
1

Professor Carl Cowen Math 44400 Fall 14

‘A’ LIST PROBLEMS

Solutions to problems from this list may be handed in at any time before 5:00pm on
December 17. The problems will be read and either accepted as correct or returned for rewriting
and resubmission. Only one of these problems will be counted for credit but this problem will
be worth the same number of points as two regular homework assignments. In order to receive
an ‘A’ or ‘A+’ for the course, you must have one of the ‘A’ List problems accepted as correct.

1. (Construction of Q)
Peano (1889) and Dedekind (1888) gave a careful construction of the integers from the
axioms for set theory. We will take the integers, Z, the subset N of natural numbers
(that is, the positive integers), and their properties as given. The goal of this problem is,
using the integers and their properties, to construct the set Q, define the operations of
‘addition’ and ‘multiplication’ for elements of Q, define the set P of ‘positive’ elements of
Q, and prove that Q with these operations and the distinguished subset P is an ordered
field which we can recognize as being the (usual) rational numbers.

An equivalence relation on a set X is a binary relation ∼ that satisfies (i) for every x in
X , x ∼ x (reflexivity), (ii) for x and y in X , x ∼ y implies y ∼ x (symmetry), and (iii) for
x, y, and z in X , x ∼ y and y ∼ z implies x ∼ z (transitivity). A equivalence relation
on a set can be used to define equivalence classes: For x in X , the equivalence class of x,
denoted [x], is the subset of X

[x] = {y ∈ X : y ∼ x}

From the properties of an equivalence relation, we see that [x] = [y] if and only if x ∼ y.
An equivalence relation therefore allows us to break up a set into disjoint pieces, the
equivalence classes. An easy example is modular arithmetic: we say integers m and n
are equivalent modulo 2 if m − n is divisible by 2. This equivalence relation breaks the
integers into two disjoint subsets usually called the ‘even integers’ (the equivalence class
of 2) and the ‘odd integers’ (the equivalence class of 1).

The Construction:
Let X be the set of ordered pairs of integers with second entry non-zero, that is,

X = {(m,n) : m ∈ Z and n ∈ Z but n 6= 0}

We define a binary relation ∼ on X by the following: for integers m1, m2, n1, and n2, we
write (m1, n1) ∼ (m2, n2) when m1n2 = m2n1.

(a) Show that ∼, defined above, is an equivalence relation on X .

(b) Show that if n1 and n2 non-zero integers, then (0, n1) ∼ (0, n2) and show that if m
and n are integers with n 6= 0 for which (0, 1) ∼ (m,n), then m = 0. This shows
that [(0, 1)] = {(0, n) : n ∈ Z but n 6= 0}. We let 0 = [(0, 1)].

(c) Describe [(1, 1)] as a subset of X . We let 1 = [(1, 1)].
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1. (Continued)

(d) Suppose (m1, n1) and (m2, n2) are in X with (m1, n1) ∼ (m2, n2). Show that
(−m1, n1) ∼ (−m2, n2). This means that letting (−[(m,n)]) be [(−m,n)] cannot
cause confusion; we say “(−[(m,n)]) = [(−m,n)] is well-defined.”

(e) For m and n non-zero integers, let (1/[(m,n)]) = [(n,m)]). Show that (1/[(m,n)])
is well-defined.

(f) Suppose (m1, n1), (m2, n2), (m′
1, n

′
1), and (m′

2, n
′
2) are in X and (m1, n1) ∼ (m2, n2)

and (m′
1, n

′
1) ∼ (m′

2, n
′
2). Show that

(m1n
′
1 +m′

1n1, n1n
′
1) ∼ (m2n

′
2 +m′

2n2, n2n
′
2)

Conclude that, for (m,n) and (m′, n′) in X , letting

[(m,n)]⊕ [(m′, n′)] = [(mn′ +m′n, nn′)]

is well-defined.

(g) Show that, for (m,n) and (m′, n′) in X , letting

[(m,n)]� [(m′, n′)] = [(mm′, nn′)]

is well-defined.

The Definition:
Define Q be the set of equivalence classes of ordered pairs in X , that is,

Q = {[(m,n)] : (m,n) ∈ X}

We usually denote elements of Q with single characters such as p or q, but it is important
to remember that each such element of Q is p = [(m,n)] for some (many!) pair (m,n) in
X . Thus, proofs about Q very often rely on choosing appropriate pairs (m,n) to use in
the calculations involving the elements of Q.

(h) Show that Q with operations ⊕ and �, the elements 0 and 1, and the definitions
of (−p) and (1/p) given in parts (d) and (e) above makes Q into a field, that is,
show that the axioms (A1), (A2), (A3), (A4), (M1), (M2), (M3), (M4), and (D) on
page 23 of the text are satisfied.

The Positives:
Let P be defined by

P = {[(m,n)] : for m ∈ N and n ∈ N}

(i) Show that P as a subset of Q satisfies the order axioms (O1), (O2), and (O3) on
page 25 of the text.

We conclude that the set Q as defined above is an ordered field. We call this ordered
field the rational numbers and we write ‘0’ for the element called 0 above, ‘1’ for 1, ‘+’
for ⊕, ‘1/2’ for [(1, 2)] = [(12, 24)] = [(39, 78)], etc.

In a similar process, starting with the rational numbers (as defined above, for example)
it is possible to define the set R, the real numbers, so that all of the axioms/properties
described in the text for the real numbers (in Sections 2.1 and 2.3) are true. In fact, to
do so will be an ‘A’ List problem for Math 44500.
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Definition (for Problem 2.) A set E of real numbers is said to be dense if for each real
number r and each ε > 0, the ε-neighborhood of r includes a point of E.

In particular, a set E is dense if and only if every real number is a cluster point of E.

2. (Open Dense Sets)
The set U = {x ∈ R : x 6=

√
2} = (−∞,

√
2) ∪ (

√
2,∞) is an open and dense set in R.

(a) Prove: If V1, V2, · · ·, Vn are each open and dense sets in R, then ∩nj=1Vj is also an
open and dense set.

(b) Find a sequence U1, U2, U3, · · · of open and dense subsets of R such that

∞⋂
j=1

Uj = {x ∈ R : x is irrational }

3. Sometimes it is annoying that a sequence does not converge and you wish you could ‘make
it converge’. This is a useful idea and, often, it can be done. We will call this extension
of the idea of limit a weighted limit. This exercise will show that if a sequence has a limit,
then the weighted limit is the same number, but that weighted limits allow more sequences
to ‘converge’. Let (an) be a sequence. For each positive integer n, let bn be defined by

bn =
2

3n
(a1 + 2a2 + a3 + 2a4 + · · ·+ ρnan)

where ρn = 2 if n is even and ρn = 1 if n is odd. This is sets up a weighted limit with
weights 1 and 2.

(a) Show that if limn→∞ an = L, then limn→∞ bn = L also.

(b) Find an example of a sequence (an) that does not converge, but for which the
weighted limit with weights 1 and 2, that is, the sequence (bn), does converge.

The more general idea is as follows: For ` a positive integer, let w1, w2, · · ·, w` be positive
numbers and let W = w1 +w2 + · · ·+w`. Given a sequence (an), for each positive integer
n, let cn be defined by

cn =
`

nW
(w1a1 + w2a2 + w3a3 + · · ·+ ρnan)

where ρn = wj if n ≡ j mod `.
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4. (Sequel to Exercise 11, page 75 of Bartle and Sherbert, 3rd Edition.)
Later this semester, we will define the natural logarithm function to be

ln(x) =

∫ x

1

1

t
dt

From this, we will prove the usual properties of the logarithm and the exponential
functions. You may use the properties of these functions as well as the usual properties of
the Riemann integral to do this problem, even if we have not yet covered the material this
semester. This exercise recapitulates work of Euler on estimating the size of

∑n
k=1 1/k.

(a) Use an easy estimate connected to Riemann sums to show that

1

n
≤ ln(n)− ln(n− 1) ≤ 1

n− 1

(b) Use part (a) to show that

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
≤ ln(n) ≤ 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n

Define the sequence (En) by

En = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− ln(n)

(c) Use parts (a) and (b) to show that the sequence (En) is a non-negative, bounded
sequence.

(d) Prove that the sequence (En) is decreasing.

(e) Notice that the definition of En shows that

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
= ln(n) + En

is an exact equality! Use this to compute

lim
n→∞

(
1

n+ 1
+

1

n+ 2
+

1

n+ 3
+ · · ·+ 1

2n

)
History: (Much of this note is from the Wikipedia article on the topic.) The limit of the
sequence (En) is denoted γ and is called Euler’s constant or perhaps more properly the
Euler–Mascheroni constant.

γ ≈ 0.57721566490153286060651209008240243104215933593992

Surprisingly, it is not known whether γ is rational or irrational, but it is widely believed
to be irrational. Its decimal expansion has been computed to about 30 billion places, and
it has been proved that if it is rational, its denominator must be more than 10242080.
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5. Let F be the family of real valued functions

F = {f : f is continuous on [0, 1] and f(0) = f(1) = 0}

If f is a function in F and ` is a number, ` is called a secant of f if there is a number a
such that 0 ≤ a ≤ a + ` ≤ 1 such that f(a) = f(a + `). We call ` a ubiquitous secant if
` is a secant of every f in F . Clearly ` = 0 and ` = 1 are ubiquitous secants. Find all
ubiquitous secants (and prove your answer).

6. (Open Dense Sets, II)
Can you find a sequence V1, V2, V3, · · · of open and dense subsets of R such that

∞⋂
j=1

Vj = {x ∈ R : x is rational }

7. (Open Dense Sets, III)
Let V1, V2, V3, · · · be a sequence of open and dense subsets of R. Is the set

∞⋂
j=1

Vj

always a dense subset of R?

Definition (for Problem 8.) Let Z be a set of real numbers. A point p in Z is said to be
an isolated point of Z if there is a neighborhood U of p such that for all z in Z, with z 6= p,
then z is NOT in U . (Recall that U is a neighborhood of p if there is a number δ > 0 such
that U = {x ∈ R : |x− p| < δ}.)

Definition: Let Z be a set of real numbers. The set Z is said to be a discrete set if every
point of Z is an isolated point of Z.

8. (a) Give an example of a set that is countably infinite and discrete.

(b) Give an example of a set that is countably infinite and NOT discrete.

(c) Show that every discrete set is countable.

9. (a) Let χ (for characteristic) be the function defined by

χ(t) =

{
1 t is rational
0 t is irrational

For which real numbers t, if any, is χ continuous? (Prove your answer.)

(b) Let σ (for stair) be the function defined by

σ(t) =


1
q t = p

q for p, q ∈ Z with q > 0 where p and q have no common factors

0 t is irrational

For which real numbers t, if any, is σ continuous? (Prove your answer.)

(c) For which real numbers t, if any, is σ differentiable? (Prove your answer.)


