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1. Introduction.

In a multivariate semiparametric generalized linear model (SGLM), the response
Y ∈ l and the covariate (X, Z) ∈ [c, d]p×m × [0, 1] satisfy the structural relation
that the conditional expectation of Y given (X, Z) is related to a semiparametric
systematic part X�ϑ + �(Z) through a link h. Namely,

(Y |X, Z) = h(X�ϑ + �(Z)), ϑ ∈ Θ, � ∈ Υ, (1)

where Θ ⊂ p is a nonempty open subset, Υ is a collection of unknown smooth
functions from [0, 1] into m, and h is a smooth function from m to l. The
conditional density f of Y of the conditional distribution F given (X, Z) w.r.t. a
σ-finite measure λ1 is assumed to be from an exponential family of the form

f(y|ϕ) = exp(ϕ�y − b(ϕ)), y ∈ Y, ϕ ∈ Φ

for Y and Φ nonempty subsets of l. The covariate (X, Z) has an unknown joint
distribution G ∈ G, a nonempty collection of distributions.

Suppose from now on that the true but unknown parameters are (θ, ρ). We are
interested in the efficient estimation of the regression parameter θ in the presence
of the nuisance parameter γ = (G, ρ) based on the independent and identically
distributed observations ξj = (Xj , Zj , Yj), j = 1, · · ·, n of ξ = (X, Z, Y ). The effi-
ciency criterion used here is that of least dispersed regular estimates that is based
on the convolution theorems. See, Begun, Hall and Wellner (1983), Pfanzagl and
Wefelmeyer (1982), Bickel, Klaassen, Ritov and Wellner (1993) among others.

Relatively recently, a theory was developed on construction of efficient estimates
based on the modern asymptotic theory of semiparametric models. Bickel (1982)
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used the sample splitting technique to give a general procedure for constructing
adaptive estimates in semiparametric models. The sample splitting was furthered
in a series of articles by Schick (1986, 1987, 1993, 2001) and Forrester, et al. (2003)
among others. The procedure nowadays utilizes all the data in both estimating
the unknown influence function and evaluating the estimate functions, and thus
has reached a stage of practical applications. In the spirit of this procedure, we
construct an efficient estimate of the regression parameter based on all the sample
in both estimation and evaluation. We avoid the sample splitting and discretization
of the preliminary estimate. Discretization was introduced by Le Cam (1955) and
is commonly used to circumvent technical difficulties in the construction of efficient
estimates in modern semiparametric models. Discretized estimates can be used as
if they were nonrandom thus simplify proofs.

The SGLMs lack the structural independence between the response and the un-
observable error; which is usually assumed in various models such as the symmetric
regression model, the partially linear model (PLM). The independence structure
makes it possible for the conditions with the “leave-one-out” technique to be cir-
cumvented by conditioning argument. See Schick (1994, 2001) and Forrester, et al.
(2003). However, no such assumption is allowed here and so we have to directly
deal with this difficulty. We believe that our result is a supplement to the aforemen-
tioned work. It provides a theoretical justification for the commonly used scoring
method about improving the efficiency of estimates of parameters in SGLMs. It
sheds additional light on the existing theory of the construction of efficient esti-
mates in semiparametric models.

The SGLM is a natural extension of the generalized linear models (GLM) studied
by Nelder and Wedderburn (1972). When the nonparametric part ρ is left out, the
SGLM recovers the GLM,

μ = (Y |X) = h(X�θ).

When h is the identity map on , the SGLM reproduces the PLM, which is widely
studied in literature, e.g. Schick (1993), Bhattacharya and Zhao (1997), and For-
rester, et al. (2003) among others. Many authors have investigated efficient estima-
tion of the parameters in the GLMs and SGLMs. Mammen and Geer (1997) studied
quasilikelihood generalized linear models(QSLMs) using penalized quasi-likelihood
method. They pointed out in Remark 4.2 (in the middle of page 1026) that their
estimate is efficient if the conditional distribution of Y belongs to an exponential
family with mean μ and variance V (μ). Chen (1995) considered the estimation
of the SGLM when the link is canonical and proposed his estimate by utilizing
regression splines in which the nonparametric part (ρ in our notation) was approx-
imated by parametrized functions (linear combination of certain tensor-product
polynomial splines). He indicated in Remark 1 (page 1109) that his estimate is
efficient when the nonparametric ρ is approximated by parametrized functions of
linear combination of certain tensor-product polynomial splines. Severini and Wong
(1992) gave a quite general procedure, the profile likelihood, for efficient estimates
for a class of semi-parametric models of which the generalized linear models fol-
low as a special case. The profile likelihood estimates are only efficient provided
that ρ(z; θ) is a “least favorable curve”. Sevrini and Staniswalis (1994) investigated
quasi-likelihood estimation in semiparametric models taking the above approach
of “maximum likelihood estimation”.

The formula of the efficient influence function for the SGLMs can be identified
from different approaches. For example, those procedures given by Mammen and
Geer (1997), Chen (1995), and Severini and Staniswalis (1992). Employing a stan-



dard technique in deriving efficient influence functions in semiparametric models,
the method of orthogonality calculations, we calculate the explicit formula (cf., (5)
and (6)). For further discussion and additional examples of the orthogonal calcula-
tions, see, the monograph by Bickel, et al. (1993). Our proposed efficient estimate
is given in an explicit formula based on a preliminary estimate and is very con-
venient to manipulate, whereas estimates related to maximum likelihood such as
those noted above usually involve in the solutions of highly nonlinear equations.
With our method, we can readily improve an inefficient estimator to attain the
efficiency.

In the sequel, we write θ, ρ for the true but unknown parameter values and ϑ, �
for the generic values in Θ, Υ respectively. Write ϑ,γ the expectation calculated
under the probability measure Pϑ,γ and P = Pθ,γ and = θ,γ . For a probability
measure Q, L2,0(Q) ≡ {h ∈ L2(P ) :

∫
h dP = 0}. We call (and denote) {θn :

n = 1, 2, · · ·} ⊂ Θ a local sequence of θ if {√n(θn − θ)} stays bounded uniformly
in n. At the true parameters (θ, γ), we shall reserve η = X�θ + ρ(Z), φ = a(η);
at the perturbed parameter value ϑ ∈ Θ, we reserve ζ = X�ϑ + ρ(Z), ϕ = a(ζ).
We abuse ϕ to also denote an arbitrary element in Φ when there would be no
ambiguity in the context. The rest of article is structured as follows. We calculate
the information lower bound and characterize efficient estimates in Section 2. In
Section 3, we propose an efficient estimate, followed by the main theorem. Section 4
deals with the convergence of the estimate of the nonparametric part and provides
preliminary estimates. Section 5 collects technical details.

2. Efficiency Consideration

This section gives the efficient influence function via the method of orthogonality
calculations and characterizes efficient regular estimates.

In a SGLM, the expectation μ(ϕ) of the response Y is related to the semiparamet-
ric systematic part X�ϑ+�(Z) such that μ(ϕ) = h(X�ϑ+�(Z)) through link h. As-
suming the existence of the inverse of the mean μ, we can write ϕ = a(X�ϑ+�(Z))
with a = μ−1◦h. Let M be a subset of m such that X�ϑ+�(Z) ∈ M for all ϑ ∈ Θ,
(X, Z) ∈ [c, d]p×m × [0, 1] and � ∈ Υ. Then a : M ⊂ m → l and Φ = a(M). We
assume henceforth that Φ is a convex subset of the interior of the natural parameter
space consisting of all ϕ having the finite normalizing function

exp(b(ϕ)) =
∫

exp(ϕ�y) dλ1(y).

Hence in Φ, all moments of Y are finite and all the derivatives of b(ϕ) exist and, in
particular, the l-dimensional expectation vector and l×l covariance matrix of Y are
μ(ϕ) = ϕ Y = ḃ(ϕ) ≡ ∂b(ϕ)/∂ϕ and Σ(ϕ) = Covϕ(Y ) = b̈(ϕ) ≡ ∂2b(ϕ)/∂ϕ ∂ϕ�.

The following assumption ensures that the composite a is adequately smooth
for the ongoing theoretic analysis. Write |A| for the Euclidean norm of matrix
A = (ai,j) ∈ p×m so that |A|2 =

∑p
i=1

∑m
j=1 a2

i,j . Let

s(Y, ϕ) =
∂ log f

∂ϕ
(y|ϕ), ṡ(Y, ϕ) =

∂s

∂ϕ� (Y, ϕ),

Assumption 2.1 The link h : M → l and the inverse μ−1 : h(M) → Rl are
twice continuously differentiable. Moreover, both s(Y, ϕ) and ṡ(Y, ϕ) are F × G
square-integrable for every ϑ ∈ Θ and � ∈ Υ.



Under Assumption 2.1, a is twice continuously differentiable, so that the condi-
tional score s(Y, ϕ) and the conditional information matrix I(ϕ) given X, Z can be
calculated as

s(Y, ϕ) = ȧ�(ϕ)
(
Y − h(ϕ)

)
, I(ϕ) = Covϑ

(
s(Y, ϕ)|X, Z

)
= ȧ�(ϕ)Σ(ϕ)ȧ(ϕ).

Clearly under Assumption 2.1, I(a(X�ϑ + �(Z))) is G-integrable for ϑ ∈ Θ and
� ∈ Υ. Using the chain rule, we calculate

ṡ(Y, ϕ) =
∂s(Y, ϕ)

∂ϕ� =
l∑

i=1

ä�i (ϕ)(yi − hi(ϕ)) − I(ϕ), (2)

where yi, ai and hi are the i-th components of Y , a and h respectively.
Let {q, q1, q2, · · ·} be the densities of probability measures {Q, Q1, Q2, · · ·} with

respect to some dominating measure λ defined on the same σ-field. We say {Qn}
has tangent τ with respect to Q if τ ∈ L2,0(Q) such that

∫ (√
n(
√

qn −√
q) − (1/2)τ

√
q
)2

dλ → 0, n → ∞.

Let g be the density of G with respect to a σ-finite measure λ2. Then the distri-
bution of ξ = (X, Z, Y ) under the probability measure Pϑ,G,� has a density w.r.t.
the dominating measure λ1 × λ2, which is

f(y|ϕ)g(x, z) = exp(ϕ�y − b(ϕ))g(x, z), (y, x, z) ∈ l × [c, d]p×m × [0, 1], ϕ ∈ Φ.

Denote by GZ the marginal distribution of Z. Write 1 the column vector of all
components 1 and ‖ψ‖ = supz∈[0,1] |ψ(z)| the supremum norm for ψ : [0, 1] → Rl.
In an analogue to Lemma 3.4 of Schick (1993), one could verify the following lemma.

Lemma 2.2: Suppose Assumption 2.1 holds. Let {Gn} ⊂ G be a sequence of
distributions which have tangent u with respect to G. Let {ρn} ⊂ Cm([0, 1]) be a
sequence such that

∫
‖√n(ρn − ρ) − v‖2 dGZ = o(1) for some v ∈ Lm

2 (GZ). Then
Pθ+1/

√
n,γn

(with γn = (Gn, ρn)) has the tangent

τ(ξ; u, v) =
(
Y − h(η)

)�
ȧ(η)(X�1 + v(Z)) + u(X, Z) (3)

with respect to Pθ,γ.

The tangent space T of the SGLM is the closed linear subset of L2,0(Pθ,γ) spanned
componentwise by all the expressions (3) for u ∈ L2,0(G) and v ∈ Lm

2 (GZ). Let us
write

κ̇1 = Xȧ�(η)(Y − h(η)), κ̇2 = u(X, Z), κ̇3 = v�(Z)ȧ�(η)(Y − h(η)).

Let T1, T2, T3 be the closed linear subsets of L2,0(Pθ,γ), L2,0(G), and L2,0(Pθ,γ)
spanned componentwise by κ̇1, κ̇2, κ̇3 for u ∈ L2,0(G) and v ∈ Ll

2(GZ) respectively.
Then it follows from (3) that T = T1 +T2 +T3. Note that T1 and T2, T2 and T3 are
two orthogonal pairs. This follows from the equalities:

(κ̇1κ̇2) = 0, (κ̇2κ̇3) = 0, u ∈ L2,0(G), v ∈ Lm
2 (GZ),



which are readily verified by conditioning on (X, Z). The sum space T2 + T3 is
closed, so that the projection κ̇1,∗ of κ̇1 into it exists by the projection theorem.
Then L∗

θ,γ = κ̇1− κ̇1,∗ is the efficient score function for estimating θ in the presence
of nuisance parameter γ = (G, ρ). See e.g. Bickel, et al. (pages 70-71, 1993), or Van
der Vaart (page 369, 1998). Because of the above orthogonality, κ̇1,∗ is simply the
projection of κ̇1 into T3, which is determined by the equations:

(
κ̇1κ̇3

)
=

(
κ̇1,∗κ̇3

)
, v ∈ Lm

2 (GZ).

Since each component of κ̇1,∗ is an element of T3, we write

κ̇1,∗ = mθ,γ(Z)ȧ�(η)
(
Y − h(η)

)

for some p×m matrix mθ,γ(Z) (of which each row is a vector in Lm
2 (GZ)) satisfies:

(
Xȧ�(η)Σ(φ)ȧ(η)v(Z)

)
=

(
mθ,γ(Z)ȧ�(η)Σ(φ)ȧ(η)v(Z)

)
, v ∈ Ll

2(GZ),

where we used the argument of conditioning on X, Z. Now further conditioning on
Z, we obtain

mθ,γ(Z) =
(
XI(η)|Z

) −1
(
I(η)|Z

)
, (4)

where −1
(
I(η)|Z

)
denotes the inverse (assuming the existence) of the matrix(

I(η)|Z
)
. Hence the efficient score function is given by

L∗
θ,γ(ξ) = (X − mθ,γ(Z))ȧ�(η)

(
Y − h(η)

)
. (5)

The efficient information matrix is

Jθ,γ = L∗
θ,γ(ξ)L∗�

θ,γ(ξ) =
(
(X − mθ,γ(Z))I(η)(X − mθ,γ(Z))�

)
. (6)

Let L#
θ,γ(ξ) = J−1

θ,γL∗
θ,γ(ξ) = J−1

θ,γ (X − mθ,γ(Z))ȧ�(η)
(
Y − h(η)

)
, where Jϑ,(G,�) is

assumed to be positive definite for every ϑ ∈ Θ and (G, �) ∈ Γ = G × Υ. Note the
functional ψ(Pϑ,γ) = ϑ is differentiable with the derivative being the identity on

p. It is readily verified

∫
L#

θ,γ(ξ)τ(ξ; u, v) dPθ,γ = 1, u ∈ L2,0(G), v ∈ Lm
2 (GZ).

Thus, it follows from the convolution theorems (see e.g. Schick(pages 1490-1491,
1993)) that L#

θ,γ(ξ) is the efficient influence function for estimating θ in the pres-
ence of nuisance parameter γ.

Example 2.3 Severini and Wong (1994) investigated estimation of quasilikeli-
hood SGLMs with the quasilikelihood function Q prescribed by

Q(μ, y) =
∫ y

μ
V (s)−1(s − y) ds,

where V (μ) is the variance function (of the mean μ). Let r = ρ(z; ϑ) be the solution



to the equation:

(
∂

∂r
Q

(
h(X�ϑ + r); Y

) ∣∣∣Z = z

)
= 0. (7)

Substituting r = ρ(z; ϑ) in the above equation, implicitly differentiating it with
respect to ϑ at θ and using the structural relation (1), one finds that ρ(z; θ) = ρ(z)
and that “the least-favorable curve” is ∂

∂θρ(·; θ) = −mθ,γ(·), provided that the
quasilikelihood function is a true likelihood function; where (7) boils down to the
equation:

(
ȧ�(X�ϑ + r))(Y − h(X�ϑ + r))|Z = z

)
= 0, ϑ ∈ Θ, z ∈ [0, 1] (8)

It is readily verified that the second derivative ρ̈(·, ϑ) w.r.t. ϑ exists and is con-
tinuous for ϑ ∈ Θ using the nice analytic behavior of the exponential family. This
fact is used in concluding Theorem 4.1 below without further referring to it.

Example 2.4 Let h be the identity link and Y have normal distribution N (μ, σ2
0)

with known dispersion parameter σ2
0 > 0. Then SGLM (1) simplifies to the well

known PLM. In this case, a is the identity map and the efficient score (5) and
efficient information (6) specialize to the popular formulae of the PLM:

L∗
θ,γ(ξ) = (X − (X|Z))(Y − X�θ − ρ(Z)), Jθ,γ = σ2

0 (X − (X|Z))⊗2,

where M⊗2 is the product MM� of square matrix M . Here the efficient influ-
ence function is calculated without the independence between the error and the
covariates. The independence is usually assumed in PLM.

An estimate Tn of parameter ν ∈ Θ is a measurable function from n into Rp.
We call Tn regular at ν if there is a probability distribution L0 such that

L
(√

n(Tn − νn)|Qνn,τ

)
⇒ L0, τ ∈ T

for every local sequence {νn} ⊂ Θ of ν, where Qνn,τ denotes a smooth submodel
of the model {Pϑ,G,� : ϑ ∈ Θ, (G, �) ∈ Γ} with arbitrary tangent τ ∈ T . Here the
left-hand side expression is the distribution of

√
n(Tn − νn) calculated under the

assumption that ξ1, ξ2, · · ·, ξn are independent with the same distribution Qνn,τ . It
follows from the convolution theorems (see e.g. Bickel,et al. , pages 57-73, 1993)
that L0 is the convolution of the normal distribution N (0, J−1

ν,γ ) and some other
distribution M independent of the normal distribution. Namely, L0 = N (0, J−1

ν,γ )⊗
M. An estimate Tn of ν is regular with limiting distribution L0 = N (0, J−1

ν,γ ) if and
only if Tn satisfies the expansion

Tn = ν +
1
n

n∑
j=1

L#
ν,γ(ξj) + oPν,γ

(n−1/2).

Summarizing our findings above, we have the following theorem.

Theorem 2.5 : Suppose that Assumption 2.1 holds. Suppose that Jθ,γ is invert-
ible. Then an estimate Tn of θ is efficient in the presence of nuisance parameter γ



if and only if (with ηj = X�
j θ + ρ(Zj))

Tn = θ +
1
n

n∑
j=1

J−1
θ,γ (Xj − mθ,γ(Zj))ȧ�(ηj)

(
Yj − h(ηj)

)
+ oPθ,γ

(n−1/2). (9)

3. The Proposed Efficient Estimate

In this section, we propose the efficient estimate based on a preliminary
√

n-
consistent estimate of the parameter and a uniform consistent estimate of the
nonparametric part. Candidates for the preliminary estimate are discussed in the
next section. The main theorem is given.

Fix ϑ ∈ Θ and z ∈ [0, 1]. Let ρ̂n(z, ϑ) be an estimate of ρ(z) which solves the
equation:

n∑
j=1

Knj(Zj − z)ȧ�(X�
j ϑ + r))(Yj − h(X�

j ϑ + r)) = 0, (10)

where Knj(·) = K((Zj − ·)/hn) is a probability kernel with bandwidth hn > 0,
which is chosen to be bounded, Lipschitz, and have support [−1, 1]. It is shown be-
low that ρ̂n(z, ϑ) is differentiable with respect to ϑ with total derivative ˙̂ρn(z, ϑ) =
∂
∂ϑ ρ̂n(z, ϑ). Let θ̃n be a preliminary estimate of θ. Then at our disposal we have the
known quantities η̂j = X�

j θ̃n+ρ̂n(Zj , θ̃n), j = 1, · · ·, n. We estimate the information
matrix Jθ,γ by the empirical version estimate Ĵθ̃n

:

Ĵθ̃n
= (1/n)

n∑
j=1

(Xj − m̂j)I(η̂j)(Xj − m̂j)�,

where m̂j = m̂(Zj , θ̃n) with m̂(·, ϑ) = − ˙̂
nρ(z, ϑ) being an estimate of mθ,γ(·).

The construction of m̂(·, θ) is given below. Mimicking (9), we propose an efficient
estimate of the parameter θ given by

θ̂n = θ̃n + (1/n)
n∑

j=1

Ĵ−1

θ̃n

(Xj − m̂j)ȧ�(η̂j) (Yj − h(η̂j)) . (11)

It is clear that this estimate can also be viewed as the estimate resulted from
the popular scoring method to improve efficiency. To establish the efficiency of the
proposed estimate θ̂n in (11), we need to show that θ̂n satisfies the expansion (9).
For t ∈ p, denote θ̄nt = θ + n−1/2t. We require the existence of

√
n-consistent

estimate of the parameter and an uniform consistent estimate of ρ(z) and mθ,γ(z).
Write ρ̂ϑ(z) = ρ̂n(z, ϑ) and so forth.

Assumption 3.1 There exists a sequence of
√

n-consistent estimates θ̃n of θ.

Assumption 3.2 There exists a map (ϑ, z) �→ ρϑ(z), ϑ ∈ Θ, z ∈ [0, 1] which is
twice continuously differentiable with respect to ϑ with bounded first and second
derivatives (ϑ, z) �→ ρ̇ϑ(z) and (ϑ, z) �→ ρ̈ϑ(z) such that ρθ = ρ, ρ̇ϑ = −mϑ,γ , and

sup
|t|≤M

‖ρ̂θ̄nt
− ρθ̄nt

‖ = oP (1), (12)



sup
|t|≤M

‖ρ̂θ̄nt
− ρ̇θ̄nt

‖ = oP (1) (13)

for every M > 0.

Assumption 3.3 There exist a compact neighborhood N ⊂ Θ of θ such that

sup
ϑ∈N

sup
�∈Υ

(|s(Y, X�ϑ + �(Z))|2 + |ṡ(Y, X�ϑ + �(Z))|2) < ∞.

It follows from (2) that Condition 3.4 next is sufficient for Assumption 3.3.

Condition 3.4 The link h : M → l and the inverse μ−1 : h(M) → Rl of the mean
μ have bounded continuous first and second total derivatives. Moreover,

∫
sup

ϑ∈N,�∈Υ
|b̈(a(x�ϑ + �(z)))|2 dG(x, z) < ∞.

Remark 1 : Under Condition 3.4, the composite a has bounded continuous first
and second total derivatives on M.

We are now ready to state the main theorem with the proof given in the last
section.

Theorem 3.5 : Suppose Assumptions 2.1–3.3 hold. Assume that Jθ,γ is invert-
ible. Then the estimate θ̂n given in (11) satisfies (9):

θ̂n = θ +
1
n

n∑
j=1

J−1
θ,γ (Xj − mθ,γ(Zj))ȧ�(ηj)

(
Yj − h(ηj)

)
+ oP (n−1/2). (14)

Hence θ̂n is efficient and asymptotically normal
√

n(θ̂n − θ) ⇒ N (0, J−1
θ,γ ).

4. Convergence of ρ̂n and Preliminary Estimate θ̃n.

In this section, we discuss conditions that guarantee the solution ρ̂n of (10) satisfies
Assumption 3.2. We give the results in the case of l = m = 1 (assumed henceforth).

We note that equation (10) is the kernel smoothing score equation for (8) based
on the score ȧ(X�θ + r)(Y − h(X�θ + r)) of the log likelihood a(X�θ + r)Y −
b(a(X�θ + r)) for the SGLM. Examining the proofs of Wang and Peng (2004), we
observe that the boundedness of the link h, the inverse μ−1 of the mean μ, and
the existence of all the moments of the exponential family imply their moment
assumptions. Based on this observation, we give the following theorem with the
proof referred to their article. Let Θ be a compact subset of p and H is a compact
subset in .

Theorem 4.1 : Assume the following hold.
(i) Assumption 2.1 and Condition 3.4 are satisfied.
(ii) The density g of (X, Z) is Lipschitz in z:

|g(x, z1) − g(x, z2)| ≤ Lg|z1 − z2|, x ∈ [c, d]p, z1, z2 ∈ [0, 1],

for some constant Lg > 0 independent of x. Moreover, the marginal density gZ of
Z is bounded away from zero: infz∈[0,1] qZ(z) > 0.

(iii) Denote χ(ϑ, r, z) =
(
a(X�ϑ + r)Y − b(a(X�ϑ + r))|Z = z

)
and χ̈(ϑ, r, z) =



∂2χ
∂r2 (ϑ, r, z). Then infϑ∈Θ infr∈H infz∈[0,1] |χ̈(ϑ, r, z)| > 0.

(iv) supϑ supr∈H

∫
y2f(y|a(x�ϑ + s)) dν(y)dG(x, z) < ∞.

(v) Denote Sϑ(r, Y, X) = (Y − h(X�ϑ + r))ȧ�(X�ϑ + r). Then r �→ Sϑ(r, y, x) is
monotone for every ϑ ∈ Θ, x ∈ [c, d]m, y ∈ . Further, ρϑ(z) satisfies

[Sϑ(ρϑ(z), Y, X)|Z = z] = 0, ϑ ∈ Θ, z ∈ [0, 1],

and infϑ∈Θ inf |r|≤r0
infz∈[0,1] |Dϑ(r, z)| > 0 for some r0 > 0, where Dϑ(r, z) =[

∂Sϑ

∂r (ρϑ(z) + r, Y, X)|Z = z
]
.

(vi) For some constant Lρ > 0 independent of ϑ,

|ρϑ(z1) − ρϑ(z2)| ≤ Lρ|z1 − z2|, z1, z2 ∈ [0, 1], ϑ ∈ Θ.

Then for any even integer d ≥ 2 with hn = n−d/(4d+12), we have

sup
ϑ∈Θ

‖ρ̂n(·, ϑ)−ρ(·, ϑ)‖ = OP (n−d/(4d+12)), sup
ϑ∈Θ

‖ ˙̂ρ(·, ϑ)−ρ̇(·, ϑ)‖ = OP (n−d/(4d+12)).

Hence ρ̂n fulfills Assumption 3.2.

Preliminary Estimate θ̃n. Here we give two candidates for the preliminary
estimates {θ̃n} which fulfills Assumption 3.1. The moment-type estimate θ̂M of
Wang and Peng (2004) is based on the following moment equations:

(Y k) =
(
exp(−b(φ))

∂k

∂φk
exp(b(φ))

)
, k = 1, 2, · · ·. (15)

Specifically, θ̂M is the solution to the following p equations.

1
n

n∑
i=1

Yi =
1
n

n∑
i=1

ḃ(φn,i(θ)), (16)

1
n

n∑
i=1

Y 2
i =

1
n

n∑
i=1

(
ḃ2(φn,i(θ) + b̈(φn,i(θ))

)
, (17)

· · ·· · ·· · ·· · ·
1
n

n∑
i=1

Y p
i =

1
n

n∑
i=1

(
ḃp(φn,i(θ)) + · · · + b(p)(φn,i(θ))

)
, (18)

where b(p) denotes the p-th derivative of b, and φn,i(θ) = a(X�
i θ + r̂n(Zi; θ)) with

r̂n an estimate of ρ. This r̂n could be any consistent estimate of ρ. For instance,
the above maximum-likelihood-type estimate ρ̂n, denoted by ρ̂ML henceforth. The
following moment-type estimate ρ̂M (z) could also be used for r̂n. According to
Wang and Peng (2004), ρ̂M (z) is based on the conditional moment equation:

(Y |Z) =
(
exp(−b(φ))

∂

∂φ
exp(b(φ))|Z

)
= (h(X�θ + ρ(Z))|Z).

Replacing the above conditional expectations with the ordinary kernel estimates,



they gave their estimate ρ̂M (z, θ) as a solution with respect to r to the equation:

1
nhn

n∑
j=1

YjKnj(z) =
1

nhn

n∑
j=1

h(X�
j θ + r)Knj(z), z ∈ [0, 1], (19)

Moment estimators may have simple structures such as explicit formulas and thus
have computational ease. Peng and Wang (2004) gave several important examples
that have simple and explicit formulas for the moment estimates. This method is
particularly useful when the number of parameters are low.

In what follows, we shall take r̂n to be either of ρ̂ML or ρ̂M and the resulting
estimates of θ are denoted by θ̃ML and θ̃M respectively. As pointed out by Wang
and Peng (2004), (16) and (19) are not linearly dependent if the link h is canonical
(i.e., a is the identical map). If the link is not canonical, namely, a is not an identical
map, one may use the solution of (19) as r̂n. In the canonical link, one may replace
(16) with an additional moment equation:

1
n

n∑
i=1

Y p+1
i =

1
n

n∑
i=1

(
ḃp+1(φn,i(θ)) + · · · + b(p+1)(φn,i(θ))

)
. (20)

For unambiguity let us focus on the system of equations (17)-(18) and (20)
while ρ̂θ is an estimate of ρ. Other combinations of equations may be analogously
considered. Let A(y) = (y2, · · ·, ym+1)� and B(φ) be a m-dimensional vector with
components B1(φ) = ḃ2(φ) + b̈(φ), B2(φ) = ḃ3(φ) + 3ḃ(φ)b̈(φ) + b

′′′
(φ), · · ·, and

Bm(φ) = ḃm+1(φ) + · · ·+ b(m+1)(φ). Then (17)-(18) and (20) can be written in the
vector form:

Λn(θ) =
1
n

n∑
i=1

(
A(Yi) − B

(
a(X�

i θ + ρ̂θ(Zi))
))

= 0. (21)

Clearly, the above equation may have many solutions. Henceforth denote Θ a com-
pact set in p such that equations (21) has a unique solution in Θ. Then the above
equation has only one solution almost surely for large n in Θ.

Theorem 4.2 : (i) Suppose all assumptions in Theorem 4.1 hold.
(ii) In addition, for ϑ ∈ Θ, the total derivative Ḃ

(
a(X�ϑ+ρϑ(Z))

)
= ∂B

∂ϑ�
(
a(X�ϑ+

ρϑ(Z))
)

exists and is continuous, square-integrable, nonsingular; and the expecta-
tion D(ϑ) is uniformly bounded from below on Θ: infϑ∈Θ |D(ϑ)| > 0.Further,

sup
|r|≤r0

sup
ϑ∈Θ

|Ḃ
(
a(X�ϑ+ρϑ(Z)+r)

)
| < ∞, sup

|r|≤r0

sup
ϑ∈Θ

|B̈
(
a(X�ϑ+ρϑ(Z)+r)

)
| < ∞.

Then the θ̃ML resulted from r̂n = ρ̂ML fulfills Assumption 3.1.

Theorem 4.3 : Suppose all assumptions in Theorem 4.2 hold except that (ii) is
replaced with a weaker one: (ii) holds with a the identity map. Then all the results
of Theorem 4.2 hold with θ̃M replaced with θ̃ML resulted from r̂n = ρ̂M .

5. A Proof and a Lemma

.
Proof of Theorem 3.5. We first note that the desired (14) is implied by the



following (22) and (23):

Ĵθ̃n
= Jθ + oP (1) (22)

1
n

n∑
j=1

(
ψ̂(ξj , θ̃n) − ψ(ξj , θ)

)
+ Jθ(θ̃n − θ) = oP (n−1/2) (23)

where ψ̂(ξj , θ̃n) = (Xj − m̂θ̃n
(Zj))ȧ�(η̂j)(Yj − h(η̂j)) and ψ(ξ, ϑ) = (X −

mϑ,(G,ρϑ)(Z))ȧ�(ζ)(Y − h(ζ)) with ζ = X�ϑ + ρϑ(Z) so that, in view of ρθ = ρ,
we have ψ(ξj , θ) = (Xj − mθ,γ(Zj))ȧ�(ηj)(Yj − h(ηj)). Since Ĵθ̃n

is the empirical
version estimate of Jθ,γ , it follows that (22) is implied by (23) by the continuity
and boundedness of the involved functions. Thus, we only have to show (23) which,
in view of Assumption 3.1, is implied by the following (24) and (25).

sup
|t|≤M

∣∣∣∣∣∣
1
n

n∑
j=1

(
ψ̂(ξj , θ̄nt) − ψ(ξj , θ̄nt)

)∣∣∣∣∣∣ = oP (n−1/2) (24)

and

sup
|t|≤M

∣∣∣∣∣∣
1
n

n∑
j=1

(
ψ(ξj , θ̄nt) − ψ(ξj , θ) + Jθn

−1/2t
)∣∣∣∣∣∣ = oP (n−1/2) (25)

for arbitrary M > 0. An application of Lemma 5.1 below with w(ξ, ϑ) = ψ(ξ, ϑ)
yields (25), using equality Mθ = Jθ,γ which is easily verified by means of the
equality E(u(X, Z)(Y − h(η)) = E(u(X, Z)E(Y − h(η)|X, Z) = 0 for any u ∈
L2(G). To show (24), we bound its left hand side by An + Bn where

An = sup
|t|≤M

∣∣∣∣∣∣
1
n

n∑
j=1

(
m̂θ̄nt

(Zj) − mθ̄nt,γ(Zj)
)
s(Yj , η̄ntj)

∣∣∣∣∣∣
and

Bn = sup
|t|≤M

∣∣∣∣∣∣
1
n

n∑
j=1

(
Xj − mθ̄nt,γ(Zj)

)
(s(Yj , η̄ntj) − s(Yj , ηntj))

∣∣∣∣∣∣ ,

with η̄ntj = X�
j θ̄nt + ρ̂θ̄nt

(Zj) and ηntj = X�
j θ̄nt + ρθ̄nt

(Zj). Note

An ≤ sup
|t|≤M

⎧⎨
⎩

∥∥m̂θ̄nt
− mθ̄nt,γ

∥∥ (1/n)
n∑

j=1

|s(Yj , η̄ntj)|

⎫⎬
⎭

≤ sup
|t|≤M

∥∥∥ ˙̂ρθ̄nt
− ρ̇θ̄nt

∥∥∥ sup
|t|≤M

⎧⎨
⎩(1/n)

n∑
j=1

(|s(Yj , ηj)| + |s(Yj , η̄ntj) − s(Yj , ηj)|)

⎫⎬
⎭

By the mean value theorem of a vector function,

s(Yj , η̄ntj) − s(Yj , ηj) =
∫ 1

0
ṡ�

(
Yj , ηj + u(η̄ntj − ηj)

)
du

(
ρ̂θ̄nt

(Zj) − ρ(Zj)
)
.



Since

ηj + u(η̄ntj − ηj) = X�
j (θ + un−1/2t) + ρ(Zj) + u(ρ̂θ̄nt

(Zj) − ρ(Zj)),

it follows from Assumption 3.3 and (12) that ṡ�
(
Yj , ηj +u(η̄ntj−ηj)

)
is bounded by

a square-integrable random variable R(ξj) independent of u, t for sufficiently large
n. Combining these, using (13) and applying the central limit theorem, we conclude
An = oP (n−1/2). Analogously one may show Bn = oP (n−1/2). This completes the
proof of the theorem. �

Let (X , Pϑ) be a probability space space indexed by ϑ ∈ Θ ⊂ p. Denote P = Pθ

with θ ∈ Θ. Let ξ1, ξ2, · · ·, ξn be independent random variables with a common
distribution under P .

Lemma 5.1: Suppose there exists a neighborhood N of θ such that
(a) For each x ∈ X , the map ϑ �→ w(x, ϑ) is continuously differentiable on N with
gradient ϑ �→ ẇ(x, ϑ).
(b) There is an integrable function H such that supϑ∈N |ẇ(x, ϑ)| ≤ H(x) for all
x ∈ X . Then for a sequence {rn} converging to 0,

sup
|ϑ−θ|≤an

|Ẇn(ϑ) − Mθ| → 0, a.s. (26)

sup
|ϑ−θ|≤an

|Wn(ϑ) − Wn(θ) − Mθ(ϑ − θ)|
|ϑ − θ| → 0, a.s. n → ∞. (27)

where

Wn(ϑ) =
1
n

n∑
j=1

w(ξj , ϑ), Mθ =
∫

ẇ(x, θ) dP (x).

Proof: For r > 0 let ωr denote the map defined by

ωr(x) = sup
|ϑ−θ|≤r

|ẇ(x, ϑ) − ẇ(x, θ)|, x ∈ X .

Then for each x ∈ X , ωr(x) ↓ 0 as r ↓ 0; moreover, 0 ≤ ωr(x) ≤ H(x). Thus an
application of the Lebesgue dominated convergence theorem yields

lim
r→0

∫
ωr dP = 0.

In addition, for every r > 0,

lim sup
n→∞

1
n

n∑
j=1

ωrn
(ξj) ≤ lim sup

n→∞
1
n

n∑
j=1

ωr(ξj) =
∫

ωr dP.

Letting r → 0 gives

1
n

n∑
j=1

ωrn
(ξj) → 0, a.s. n → ∞. (28)



Since the left hand side of (26) is bounded by

|Ẇn(θ) − Mθ| +
1
n

n∑
j=1

ωrn
(ξj),

which converges to 0 almost surely in view of (28) and the strong law of large
numbers. This immediately results in (26). By the Taylor theorem, each coordinate
of |ϑ − θ|(Wn(ϑ) − Wn(θ) − Mθ(ϑ − θ)) is bounded by the left hand side of (26)
provided |ϑ − θ| ≤ rn. Thus (26) implies (27). This completes the proof. �
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