0.630 0.670 0.880 0.960 1.000
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Simulation on Relative Efficiency. To investigate the efficiency, a simu-
lation is conducted as follows. For sample sizes n = 10, 20, 30, generate a
random sample of the error εi, i = 1, ..., n from N (0, 1), heavy tailed distri-
butions t with df = 3 and df = 1(Cauchy), compute the response Yi based
on the multiple linear model Yi = β>Xi + εi with β = (1, 5, 10)>, and repeat
this process N = 1000 times to obtain the MTSE’s β̂n,k : k = 1, ..., N . Now

compute the empirical mean squared error EMSE = (1/N)
∑N
k=1 ‖β̂n,k − β‖.

The relative efficiency (RE) of β̂n is the ratio of the EMSE of the LSE to
the EMSE of β̂n. The results are reported in the Table 3. We observe that
under the Gaussian model, the finite sample RE of MTSE is about 70-80%,
which is acceptable. However, when the error comes from the heavy tailed
distributions, the MTSE competes LSE, especially for Cauchy. Note that the
EMSE’s of LSE under Cauchy are very large (over 2000) and divergent, for
the variance of Cauchy does not exist. The MTSE is much stable and achieves
a good balance between robustness and efficiency.

Table 3
RELATIVE EFFIENCEY. The empirical mean squared error (EMSE) and the rel-
ative efficiency (RE) of MTSE when the errors are from N (0, 1) , t distribution T3

with df=3, and Cauchy (i.e. t distribution T1 with df=1). Repetitions N = 1000.

N (0, 1) t distribution T3 Cauchy

MTSE LSE MTSE LSE MTSE LSE

n=10 EMSE 3.716 2.643 7.058 7.628 45.97 2613

RE 0.711 1.000 1.081 1.000 56.84 1.000

n=20 EMSE 1.339 1.075 2.111 2.627 5.667 816.2

RE 0.803 1.000 1.245 1.000 144.0 1.000

n=30 EMSE 0.739 0.596 1.161 1.569 3.032 2207

RE 0.806 1.000 1.352 1.000 728.0 1.000

8 Appendix

In this section, we collect some of the proofs. We first give two lemmas.
Lemma 1. Suppose (C.1)-(C.4) hold. Then

sup
ϑ∈K

µ(ϑ) < µ(θ)

for every compact subset K ⊂ Θ that does not contain ϑ0

Proof. It follows from (C.1)-(C.3) and Fatou’s Lemma that
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lim sup
α→ϑ

µ(ξ) =
∫
Hϑ(x) F r(dx)− lim inf

α→ϑ

∫
Hϑ(x)− ψ(x, ξ) F r(dx)

≤
∫
Hϑ(x)−

∫
Hϑ(x)− ψ(x, ϑ) F r(dx) = µ(ϑ)

for each ϑ ∈ Θ. Thus µ is upper semi-continuous and achieves a maximum
over each compact subset of Θ. The desired result follows this and (C.4). 2
Lemma 2. Suppose (C.1)-(C.3) hold. Then

lim sup
n→∞

sup
ϑ∈K

Un(ϑ) ≤ sup
ϑ∈K

µ(ϑ) a.s.

for every compact subset K ⊂ Θ.

Proof. We have shown in the proof of Lemma 1 that µ is upper semi-
continuous under (C.1)-(C.3). Thus µ achieves a maximum on the compact
set K and MK = supϑ∈K µ(ϑ) <∞. Now select N > MK . For each η > 0 and
ϑ ∈ K, define a map ψϑ,η on X r by

ψϑ,η(x) = sup
α∈K:‖α−ϑ‖≤η

ψ(x, α), x ∈X r.

These maps are measurable(since the supremum can be taken over a countable
set) and ψϑ,η(x) ≤ Hϑ(x) if η < εϑ, where Hϑ and εϑ are as in (C.3). Moreover,
ψϑ,η(x) ↓ ψ(x, ϑ) as η ↓ 0 for each x ∈ X r and ϑ ∈ K. Thus, it follows from
the monotone convergence Theorem that∫

Hϑ(x)− ψϑ,η(x) F r(dx) ↑
∫
Hϑ(x)− ψ(x, ϑ) F r(dx),

moreover, ∫
ψϑ,η(x) F r(dx) ↓

∫
ψ(x, ϑ) F r(dx)

for every ϑ ∈ K. Consequently, for each ϑ ∈ K, there exists an ηϑ > 0 such
that

∫
ψϑ,η(x) F r(dx) < N . Let S(ϑ) = {α ∈ K : ‖α− ϑ‖ ≤ ηϑ}, ϑ ∈ K. Then

it forms an open cover of K, so that there is a finite subcover. Namely, there
are ϑ1, . . . , ϑm in K such that K =

⋃m
i=1 S(ϑi). From this we can conclude

sup
ϑ∈K

Un(ϑ) ≤ max
1≤i≤m

(
n

r

)−1 ∑
i1<···<ir

hi(Xi1 , . . . , Xir , ϑ),

where hi = ψϑi,ηϑi , i = 1, . . . ,m. By the SLLN of U-statistic,

lim sup
n→∞

sup
ϑ∈K

Un(ϑ) ≤ max
1≤i≤m

∫
hi(x)F r(dx) < N a.s..

This yields the desired result by letting N ↓MK . 2

Proof of Theorem 2. Let

A = {lim sup
n→∞

‖ϑ̂n − ϑ0‖ > 0}
⋂
{ lim
n→∞

Un(ϑ0) = µ(ϑ0)}.
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Since Un(ϑ0) → µ(ϑ0) a.s. by the SLLN of U-statistic, it is enough to show
that P (A) = 0. Fix ω ∈ A. Then there exists an ε > 0 and an increasing
sequence < mn > of positive integers such that

‖ϑ̂mn − ϑ0‖ ≥ ε, for all n.

This yields

sup
‖ϑ−ϑ0‖≥ε

Umn(ω, ϑ) ≥ Umn(ω, ϑ̂mn) ≥ Umn(ω, ϑ0)−O(
1

mn

)

for all n. Thus

T (ε) ≡ lim sup
n→∞

sup
‖ϑ−ϑ0‖≥ε

Un(ω, ϑ) ≥ µ(ϑ0).

Consequently, ω ∈ Bε = {T (ε) ≥ µ(ϑ0)}. This shows that A ⊂ ⋃
ε>0Bε. We

shall now show that P (Bε) = 0 for every ε > 0. This will imply that desired

P(A) = 0.

Let K be as in (C.5). Fix a small ε > 0 so that Cε = {ϑ ∈ K : ‖ϑ− ϑ0‖ ≥ ε}
is not empty. Then Cε is compact, and it follows from Lemma 1 and Lemma 2
that

T1(ε) ≡ lim sup
n→∞

sup
ϑ∈Cε

Un(ϑ) ≤ sup
ϑ∈Cε

µ(ϑ) < µ(ϑ0) a.s.

and from (C.5) that

T2(ε) ≡ lim sup
n→∞

sup
ϑ∈Θ\Cε:‖ϑ−ϑ0‖≥ε

Un(ϑ) < µ(ϑ0) a.s.

Combining the above shows that T (ε) ≤ T1(ε)∨ T2(ε) < µ(ϑ0) a.s. This is the
desired P(Bε) = 0. 2

Proof of Theorem 3. Let η > 0 be small enough so that the closed ball
Bη =

{
ϑ ∈ Rk : ‖ϑ− ϑ0‖ ≤ η

}
⊂ Θ. We shall verify (C.5) with K = Bη. Let

ϑ ∈ Θ with ‖ϑ− ϑ0‖ > η. Then there exist a υ ∈ Rk of length ‖υ‖ = η and
an a > 1 such that ϑ = ϑ0 + aυ. It follows from the assumed concavity that
ϑ 7→ Un(ϑ) is concave down. Thus

Un(ϑ0 + υ) ≥ 1

a
Un(ϑ0 + aυ) +

a− 1

a
Un(ϑ0).

This yields

Un(ϑ0 + aυ) ≤ Un(ϑ0)− a
(
Un(ϑ0)− sup

‖υ‖=η
Un(ϑ0 + υ)

)

and shows that

sup
‖ϑ−ϑ0‖>η

Un(ϑ) ≤ Un(ϑ0)− inf
a>1

a

(
Un(ϑ0)− sup

‖ϑ−ϑ0‖=η
Un(ϑ)

)
.
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In view of Lemma 2,

lim inf
n→∞

(
Un(ϑ0)− sup

‖ϑ−ϑ0‖=η
Un(ϑ)

)
≥ µ(ϑ0)− sup

‖ϑ−ϑ0‖=η
µ(ϑ) a.s.

Since ∆η = µ(ϑ0)− sup‖ϑ−ϑ0‖=η µ(ϑ) is positive by Lemma 2, we obtain

lim sup
n→∞

(
sup

‖ϑ−ϑ0‖>η
Un(ϑ)

)
≥ µ(ϑ0)−∆η a.s.

This shows that (C.5) holds with K = Bη. Thus, the desired result follows
from Theorem 7.
Lemma 3. Suppose ψ is regular at ϑ0. Then the map ϑ 7→Mϑ is continuous
at ϑ0. Moreover, if {an} is a sequence of positive numbers converging to 0,
then

sup
‖ϑ−ϑ0‖≤an

∥∥∥∇2Un(ϑ)−Mϑ0

∥∥∥→ 0 a.s.,

sup
‖ϑ−ϑ0‖≤an

‖∇Un(ϑ)−∇Un(ϑ0)−Mϑ0(ϑ− ϑ0)‖
‖ϑ− ϑ0‖

→ 0 a.s.

and almost surely,

sup
‖ϑ−ϑ0‖≤an

∥∥∥Un(ϑ)− Un(ϑ0)−∇Un(ϑ0)(ϑ− ϑ0)− 1
2
(ϑ− ϑ0)TMϑ0(ϑ− ϑ0)

∥∥∥
‖ϑ− ϑ0‖2 → 0.

Proof. For a > 0, let ha denote the map defined by

ha(x) = sup
‖ϑ−ϑ0‖≤a

∥∥∥∇2ψ(x, ϑ)−∇2ψ(x, ϑ0)
∥∥∥ , x ∈X r

This map is measurable as the supremum can be achieved over a countable
subset. Moreover, for each x ∈X r, ha(x) ↓ 0 as a ↓ 0. Also, for small enough
a, 0 < ha(x) ≤ H(x) for all x ∈ X r. Thus by the Lebesgue Dominated
Convergence Theorem,

lim
a→0

∫
ha(x) F r(dx) = 0.

This shows that the map ϑ 7→Mϑ is continuous at ϑ0. Since

lim sup
n→∞

(
n

r

)−1 ∑
i1<···<ir

han(Xi1 , . . . , Xir)

≤ lim sup
n→∞

(
n

r

)−1 ∑
i1<···<ir

ha(Xi1 , . . . , Xir) =
∫
ha(x) F r(dx)
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for every a > 0. We also find that(
n

r

)−1 ∑
i1<···<ir

han(Xi1 , . . . , Xir)→ 0 a.s..

The above and ‖∇2Un(ϑ0)−Mϑ0‖ → 0 by the SLLN yield

sup
‖ϑ−ϑ0‖≤an

∥∥∥∇2Un(ϑ)−Mϑ0

∥∥∥→ 0 a.s..

By the Taylor Theorem, each coordinate of

‖ϑ− ϑ0‖−1 ‖∇Un(ϑ)−∇Un(ϑ0)−Mϑ0(ϑ− ϑ0)‖

is bounded by sup‖ϑ−ϑ0‖≤an ‖∇Un(ϑ)−Mϑ0‖ provided ‖ϑ− ϑ0‖ ≤ an. Thus,

sup
‖ϑ−ϑ0‖≤an

‖∇Un(ϑ)−∇Un(ϑ0)−Mϑ0(ϑ− ϑ0)‖
‖ϑ− ϑ0‖

→ 0 a.s..

In a similar way, the two term Taylor expansion, we also obtain almost surely

sup
‖ϑ−ϑ0‖≤an

∥∥∥Un(ϑ)− Un(ϑ0)−∇Un(ϑ0)(ϑ− ϑ0)− 1
2
(ϑ− ϑ0)TMϑ0(ϑ− ϑ0)

∥∥∥
‖ϑ− ϑ0‖2 → 0.

2

Proof of Theorem 7. Set Rn = ∇Un(ϑ̂n)−∇Un(ϑ0)−Mϑ0(ϑ̂n − ϑ0), since
ϑ̂n = ϑ0 + op(1), We obtain from the second part of Lemma 3 that Rn =

op(
∥∥∥ϑ̂n − ϑ0

∥∥∥). This and
√
nUn(ϑ̂n) = op(1) yields

√
n(ϑ̂n − ϑ0) = −

√
nM−1

ϑ0
∇Un(ϑ0) + op(1) +

√
nop(

∥∥∥ϑ̂n − ϑ0

∥∥∥).
Since

∫
‖∇ψ(x, ϑ)‖2 F r(dx) <∞, −

√
nM−1

ϑ0
∇Un(ϑ0) = Op(1). By the invert-

ibility of Mϑ0 ,

√
n
∥∥∥ϑ̂n − ϑ0

∥∥∥ ≤ ∥∥∥M−1
ϑ0

∥∥∥ ∥∥∥√nMϑ0(ϑ̂n − ϑ0)
∥∥∥ = Op(1) +

√
nop(

∥∥∥ϑ̂n − ϑ0

∥∥∥).
This implies that

√
n‖ϑ̂n − ϑ0‖ = Op(1). Consequently, we obtain

√
n(ϑ̂n − ϑ0) = −

√
nM−1

ϑ0
∇Un(ϑ0) + op(1).

Hence, √
n(ϑ̂n − ϑ0)⇒ N(0, r2M−1

ϑ0
Vϑ0(M

−1
ϑ0

))T)

follows from the CLT of U-statistic directly. 2
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Proof of Theorem 6. Denote the cdf of hb(ξ0) byH and µb(ϑ) = E[‖hb(ξ0)‖−
‖ϑ− hb(ξ0)‖]. Then

µb(ϑ)− µb(ϑ0) = E (‖ϑ0 − hb(ξ0)‖ − ‖ϑ− hb(ξ0)‖)
= −‖ϑ− ϑ0‖B + E (‖ϑ0 − hb(ξ0)‖ − ‖ϑ− hb(ξ0)‖1[hb(ξ0) 6= β(ϑ0)])

≤ −‖ϑ− ϑ0‖B

the last inequality yields from the symmetry of the hb(ξ0) at ϑ0 and the
convexity of the norm. By the Lemma 5, we obtain that

Supϑ

∣∣∣∣∣Ub,n(ϑ)− Ub,n(ϑ0)− (µb(ϑ)− µb(ϑ0))

‖ϑ− ϑ0‖

∣∣∣∣∣→ 0. a.s.

Thus, for almost every ω and ε, there exists Nω,ε > 0, such that for n > Nω,ε

and ϑ ∈ Bε = {ϑ : 0 < ‖ϑ− ϑ0‖ ≤ B/2ε},

Ub,n(ϑ)− Ub,n(ϑ0) ≤ ε ‖ϑ− ϑ0‖ −B ≤ −B/2.

This combine with Condition (C.5) yields the super-efficiency of the spatial-
depth based MTSE β̂n,sp. 2
Lemma 4. If the error distribution is discontinuous then P (hβ(ξ0) = β) > 0.

Let

ϕϑ(ξ0) =
ψ(ξ0;ϑ)

‖ϑ‖
=
‖h(ξ0)‖ − ‖ϑ− h(ξ0)‖

‖ϑ‖
and Φ = {ϕϑ : ϑ}
Lemma 5. For all ε > 0, N[ ](ε,Φ, P ) < ∞. Furthermore,

∥∥∥Un(ϑ)−µ(ϑ)
‖ϑ‖

∥∥∥
Φ
→

0, a.s.

Proof. ϕϑ(x) = ‖x‖−‖ϑ−x‖
‖ϑ‖ can be bracketed as the indicator functions of cells

considered in Example 3.7.4C in Van de Geer (2000). Thus, N[ ](ε,Φ, P ) <∞.
By the Corollary 3.5 in Arcones, Chen and Giné (1994), we have∥∥∥∥∥Un(ϑ)− µ(ϑ)

‖ϑ‖

∥∥∥∥∥
Φ

→ 0, a.s.
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