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In this paper we characterize and construct efficient estimators of
linear functionals of a bivariate distribution with equal marginals. An
efficient estimator equals the empirical estimator minus a correction term
and provides significant improvements over the empirical estimator. We

construct an efficient estimator by estimating the correction term. For this
we use the least squares principle and an estimated orthonormal basis for
the Hilbert space of square-integrable functions under the unknown equal
marginal distribution. Simulations confirm the asymptotic behavior of this
estimator in moderate sample sizes and the considerable theoretical gains
over the empirical estimator.

1. Introduction. Let (X1, Y1), . . . , (Xn, Yn) be independent copies of a bi-
variate random vector (X,Y ) with distribution Q. Let ψ be a measurable function
from R

2 to R such that
∫
ψ2 dQ <∞. We are interested in estimating

θ =
∫
ψ dQ = E(ψ(X,Y )).

Special cases are the estimation of mixed moments E[XkY m], which can be used
in the estimation of the covariance of X and Y and the correlation coefficient of
X and Y . Of interest is also the estimation of moments of transformed variables
Z = h(X,Y ) such as Z = X , Z = Y , Z = X + Y , Z = min(X,Y ) and Z =
max(X,Y ), or the estimation of probabilities such as P (X < Y ), P (X + Y ≤ t),
P (min(X,Y ) > t), P (max(X,Y ) ≤ t) and P (X ≤ s, Y ≤ t) for fixed s and t in R.

A natural estimator of θ is the empirical estimator

1
n

n∑
j=1

ψ(Xj , Yj).

This estimator is efficient in the sense of being a least dispersed regular estimator
if the distribution Q is completely unknown. There are however better estimators
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if additional information about Q is available. For example, if X and Y are inde-
pendent, a better estimator is given by

1
n2

n∑
i=1

n∑
j=1

ψ(Xi, Yj).

If X and Y are also identically distributed, an even better estimator is given by the
U-statistic based on the pooled sample:

1
2n(2n− 1)

∑∑
1≤i6=j≤2n

ψ(Zi, Zj)

where Zi = Xi and Zn+i = Yi for i = 1, . . . , n. These estimators are efficient under
the minimal assumptions under which they were derived; see Levit (1974).

Improvements are also possible under symmetry considerations. For instance, if
the pair of random variables (X,Y ) is exchangeable, which means that (Y,X) has
the same distribution as (X,Y ) and is equivalent to Q(A×B) = Q(B×A) for each
pair of Borel sets A and B, then the symmetrized empirical estimator

1
2n

n∑
j=1

(ψ(Xj , Yj) + ψ(Yj , Xj))

is better. If (X,Y ) is symmetric in the sense that (−X,−Y ) has the same distribu-
tion as (X,Y ), then a better estimator is given by

1
2n

n∑
j=1

(ψ(Xj , Yj) + ψ(−Xj,−Yj)) .

If (X,Y ) is both exchangeable and symmetric, a better estimator is given by

1
4n

n∑
j=1

(ψ(Xj , Yj) + ψ(−Xj ,−Yj) + ψ(Yj , Xj) + ψ(−Yj ,−Xj)) .

The above are examples of finite group models. In such models γ(X,Y ) has the
same distribution for all members γ of a finite group Γ of, say k, measurable trans-
formations of R

2, and an improved estimator is obtained by averaging over the
group:

1
kn

n∑
j=1

∑
γ∈Γ

ψ(γ(Xj , Yj)).

Indeed, this estimator is known to be efficient; see for example Bickel et al. (1993,
page 231). Thus the above estimators are efficient under the minimal assumptions
(exchangeability, symmetry or both) under which they were derived.

Bickel, Ritov and Wellner (1991) considered another situation in which an im-
provement is possible, namely when the marginal distributions, F of X and G of
Y , are known. Using the modified minimum-chi-square estimators of Deming and
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Stephan (1940) for contingency tables with fixed marginals and shrinking cells, they
constructed an estimator θ̂n of θ that satisfies

(1.1) θ̂n =
1
n

n∑
j=1

(ψ(Xj , Yj)− a∗(Xj)− b∗(Yj)) + op(n−1/2)

as the sample size tends to infinity, where a∗ and b∗ are the unique (up to equiva-
lence) minimizers of

(1.2)
∫

(ψ(x, y) − a(x)− b(y))2 dQ(x, y)

over the set of all measurable functions a and b such that
∫
a2 dF +

∫
b2 dG < ∞

and
∫
a dF =

∫
b dG = 0. The existence of the minimizers a∗ and b∗ is guaranteed

by their assumption (P3) that Q(A×B) ≥ η F (A)G(B) for all Borel sets A and B
and some η > 0. They also showed that an estimator with the above expansion is
efficient for θ.

Let us now shed some additional light on this. Note that, for each F -square-
integrable a with

∫
a dF = 0 and each G-square-integrable b with

∫
b dG = 0,

(1.3)
1
n

n∑
j=1

(ψ(Xj , Yj)− a(Xj)− b(Yj))

is an unbiased estimator of θ with second moment given by the expression in (1.2)
divided by n. Thus the efficient estimator of Bickel, Ritov and Wellner (1991)
matches the performance of the best estimator in this class.

Recently, Peng and Schick (2002) proposed an alternative construction of efficient
estimators. Their method substitutes estimates of a∗ and b∗ for a and b in (1.3).
The estimates are obtained as follows. Choose an orthonormal basis v1, v2, . . . for
the space L2,0(F ) = {a ∈ L2(F ) :

∫
a dF = 0} and an orthonormal basis w1, w2, . . .

for the space L2,0(G) = {b ∈ L2(G) :
∫
b dG = 0}. Estimate a∗ by

∑M
i=1 α̂ivi and

b∗ by
∑N

i=1 β̂iwi, where M and N are positive integers that tend to infinity slowly
with the sample size n and α̂1, . . . , α̂M , β̂1, . . . , β̂N are chosen to minimize

1
n

n∑
j=1

(
ψ(Xj , Yj)−

M∑
i=1

αivi(Xj)−
N∑

i=1

βiwi(Yj)

)2

.

Of course, α̂1, . . . , α̂M , β̂1, . . . , β̂N are simply least squares estimates for the re-
sponse vector Ψ = (ψ(X1, Y1), . . . , ψ(Xn, Yn))> and the design matrix with j-th
row formed by

(v1(Xj), . . . , vM (Xj), w1(Yj), . . . , wN (Yj))

and are easily computed with any standard computer package. The alternative
estimator is

1
n

n∑
j=1

(ψ(Xj , Yj)−
M∑
i=1

α̂ivi(Xj)−
N∑

i=1

β̂iwi(Yj)).
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Peng and Schick (2002) show that this estimator satisfies (1.1). Their simulations
indicate that this estimator compares favorably with the estimator of Bickel, Ritov
and Wellner’s (1991) in moderate sample sizes.

In this paper we shall pursue this alternative approach in a related problem.
We shall study efficient estimation of θ =

∫
ψ dQ in the case when X and Y have

a common, but unknown, distribution. If X and Y are pre- and post-treatment
measurements, then the equality of the distributions of X and Y captures the null
hypothesis that there is no treatment effect. Thus our results apply to testing this
null hypothesis and in particular to the modeling of a control group in which a
placebo is administered. Equal marginals can also be a reasonable assumption in
situations when data are collected on pairs, such as eyes, kidneys, siblings, etc.
Such data are often modeled using exchangeability, see e.g. Wei (1987). Since ex-
changeability implies equal marginals, the latter is less restrictive and can serve as
a competitor to the former. Finally, another situation which can be modeled with
equal marginals is a setting where a stationary and ergodic time series Z1, Z2, . . .
is only observed at time points ik, ik + 1, i = 1, . . . , n resulting in observations
Xi = Zik and Yi = Zik+1. By stationarity the pairs (Xi, Yi) have equal marginals,
and if k is sufficiently large, these pairs can be treated as if they were independent.

Suppose now that Q has equal marginals and denote the common marginal
distribution function by F . Then

(1.4)
1
n

n∑
j=1

(ψ(Xj , Yj)− a(Xj) + a(Yj))

is an unbiased estimator of θ for each F -square integrable a which we may assume
to satisfy

∫
a dF = 0. The smallest variance is achieved by a∗ which minimizes∫

(ψ(x, y)− a(x) + a(y))2 dQ(x, y)

over the set L2,0(F ). The existence of a∗ is guaranteed under a mild assumption, see
Assumption 1 below. Since a∗ is unknown, we shall estimate it. If F were known,
we would again have available an orthonormal basis for L2,0(F ) and could proceed
as outlined above. As F is unknown, we do not know the basis for L2,0(F ) and
need to estimate it as well. We do this as follows. We assume that F is continuous.
Then F (X) and F (Y ) are uniform random variables, and an orthonormal basis for
L2,0(F ) is given by u1 ◦ F, u2 ◦ F, . . . , where u1, u2, . . . is an orthonormal basis for
L2,0(U) with U the uniform distribution on [0, 1]. We take the trigonometric basis
given by

(1.5) uk(x) =
√

2 cos(πkx), 0 ≤ x ≤ 1, k = 1, 2, . . . .

This suggests to estimate the common marginal distribution function F by say F̂
and to work with u1 ◦ F̂ , u2 ◦ F̂ , . . . in place of the unknown actual orthonormal
basis u1 ◦ F, u2 ◦ F, . . . mentioned above. We take F̂ to be the pooled empirical
estimator

F̂ (t) =
1
2n

n∑
j=1

(1{Xj≤t} + 1{Yj≤t}), t ∈ R.
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As estimator of θ we then use

(1.6) θ̂n =
1
n

n∑
j=1

(
ψ(Xj , Yj)−

m∑
i=1

γ̂m,i

[
ui(F̂ (Xj))− ui(F̂ (Yj))

])

where m tends to infinity slowly with the sample size n and γ̂m,1, . . . , γ̂m,m are
chosen to minimize

1
n

n∑
j=1

(
ψ(Xj , Yj)−

m∑
i=1

γi

[
ui(F̂ (Xj))− ui(F̂ (Yj))

])2

.

These estimates are least squares estimates for the response vector Ψ as before and
for the design matrix with j-th row formed by

u1(F̂ (Xj))− u1(F̂ (Yj)), . . . , um(F̂ (Xj))− um(F̂ (Yj)).

Thus they can be easily calculated with a standard statistical software package.
We shall show that the proposed estimator matches the performance of the best

estimator in the class (1.4) asymptotically in the sense that

(1.7) θ̂n =
1
n

n∑
j=1

(ψ(Xj , Yj)− a∗(Xj) + a∗(Yj)) + op(n−1/2).

Moreover, we shall show that this property characterizes efficient (in the sense of
being least dispersed and regular) estimators of θ.

Our estimator is a least squares series estimator. For some recent work on series
estimators in curve and density estimation see Newey (1997) and Efromovich (1999),
and the references therein. These authors use fixed bases, while we use random
bases. Thus our work is much closer in spirit to the approach taken by Beran
(1974). He used random bases to estimate the score function for location.

Our paper is organized as follows. In Section 2 we shall introduce the assumption
on the bivariate distribution that we shall be using in this paper and derive some
preliminary results. In particular, we study properties of the minimizer a∗ in general.
In Section 3 we derive the efficiency theory for our problem. There we describe the
tangent space and the canonical gradient and obtain the characterization (1.7)
of efficient estimators. We also obtain explicit formulas for the minimizer a∗ for
some special cases. These are used to discuss the efficiency gains resulting from
using an efficient estimator over the empirical estimator. We show that these can
be substantial. In the examples considered, the asymptotic variance of an efficient
estimator is about 1/3 of that of the empirical estimator or smaller. In Section 4
we shall establish (1.7) and hence the efficiency of our proposed estimator. The
results of a simulation study are reported in Section 5. The simulations confirm the
theoretical asymptotic results in the moderate sample sizes considered and illustrate
considerable possible gains of the efficient estimator over the empirical estimator.
For one choice of ψ we observe a variance reduction of at least 95 percent for all
distributions considered. We also investigate a data-driven choice for m. Here again
the results are very encouraging. Section 6 contains proofs of auxiliary results.
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2. Some Preliminaries. In this section we shall assume that Q is a distribu-
tion of a bivariate random vector (X,Y ) which has equal marginals so that

(2.1) Q(A× R) = Q(R×A), A ∈ B,

where B denotes the Borel sets of R. For convenience, we assume that X and Y are
defined on R

2 by X(x, y) = x and Y (x, y) = y, x, y ∈ R. We denote the common
marginal distribution by F . Recall that L2,0(Q) = {g ∈ L2(Q) :

∫
g dQ = 0} and

L2,0(F ) = {a ∈ L2(F ) :
∫
a dF = 0}. Throughout we assume that the correlation

between a(X) and a(Y ) is bounded away from 1 and -1 as a ranges over L2(F ).

Assumption 1. There is a ρ < 1 such that

(2.2) |Cov(a(X), a(Y ))| ≤ ρVar(a(X)) for all a ∈ L2(F ).

Define a linear operator B from L2,0(F ) into L2,0(Q)

Ba = a(X)− a(Y ), a ∈ L2,0(F ).

Since
∫
(Ba)2 dQ = 2

∫
a2 dF−2E[a(X)a(Y )], we see that this operator is bounded:

(2.3)
∫

(Ba)2 dQ ≤ 2(1 + ρ)
∫
a2 dF, a ∈ L2,0(F ),

and bounded away from zero:

(2.4)
∫

(Ba)2 dQ ≥ 2(1− ρ)
∫
a2 dF, a ∈ L2,0(F ).

Actually, the latter is equivalent to Assumption 1. The former holds with 2(1 + ρ)
replaced by 4 if Assumption 1 is not met.

As B is bounded away from zero, it has a bounded inverse B−1. Hence the range
{Ba : a ∈ L2,0(F )} of B is a closed linear subspace of L2,0(Q). Thus the projection
of an element g of L2(Q) onto the range range of B in L2(Q) exists and is of the
form Bg∗ for some uniquely determined element g∗ of L2,0(F ). Note that g∗ is
determined by the equations∫

Bg∗BadQ =
∫
gBa dQ, a ∈ L2,0(F ).

These equations can be written as∫
(2g∗ − Q̄Xg∗ − Q̄Y g∗)a dF =

∫
(QXg −QY g)a dF, a ∈ L2,0(F ),

where QX and QY are the (conditional expectation) operators from L2(Q) to L2(F )
and Q̄X and Q̄Y from L2,0(F ) to L2,0(F ) defined as follows. For h ∈ L2(Q),

QXh(t) = E(h(X,Y )|X = t) and QY h(t) = E(h(X,Y )|Y = t), t ∈ R,

and for k ∈ L2,0(F ),

Q̄Xk(t) = E(k(Y )|X = t), and Q̄Y k(t) = E(k(X)|Y = t), t ∈ R.

This implies that g∗ is determined by the equation

2g∗ − Q̄Xg∗ − Q̄Y g∗ = QXg −QY g.
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With I the identity operator on L2,0(F ), this can be written as

(2I − Q̄X − Q̄Y )g∗ = QXg −QY g.

We were unable to obtain an explicit solution for g∗, but we can represent g∗ as an
infinite series as shown next. Since Q̄Y is the adjoint of Q̄X , the operator

Q̄ =
1
2
(Q̄X + Q̄Y )

is self adjoint. Since

E[a(X)a(Y )] =
1
2
(E[a(X)a(Y )] +E[a(Y )a(X)]) =

∫
aQ̄a dF, a ∈ L2,0(F ),

Assumption 1 is equivalent to Q̄ having operator norm less than 1; see e.g. Theorem
15.9 in Kress (1989). Thus I−Q̄ has a bounded inverse given by the Neumann series∑∞

i=0 Q̄
i. Upon writing the above equation as (I − Q̄)g∗ = (QXg−QY g)/2, we see

that g∗ can be expressed as

1
2

∞∑
i=0

Q̄i(QXg −QY g).

The next lemma shows that g∗ is bounded if g is bounded and if Q̄ viewed as
an operator on L∞,0(F ) = {a ∈ L∞(F ) :

∫
a dF = 0} has operator norm less than

one. We write ‖ · ‖∞ for both, the L∞(F ) and the L∞(Q) norm.

Lemma 2.1. Suppose there is a c < 1 such that ‖Q̄a‖∞ ≤ c‖a‖∞ for all
a ∈ L∞,0(F ). Let g ∈ L∞(Q). Then g∗ ∈ L∞,0(F ) and

(2.5) ‖g∗‖∞ ≤ ‖g‖∞
1− c

.

Proof. Viewed as an operator on L∞,0(F ), Q̄ has operator norm at most
c. This shows that I − Q̄ viewed as an operator on L∞,0(F ) has a bounded in-
verse which is given by the Neumann series

∑∞
i=0 Q̄

i which has operator norm at
most 1/(1 − c). Let h = (QXg − QY g)/2. Then

∫
h dF = 0 and ‖h‖∞ ≤ ‖g‖∞.

Thus h belongs to L∞,0(F ). Consequently, g∗ =
∑∞

i=0 Q̄
ih ∈ L∞,0(F ) and satisfies

‖g∗‖∞ ≤ ‖g‖∞/(1− c). This is the desired result. �

Let us now give sufficient conditions for Assumption 1 and for the assumption
of the lemma. We have already seen that Assumption 1, B is bounded from below,
and Q̄ has operator norm less than one, are equivalent. The operator norm of Q̄ is
bounded by the average of operator norms of Q̄X and Q̄Y . Since Q̄Y is the adjoint
of Q̄X , Q̄Y and Q̄X have the same operator norm. Thus Assumption 1 holds if Q̄X

has operator norm less than one. If Q̄X = Q̄Y as is the case when Q is exchangeable,
then Assumption 1 is even equivalent to Q̄X having an operator norm less than one.

Now consider the following condition which is the analogue of (P3) used by
Bickel, Ritov and Wellner (1991).
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Condition 1. There is an η > 0 such that for all Borel sets A,B

Q(A×B) ≥ η F (A)F (B).

The η in the above condition can be at most 1. The case η = 1 is equivalent to
independence of X and Y . It follows from Condition 1 that∫

g dQ ≥ η

∫
g d(F × F )

for every non-negative measurable function g on R
2. Taking g = (Ba)2 yields (2.4)

with 1−ρ = η. This shows that Condition 1 implies that B is bounded from below.
Thus Condition 1 yields Assumption 1.

Now assume that Q has a density q with respect to the product measure F ×F .
Then Condition 1 is equivalent to q ≥ η almost surely F ×F . Condition 1, however,
does not guarantee the absolute continuity of Q with respect to F × F . [To see
this let Q = (1/2)(U∆ + U × U), where U is the uniform distribution on (0, 1) and
U∆ is the uniform distribution on {(x, x) : 0 < x < 1}. This measure Q has equal
marginals F = U , but no density with respect to U ×U .] Bickel, Ritov and Wellner
(1991, page 1331) tacitly assume that Q has a density with respect to the product
of its marginal distributions when they use their (P3) to derive that the analogue
of our Q̄X has operator norm less than one, both for the L2 and L∞ norms. We
shall now generalize their argument.

Since Q has marginals F , we find that, for F -almost all t ∈ R,∫
q(t, y) dF (y) = 1 and

∫
q(x, t) dF (x) = 1.

Let now q̄(x, y) = (q(x, y)+ q(y, x))/2. For a ∈ L2,0(F ), we obtain that for any real
µ and for F -almost all x ∈ R

Q̄a(x) =
∫
a(y)q̄(x, y) dF (y) =

∫
a(y)(q̄(x, y)− µ) dF (y).

Lemma 2.2. Suppose there is a µ such that ‖hµ‖∞ < 1, where

hµ(x) =
∫
|q̄(x, y)− µ| dF (y).

Then Assumption 1 holds, and so does the assumption of Lemma 2.1.

Proof. It suffices to show that ‖Q̄a‖∞ ≤ ‖hµ‖∞‖a‖∞ for a ∈ L∞,0(F ) and∫
(Q̄a)2 dF ≤ ‖hµ‖2

∞
∫
a2 dF for a ∈ L2,0(F ). The former is immediate, and the

latter follows from an application of the the Cauchy–Schwarz inequality, which
yields∫

(Q̄Xa)2 dF ≤
∫ ∫

a2(y)|q̄(x, y)− µ| dF (y)
∫
|q̄(x, y)− µ| dF (y) dF (x),

the symmetry of q̄, and a change of order of integration. �
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Note that under Condition 1 we have ‖hη‖∞ ≤ 1− η < 1.
Suppose now that

∫
q̄2 dF ×F is finite. Then Q̄ is a compact operator, see Rudin

(1973, pg 107). Thus by the spectral theorem for compact self adjoint operators,
Kress (1989, Theorem 15.12), we obtain that (in the L2(F × F ) sense),

(2.6) q̄(x, y) = 1 +
∞∑

i=1

civi(x)vi(y)

where v1, v2, . . . is an orthonormal basis for L2,0(F ) and c1, c2, . . . are square
summable reals. Then Q̄a =

∑∞
i=1 ciaivi with ai =

∫
avi dF and

∫
aQ̄a dF =∑∞

i=1 cia
2
i . This shows that the operator norm of Q̄ is maxi |ci|. Hence Assump-

tion 1 holds if maxi |ci| < 1. Note that
∫
q̄2 dF ×F = 1 +

∑∞
i=1 c

2
i ≥ 1 + maxi |ci|2.

Thus
∫
q̄2 dF × F < 2 is a sufficient condition for Assumption 1. Let us now look

at two special cases.
(a) The bivariate normal distribution with standard normal marginals and corre-

lation coefficient ρ in (−1, 1) satisfies (2.6) with ci = ρi and φ1, φ2, . . . standardized
and scaled Hermite polynomials; this is known as Mehler’s identity; see Szegö (1959,
page 377). In this case, Q̄ has operator norm |ρ| < 1 implying Assumption 1, but
Condition 1 is not met in this case.

(b) The uniform distribution on the unit disk D = {(x, y) ∈ R
2 : x2 + y2 < 1}

has common marginal which has density f(x) = (2/π)
√

1− x21(−1,1)(x). Here

q̄(x, y) =
π

4
√

1− x2
√

1− y2
1D(x, y).

Thus Condition 1 does not hold. However, it is easy to show that
∫
q̄2 dF × F =

π2/8 < 2 so that Assumption 1 holds.

3. Efficiency considerations. In this section we assume that Q is a distribu-
tion with equal marginals and satisfies Assumption 1. We shall characterize efficient
(more precisely, least dispersed regular) estimators of

∫
ψ dQ via a nonparametric

convolution theorem. We begin by deriving the tangent space for our model.
The tangent space H is the set of all h ∈ L2(Q) for which there is a sequence

〈Qn,h〉 of distributions on B2 such that Qn,h has equal marginals and has a density
1 + n−1/2hn with respect to Q with

∫
(hn − h)2 dQ → 0. We refer to the sequence

〈Qn,h〉 as a local sequence with tangent h. For such a sequence 〈Qn,h〉 we immediately
obtain that

(3.1) n1/2

(∫
g dQn,h −

∫
g dQ

)
=
∫
ghn dQ→

∫
gh dQ

for every g ∈ L2(Q). If we take g = 1, we see that
∫
h dQ = 0. If we take g =

Ba for some a ∈ L2,0(F ), we obtain from the property of equal marginals that∫
BadQn,h =

∫
BadQ = 0, and the latter yields∫

hBa dQ = 0.
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Thus we see that H contains only elements in L2,0(Q) that are orthogonal to the
range of B. We believe that H consists of all these elements so that

(3.2) H = {h ∈ L2,0(Q) :
∫
hBa dQ = 0 for all a ∈ L2,0(F )}.

However, we are only able to show this under additional assumptions. Bickel, Ritov
and Wellner (1991) derive the corresponding result for their model under stronger
assumptions than used here.

For the proof of the identity (3.2) assume also that the assumption of Lemma 2.1
holds. Let K denote the right-hand side of (3.2). Fix a h ∈ K. We need to produce
a local sequence 〈Qn,h〉 with tangent h. If h is bounded, we can choose hn = h
for large n. Indeed, for large enough n, 1 + n−1/2h > 0 and hence a density as∫
(1 + n−1/2h)dQ = 1. Moreover, for A ∈ B, we can write 1A(X) − 1A(Y ) = Ba

with a = 1A − F (A) in L2,0(F ) so that∫
(1A(X)− 1A(Y ))(1 + n−1/2h) dQ = 0.

This establishes 1 + n−1/2h as a density of a probability measure with equal
marginals. If h is not bounded, we shall first truncate h to h̄n = h1{|h|≤cn} with
cn = cn1/4 for some positive constant c and then let hn be the projection of h̄n

onto K so that

hn = h̄n −
∫
h̄n dQ−Bχn

with Bχn the projection of h̄n onto the range of B. It follows from Lemma 2.1
that Bχn is bounded by bcn for some positive b. Thus 1 + n−1/2hn is positive for
small c and hence is the density of a probability measure with equal marginals. It is
easy to check that

∫
(hn − h)2 dQ→ 0. This completes the proof of (3.2) under the

additional assumption of Lemma 2.1. Note that we used the additional assumption
only to conclude that the bounded functions in K are dense in K. Thus (3.2) also
holds under this weaker property.

Now consider estimation of κ(Q) for a functional κ based on independent obser-
vations (X1, Y1), . . . , (Xn, Yn) with distribution Q. For this we fix for each h ∈ H
a local sequence 〈Qn,h〉 with tangent h. We then have a form of local asymptotic
normality:

n∑
j=1

log
dQn,h

dQ
(Xj , Yj) = n−1/2

n∑
j=1

h(Xj , Yj)− 1
2

∫
h2 dQ + op(1)

and

L(n−1/2
n∑

j=1

h(Xj , Yj)|Q) ⇒ N(0,
∫
h2 dQ),

where N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. We
say the functional κ is differentiable at Q with gradient g if g ∈ L2(Q) and

n1/2(κ(Qn,h)− κ(Q)) →
∫
gh dQ
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for every h ∈ H . The gradient g is not unique, but its projection onto H is. This
projection is called the canonical gradient. We denote it by g# and assume that∫
g2
# dQ > 0.
An estimator κ̂n of κ based on the observations (X1, Y1), . . . , (Xn, Yn) is called

regular at Q if there is a distribution M on B such that

L(n1/2(κ̂n − κ(Qn,h))|Qn,h) ⇒M

for every h ∈ H , where the left hand side denotes the distribution of n1/2(κ̂n −
κ(Qn,h)) calculated under the assumption that (X1, Y1), . . . , (Xn, Yn) are indepen-
dent observations with distribution Qn,h. It follows from the convolution theorem
(see e.g. Pfanzagl and Wefelmeyer (1982), Theorem 9.3.1, pg 158 or Bickel et al.
(1993, Theorem 2, pp 63) that the limit distribution M of a regular estimator is
a convolution of a centered normal distribution with variance σ2

# =
∫
g2
# dQ and

some other distribution R

M = N(0, σ2
#) ∗R

and that this other distribution R is point mass at 0 if and only if

(3.3) κ̂n − κ(Q) =
1
n

n∑
j=1

g#(Xj , Yj) + op(n−1/2).

Finally, an estimator satisfying (3.3) is regular and hence least dispersed among all
regular estimators. Thus we call an estimator satisfying (3.3) efficient.

Of course, we are interested in estimating θ =
∫
ψ dQ. The corresponding func-

tional is differentiable at Q with gradient ψ, see (3.1). The canonical gradient is

ψ# = ψ −
∫
ψ dQ−Ba∗

where a∗ minimizes
∫
(ψ − Ba)2 dQ over a ∈ L2,0(F ). This shows that an efficient

estimator θ̂n of θ =
∫
ψ dQ is characterized by (1.7). Let us now summarize this in

the following theorem.

Theorem 3.1. Suppose Assumption 1 holds, (3.2) is met, and
∫
ψ2

# dQ > 0.
Then an estimator θ̂n of θ =

∫
ψ dQ is efficient if and only if

θ̂n =
1
n

n∑
j=1

(ψ(Xj , Yj)− a∗(Xj) + a∗(Yj)) + op(n−1/2)

and a∗ minimizes
∫
(ψ −Ba)2 dQ over a ∈ L2,0(F ).

It follows from the previous section that a∗ is the solution to the equation

(3.4) 2a∗ − Q̄Xa∗ − Q̄Y a∗ = QXψ −QY ψ.

We were unable to solve this integral equation explicitly in general, but we have
explicit solutions in some special cases.
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Example 1. Suppose that X and Y are independent. Then Q̄X = Q̄Y = 0 and
one calculates

a∗(t) =
∫

1
2
(ψ(t, x) − ψ(x, t)) dF (x), t ∈ R.

Here one also has
∫
(Ba∗)2 dQ = 2

∫
a2∗ dF . �

Example 2. Suppose that X and Y are exchangeable. Then Q̄X = Q̄Y . Let
us first look at special ψ.

(a) If ψ is symmetric in the sense that ψ(x, y) = ψ(y, x) for all x, y ∈ R, then
one finds QXψ = QY ψ. In this case a∗ = 0 and the empirical estimator is already
efficient.

(b) If ψ is antisymmetric in the sense that ψ(y, x) = −ψ(x, y) for all x, y ∈ R,
then one finds thatQY ψ = −QXψ. In this case, equation (3.4) becomes a∗−Q̄Xa∗ =
QXψ and a∗ =

∑∞
i=0 Q̄

i
XQXψ as Q̄X has operator norm less than one.

In general, ψ can be written as a sum of a symmetric function ψ+ and an an-
tisymmetric function ψ−, namely ψ+(x, y) = (ψ(x, y) + ψ(y, x))/2 and ψ−(x, y) =
(ψ(x, y)− ψ(y, x))/2, and equation (3.4) simplifies to

a∗ − Q̄Xa∗ = QXψ−.

If ψ−(x, y) = h(x) − h(y), then a∗ = h − ∫ h dF . In general, the solution can be
expressed as a∗ =

∑∞
i=0 Q̄

i
XQXψ−. �

Example 3. Suppose that Q has a density q with respect to F ×F of the form

q(x, y) = 1 + αr(x, y), x, y ∈ R,

for some constant α ∈ (−1, 1) and some antisymmetric function r that is bounded
by 1 and satisfies

∫
r(x, y) dF (y) = 0. Then Condition 1 holds with η = 1− |α|. In

this case, Q̄Xa∗ + Q̄Y a∗ = 0 and a∗ = 1
2 (QXψ −QY ψ). One calculates

a∗(t) =
1
2

∫ [
ψ(t, x)− ψ(x, t) + αr(t, x)(ψ(t, x) + ψ(x, t))

]
dF (x), t ∈ R,

and finds
∫
(Ba∗)2 dQ = 2

∫
a2
∗ dF . Note that if α = 0, then X and Y are indepen-

dent and a∗ is as in the first example. �

Example 4. Assume that Q has a density q with respect to F × F that is of
the form

q(x, y) = 1 + αv(x)w(y), x, y ∈ R,

with v, w elements of L2,0(F ) both bounded by 1 and α ∈ (−1, 1) so that Condition 1
holds with η = 1− |α|. Then the equation (3.4) simplifies to

(3.5) 2a∗(s)− α

∫
a∗w dFv(s)− α

∫
a∗v dFw(s) = ψ̄(s), s ∈ R,
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where

ψ̄(s) =
∫

(ψ(s, t)− ψ(t, s)) dF (t) + αv(s)
∫
ψ(s, t)w(t) dF (t)

− αw(s)
∫
ψ(t, s)v(t) dF (t), s ∈ R.

This suggests to try

2a∗(s) = ψ̄(s) + c1αv(s) + c2αw(s), s ∈ R,

with constants c1 and c2. Substituting this into (3.5), we find this to be a solution
if c1 and c2 are chosen to satisfy the linear system

2c1 =
∫
ψ̄w dF + c1α

∫
vw dF + c2α

∫
w2 dF

2c2 =
∫
ψ̄v dF + c1α

∫
v2 dF + c2α

∫
vw dF

which has a unique solution as (2 − α
∫
vw dF )2 > α2

∫
v2 dF

∫
w2 dF in view of

the fact that v2 and w2 are bounded by 1. The solutions are

c1 =
(2− α

∫
vw dF )

∫
ψ̄w dF + α

∫
w2 dF

∫
ψ̄v dF

(2− α
∫
vw dF )2 − α2

∫
v2 dF

∫
w2 dF

and

c2 =
(2− α

∫
vw dF )

∫
ψ̄v dF + α

∫
v2 dF

∫
ψ̄w dF

(2− α
∫
vw dF )2 − α2

∫
v2 dF

∫
w2 dF

.

One also has ∫
(Ba∗)2 dQ = 2

∫
a2
∗ dF − 2α

∫
a∗v dF

∫
a∗w dF.

There are simplifications if v = w. In this case,

c1 = c2 = c =
∫
ψ̄v dF

2− 2α
∫
v2 dF

and

a∗(s) = (1/2)ψ̄(s) + cαv(s), s ∈ R.

Since
∫
a∗v dF = c, we find that∫

(Ba∗)2 dQ = (1/2)
∫
ψ̄2 dF + 2αc2

(
1− α

∫
v2 dF

)
.

�

Example 5. Efficiency Gains. To see how much we can gain by using an ef-
ficient estimator instead of the empirical estimator, let us now calculate the asymp-
totic relative efficiency for the choice

ψ(x, y) = 1[x ≤ y], x, y ∈ R,
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under three (parametric) families of distributions for which we can calculate a∗. In
the three families the common marginal distribution F is the uniform distribution
on [−1, 1]. The parameter is α and takes values in (−1, 1). It is chosen such that
Condition 1 holds with η = 1− |α|. We shall describe the distributions by describ-
ing their densities on [−1, 1] × [−1, 1]. The first family is of the type described in
Example 3:

q1,α(x, y) = 1 + α(x− y − sign(x− y)), −1 ≤ x, y ≤ 1,

while the second and the third are of the type described in Example 4:

q2,α(x, y) = 1 + αxy, −1 ≤ x, y ≤ 1,

and

q3,α(x, y) = 1 + αx sign(y), −1 ≤ x, y ≤ 1.

For the first family we find θ = 1/2 + α/6 and calculate a∗(t) = −t/2. The
(asymptotic) variance of the empirical estimator is (9 − α2)/36, while that of the
efficient estimator is (9− α2)/36− 1/6. Hence the asymptotic relative efficiency as
a function of α is

ARE(α) =
3− α2

9− α2
, |α| < 1.

The range of this function is (1/4, 1/3]. The largest value 1/3 occurs at α = 0, while
values of α close to 1 and −1 yields asymptotic relative efficiencies close to 1/4.

For the second family, we have θ = 1/2. Using the results of Example 4 with
v(s) = w(s) = s, s ∈ [−1, 1], we calculate

a∗(s) =
15α− 30− 3α2

60− 20α
s− α

4
s3, −1 ≤ s ≤ 1,

and

ARE(α) =
525− 280α− 25α2 + 26α3 − 2α4

175(3− α)2
, |α| < 1.

The ARE attains the approximate maximum 0.35135 at α = 0.745 and gets close
to the approximate minimum 0.26857 as α approaches -1.

For the third family, θ = 1/2 and utilizing the results of Example 4 with v(s) = s
and w(s) = sign(s), s ∈ [−1, 1], straightforward calculations yield

ψ̄(s) = (α/4) sign(s) + (α/2− 1)s− (3α/4)s|s|, s ∈ [−1, 1],

and

a∗(s) =
α+ 4αc2

8
sign(s) +

α+ 2αc1 − 2
4

s− 3α
8
s|s|, s ∈ [−1, 1],

where

c1 =
−48 + 20α− α2

192− 96α− 4α2
, c2 =

−64 + 20α+ 3α2

384− 192α− 8α2
.



Efficient estimation with bivariate data with equal, but unknown, marginals 15

Fig. 1. ARE curves for estimating P (X ≤ Y ) for q1,α, q2,α, q3,α (1st, 2nd, 3rd family).
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Since the variance of the empirical estimator is 1/4, the asymptotic relative effi-
ciency is

ARE(α) = 1− 8
(∫

a2
∗ dF − α

∫
a∗(x)xdF (x)

∫
a∗(y) sign(y) dF (y)

)
, |α| < 1.

The ARE attains the approximate maximum 0.36342 at α = 0.67, and gets close to
the approximate minimum 0.20150 as α approaches -1. Graphs of the above three
AREs are given in Fig. 1. �

4. Asymptotic behavior of the proposed estimator. Throughout this
section we shall assume that (X1, Y1), . . . , (Xn, Yn) are independent bivariate ran-
dom vectors with a common distribution Q and equal marginals. We now let F
denote the common marginal distribution function. We shall study the asymptotic
behavior of the estimator proposed in (1.6) with u1, u2, . . . chosen to be the trigono-
metric basis defined in (1.5). We shall show that this estimator satisfies (1.7) which
establishes the efficiency of this estimator for estimating θ =

∫
ψ dQ. Recall that

a∗ minimizes
∫
(ψ −Ba)2 dQ over a ∈ L2,0(F ).
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Theorem 4.1. Suppose Assumption 1 holds, the common distribution function
F is continuous, and m tends to infinity slowly with n in the sense that m → ∞
but m5/n→ 0. Then the estimator θ̂n defined in (1.6) with u1, u2, . . . given in (1.5)
satisfies (1.7)

θ̂n =
1
n

n∑
j=1

(ψ(Xj , Yj)− a∗(Xj) + a∗(Yj)) + op(n−1/2)

and hence is efficient under the assumptions of Theorem 3.1.

There exists a well established theory for the construction of efficient estimates
in semiparametric models. Early constructions (Bickel (1982), Klaassen (1987) and
Schick (1986)) use sample splitting techniques and call for appropriate estimates of
the influence function. The papers by Klaassen (1987) and Schick (1986) provide
necessary and sufficient conditions for the existence of efficient estimators in terms
of the existence of appropriate estimators of the influence functions. Schick (1987)
shows that sample splitting can be avoided under stronger conditions on the esti-
mators of the influence function. These stronger conditions are verified in Schick
(1993) and Schick (1994) in homoscedastic and heteroscedastic regression models.
See also Forrester at al (2003) for weaker conditions under additional structural
assumptions. As all the above constructions call for appropriate estimators of the
efficient influence function, they are easier to implement when the influence function
is available in closed form. Here we could apply Schick’s (1987) approach directly
to verify Theorem 4.1. But we found it more convenient to use a slightly different
approach. Still, we heavily draw on the basic ideas of Schick (1987) in the proof of
Theorem 4.1.

A critical part for the proof of this theorem is the appropriate asymptotic be-
havior of the least squares estimates γ̂m,1, . . . , γ̂m,m which we shall formulate as a
separate result next. For notational convenience we set

vk = uk ◦ F and v̂k = uk ◦ F̂ , k = 1, 2, . . .

Since v1, v2, . . . is an orthonormal basis for the domain of B and B has a bounded
inverse, Bv1, Bv2, . . . form a basis for the range of B. Thus Bv1, . . . , Bvm are
linearly independent. This shows that there are uniquely determined coefficients
γm,1, . . . , γm,m such that

γm,1Bv1 + · · · γm,mBvm

is the projection of ψ onto the linear span of Bv1, . . . , Bvm.

Lemma 4.1. Under the assumptions of the previous theorem,

(4.1) m

m∑
k=1

(γ̂m,k − γm,k)2 = op(1)

and

(4.2)
m∑

k=1

γ̂2
m,k = Op(1).
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We shall defer the proof of this lemma to Section 6. Another important fact
in our proof of Theorem 4.1 is the Lipschitz-continuity of the trigonometric basis.
More precisely, for k = 1, 2, . . . , one has

(4.3) |uk(t)− uk(s)| ≤
√

2πk|t− s|, s, t ∈ R.

Let now F̂j denote the pooled empirical of F constructed without the observation
pair (Xj , Yj) so that

F̂j(t) =
1

2(n− 1)

(
2nF̂ (t)− 1{Xj≤t} − 1{Yj≤t}

)
and let F̂i,j denote the pooled empirical of F constructed without the observation
pairs (Xi, Yi) and (Xj , Yj) with i 6= j so that

F̂i,j(t) =
1

2(n− 2)

(
2nF̂ (t)− 1{Xi≤t} − 1{Yi≤t} − 1{Xj≤t} − 1{Yj≤t}

)
, t ∈ R.

Easy calculations show that for k = 1, 2, . . . and all t ∈ R

(4.4) max
1≤j≤n

|uk(F̂j(t))− uk(F̂ (t))| ≤ 2
√

2πk/(n− 1)

and

(4.5) max
i6=j

|uk(F̂i,j(t))− uk(F̂j(t))| ≤ 2
√

2πk/(n− 2).

Thus the influence of any pair (Xj , Yj) of observations on the estimator v̂k is small.
Now we are ready to give the proof of Theorem 4.1. Let

âm =
m∑

k=1

γ̂m,kv̂k and am =
m∑

k=1

γm,kvk.

Then we can write the estimator defined in (1.6) as

θ̂n =
1
n

n∑
j=1

ψ(Xj , Yj)− âm(Xj) + âm(Yj).

We need to show that

(4.6) n−1/2
n∑

j=1

(âm(Xj)− âm(Yj)− a∗(Xj) + a∗(Yj)) = op(1).

Recall that Ba∗ is the projection of ψ onto the range of B and note that

Bam = γm,1Bv1 + · · ·+ γm,mBvm

is the projection of ψ onto the linear span of Bv1, . . . , Bvm. Since Bv1, Bv2, . . . is a
basis for the range of B, the projection Bam converges in L2(Q) to the projection
Ba∗: ∫

(Bam −Ba∗)2 dQ→ 0.
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As
∫

(Bam −Ba∗) dQ =
∫
B(am − a∗) dQ = 0, this immediately implies that

(4.7) n−1/2
n∑

j=1

(am(Xj)− am(Yj)− a∗(Xj) + a∗(Yj)) = op(1).

Thus it suffices to show that

(4.8) n−1/2
n∑

j=1

(âm(Xj)− âm(Yj)− am(Xj) + am(Yj)) = op(1).

With the aid of the Cauchy–Schwarz Inequality we can bound the square of the left
hand side in (4.8) by

2W1

m∑
k=1

(γ̂m,k − γm,k)2 + 2W2

m∑
k=1

γ̂2
m,k

where

W1 =
m∑

k=1

(
n−1/2

n∑
j=1

[vk(Xj)− vk(Yj)]
)2

and

W2 =
m∑

k=1

(
n−1/2

n∑
j=1

[
v̂k(Xj)− v̂k(Yj)− vk(Xj) + vk(Yj)

])2

.

As v1, v2, . . . is an orthonormal basis for L2,0(F ), we find with the help of (2.3) that

E(W1) =
m∑

k=1

∫
(Bvk)2 dQ ≤ 4

m∑
k=1

∫
v2

k dF = 4m.

In view of this and Lemma 4.1 it suffices to show that W2 = op(1). In view of (4.4)
and m3/n→ 0, we have

m∑
k=1

(
n−1/2

n∑
j=1

[v̂k,j(Xj)− v̂k(Xj)]
)2

= op(1)

and
m∑

k=1

(
n−1/2

n∑
j=1

[v̂k,j(Yj)− v̂k(Yj)]
)2

= op(1)

where v̂k,j = uk ◦ F̂j . Consequently, the desired W2 = op(1) follows if we show that

W3 =
m∑

k=1

(
n−1/2

n∑
j=1

[v̂k,j(Xj)− v̂k,j(Yj)− vk(Xj) + vk(Yj)]
)2

= op(1).

We shall show the stronger E(W3) → 0. To this end we let

Dk,j = v̂k,j(Xj)− v̂k,j(Yj)− vk(Xj) + vk(Yj)
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denote the j-th summand in the inner sum of W3. Then we can write

E(W3) =
m∑

k=1

1
n

( n∑
j=1

E(D2
k,j) + 2

∑
1≤i<j≤n

E(Dk,iDk,j)
)

=
m∑

k=1

(
E(D2

k,1) + (n− 1)E(Dk,1Dk,2)
)

Since vk = uk ◦ F , v̂k,1 = uk ◦ F̂1, we obtain from (4.3) that
m∑

k=1

E(D2
k,1) ≤

m∑
k=1

4π2k2(E(F̂1(X1)− F (X1))2) + E(F̂1(Y1)− F (Y1))2)

≤ 8π2m3/(n− 1) → 0.

To deal with the cross product term E(Dk,1Dk,2) let us set

D̄k,j = uk(F̂1,2(Xj))− uk(F̂1,2(Yj))− vk(Xj) + vk(Yj), k = 1, . . . ,m, j = 1, 2.

Since E(Dk,i|Zi) = 0 and E(D̄k,i|Zi) = 0 for i = 1, 2, where Zi is obtained from the
full sample (X1, Y1, . . . , Xn, Yn) by deleting the i-th pair (Xi, Yi), and since D̄k,1 is
independent of (X2, Y2) and D̄k,2 is independent of (X1, Y1), we obtain that

E(Dk,1Dk,2) = E(Dk,1 − D̄k,1)(Dk,2 − D̄k,2)

so that by (4.5)

|E(Dk,1Dk,2)| ≤ 32π2k2/(n− 2)2.

This shows that

(n− 1)
m∑

k=1

|E(Dk,1Dk,2)| ≤ 32π2m3(n− 1)/(n− 2)2 → 0.

The above show that E(W3) → 0. This completes the proof of Theorem 4.1.

5. Simulations. To study the performance of our estimator in moderate sam-
ple sizes we carried out a small simulation study. Simulations were run for one
member of each of the three parametric families introduced in Example 5, for four
different choices of functions ψ, for two sample sizes, namely n = 100 and n = 200,
and for different values of m, namely m = 1, . . . , 5. The densities chosen were the
density q1,α with α = −1/3:

q1,−1/3(x, y) = 1− (1/3)
(
x− y − sign(x − y)

)
, −1 ≤ x, y ≤ 1;

the density q2,α with α = 1/2:

q2,1/2(x, y) = 1 + (1/2)xy, −1 ≤ x, y ≤ 1;

the density q3,α with α = −1/2:

q3,−1/2(x, y) = 1− (1/2)x sign(y), −1 ≤ x, y ≤ 1.
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Table 1

Simulated MSEs (times 103) based on N = 20000 repetitions

n = 100
ψ \m 0 1 2 3 4 5 True
ψ1 1.124 1.144 1.138 1.112 1.099 1.086 1.085

q1,−1/3 ψ2 0.666 0.481 0.474 0.468 0.462 0.457 0.474
ψ3 2.457 0.882 0.997 1.117 1.297 1.508 0.802
ψ4 2.021 0.059 0.053 0.049 0.048 0.047 0.047
ψ1 1.082 1.094 1.090 1.077 1.063 1.052 1.080

q2,1/2 ψ2 0.668 0.553 0.546 0.539 0.535 0.530 0.555
ψ3 2.486 0.982 1.106 1.224 1.436 1.695 0.873
ψ4 1.794 0.052 0.046 0.044 0.043 0.042 0.043
ψ1 1.042 1.072 1.068 1.069 1.069 1.071 1.037

q3,−1/2 ψ2 0.679 0.397 0.391 0.373 0.370 0.367 0.382
ψ3 2.480 0.770 0.889 1.062 1.273 1.526 0.700
ψ4 2.470 0.063 0.059 0.048 0.046 0.045 0.046

n = 200
ψ1 0.561 0.561 0.559 0.552 0.550 0.546 0.543

q1,−1/3 ψ2 0.331 0.241 0.239 0.237 0.234 0.233 0.237
ψ3 1.236 0.428 0.456 0.482 0.528 0.580 0.401
ψ4 1.027 0.027 0.026 0.024 0.024 0.024 0.023
ψ1 0.548 0.552 0.550 0.547 0.543 0.540 0.540

q2,1/2 ψ2 0.333 0.276 0.274 0.272 0.271 0.270 0.277
ψ3 1.265 0.476 0.507 0.522 0.577 0.641 0.436
ψ4 0.911 0.023 0.022 0.021 0.021 0.021 0.021
ψ1 0.520 0.528 0.526 0.527 0.526 0.526 0.519

q3,−1/2 ψ2 0.335 0.197 0.196 0.188 0.187 0.186 0.191
ψ3 1.248 0.365 0.394 0.434 0.489 0.553 0.350
ψ4 1.236 0.030 0.029 0.024 0.023 0.023 0.023

We considered the following four choices of ψ:

ψ1(x, y) = xy, ψ2(x, y) = xy2, ψ3(x, y) = 1[x ≤ y],

and

ψ4(x, y) =
x− y

1 + x2 + y2
.

For each choice of distribution Q, we generated 20,000 random samples of size n
and then calculated the empirical estimator and our proposed estimator for the
above choices of m.

Table 1 gives the simulated mean square errors (multiplied by 103) of the em-
pirical estimator (m = 0) and the efficient estimator for the choices m = 1, . . . , 5.
The standard errors of these simulated mean square errors are 1 percent of the
stated values. For comparison we give in the last column the values suggested by
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the asymptotic theory for the efficient estimator. We see that for all three densities
there are significant improvements over the empirical estimator for the choices ψ2,
ψ3 and ψ4. The improvements for ψ4 are particularly impressive. For the function
ψ1, there is essentially no detectable improvement. For the functions ψ1, ψ2 and ψ4

we are already at the value suggested by the asymptotic theory. For ψ3 we are still
between 5 to 10 percent higher even for the best m.

Table 2

MSE (times 103) for m = 0, . . . , 5 and the data driven choice m̂; n = 100, N = 1000, B = 200

ψ \m 0 1 2 3 4 5 m̂
ψ1 1.113 1.121 1.115 1.090 1.083 1.066 1.086

q1,−1/3 ψ2 0.693 0.487 0.477 0.472 0.465 0.459 0.458
ψ3 2.454 0.844 0.945 1.064 1.245 1.469 0.848
ψ4 2.075 0.057 0.052 0.048 0.047 0.046 0.046
ψ1 1.134 1.149 1.143 1.127 1.117 1.103 1.124

q2,1/2 ψ2 0.671 0.562 0.555 0.549 0.546 0.539 0.533
ψ3 2.542 1.008 1.130 1.244 1.473 1.729 1.013
ψ4 1.794 0.052 0.047 0.045 0.043 0.041 0.042
ψ1 1.047 1.067 1.064 1.070 1.063 1.061 1.110

q3,−1/2 ψ2 0.692 0.397 0.390 0.375 0.371 0.367 0.362
ψ3 2.522 0.735 0.852 1.006 1.222 1.506 0.735
ψ4 2.512 0.061 0.058 0.047 0.045 0.045 0.045

Choice of m. The above simulations show that the proposed estimator is some-
what sensitive to the choice of m. This raises the question of how to choose m.
Here is a possibility. For a given sample, estimate the mean square variance of the
estimator for various choices of m using the bootstrap mean square error. Then
select the estimator belonging to the m with smallest bootstrap mean square error.
We studied the behavior of this data driven choice m̂ of m via simulations for the
three given densities and the four choices of ψ. We took n = 100 and bootstrap
sample size B = 200. The results for N = 4000 repetitions are reported in Table 2.
The table gives the mean square errors (multiplied by 103) for m = 0, . . . , 5 and the
data driven choice m̂. In each case, the mean square error of the estimator based
on the data driven choice m̂ is very close to the minimal mean square error among
the estimators with fixed m = 0, . . . , 5. The standard errors of the reported mean
square errors are around 2 percent of the reported values. We see that this data
driven method is quite successful.

6. Proof of Lemma 4.1. Let us write ‖A‖ for the Euclidean norm of the p×q
matrix A and ‖A‖o for its operator (or spectral) norm so that

‖A‖2 =
p∑

i=1

q∑
j=1

A2
ij
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and

‖A‖o = sup{‖Ax‖ : x ∈ R
q, ‖x‖ = 1}

is the square root of the largest eigen value of A>A. We have ‖A‖o ≤ ‖A‖.
The vector γm = (γm,1, . . . , γm,m)> satisfies the normal equation

Smγm = Tm

where Sm is the symmetric m×m matrix whose (i, j)-entry is
∫
BviBvj dQ and Tm

is the m-dimensional column vector whose i-th entry is
∫
ψBvi dQ, i, j = 1, . . . ,m.

Note that

xTSmx =
∫

(B(
m∑

i=1

xivi))2 dQ, x = (x1, . . . , xm)> ∈ R
m.

It follows from this, (2.3) and (2.4), that the eigen values of Sm fall into the interval
[2(1− ρ), 2(1 + ρ)]. Thus the matrix Sm is invertible with an inverse S−1

m that has
eigen values in the interval [1/(2 + 2ρ), 1/(2− 2ρ)]. This yields that

(6.1) ‖S−1
m ‖o ≤ 1/(2− 2ρ).

Since
∫
ψBvi dQ =

∫
B∗ψvi dF is the i-th Fourier coefficient of B∗ψ with respect

to the basis v1, v2, . . . , where B∗ is the adjoint of B. This shows that

(6.2) ‖Tm‖2 ≤
∫

(B∗ψ)2 dF ≤ (2 + 2ρ)
∫
ψ2 dQ.

Consequently,
m∑

k=1

γ2
m,k ≤ ‖S−1

m ‖2
o‖Tm‖2 ≤ (1 + ρ)2

(1− ρ)2

∫
ψ2 dQ.

Thus we only need to show the first part of Lemma 4.1.
The random vector γ̂m = (γ̂m,1, . . . , γ̂m,m)> satisfies the normal equation

Ŝmγ̂m = T̂m

where Ŝm is the symmetric m×m matrix whose (i, j)-entry is

1
n

n∑
r=1

(v̂i(Xr)− v̂i(Yr))(v̂j(Xr)− v̂j(Yr))

and T̂m is the m-dimensional column vector whose i-th entry is

1
n

n∑
r=1

ψ(Xr, Yr)(v̂i(Xr)− v̂i(Yr))

for i, j = 1, . . . ,m. Finally, let S̄m be the m×m matrix whose (i, j)-entry is

1
n

n∑
r=1

(vi(Xr)− vi(Yr))(vj(Xr)− vj(Yr))
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and T̄m be the m-dimensional column vector whose i-th entry is

1
n

n∑
r=1

ψ(Xr, Yr)(vi(Xr)− vi(Yr)).

Since uk is bounded by
√

2, it is easy to check that

E(‖T̄m − Tm‖2) ≤ 8m
n

∫
ψ2 dQ and E(‖S̄m − Sm‖2 ≤ 64m2

n
.

It follows from (4.3) and the Cauchy–Schwarz Inequality that

‖T̂m − T̄m‖2 ≤ 1
n

n∑
r=1

ψ2(Xr, Yr)8π2m3 sup
t∈R

|F̂ (t)− F (t)|2 = Op(m3/n).

Similarly, one obtains

‖Ŝm − S̄m‖2 = Op(m4/n).

Combining the above we obtain in view of m5/n→ 0 that

m‖T̂m − Tm‖2 = op(1) and m‖Ŝm − Sm‖2 = op(1).

The second statement holds also in the operator norm and implies that Ŝm is
invertible on an event whose probability tends to one. Moreover, on this event
m‖Ŝ−1

m − S−1
m ‖2

o = op(1) in view of (6.1). The desired (4.1) is now immediate from
this and (6.2).
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