'A' LIST PROBLEMS

Solutions to problems from this list may be handed in at any time before $5: 00 \mathrm{pm}$ on December 17. The problems will be read and either accepted as correct or returned for rewriting and resubmission. Only one of these problems will be counted for credit but this problem will be worth the same number of points as two regular homework assignments. In order to receive an ' A ' or ' $\mathrm{A}+$ ' for the course, you must have one of the ' A ' List problems accepted as correct.

1. (Construction of $\mathbb{Q})$

Peano (1889) and Dedekind (1888) gave a careful construction of the integers from the axioms for set theory. We will take the integers, \mathbb{Z}, the subset \mathbb{N} of natural numbers (that is, the positive integers), and their properties as given. The goal of this problem is, using the integers and their properties, to construct the set \mathbb{Q}, define the operations of 'addition' and 'multiplication' for elements of \mathbb{Q}, define the set \mathcal{P} of 'positive' elements of \mathbb{Q}, and prove that \mathbb{Q} with these operations and the distinguished subset \mathcal{P} is an ordered field which we can recognize as being the (usual) rational numbers.

An equivalence relation on a set \mathcal{X} is a binary relation \sim that satisfies (i) for every x in $\mathcal{X}, x \sim x$ (reflexivity), (ii) for x and y in $\mathcal{X}, x \sim y$ implies $y \sim x$ (symmetry), and (iii) for x, y, and z in $\mathcal{X}, x \sim y$ and $y \sim z$ implies $x \sim z$ (transitivity). A equivalence relation on a set can be used to define equivalence classes: For x in \mathcal{X}, the equivalence class of x, denoted $[x]$, is the subset of \mathcal{X}

$$
[x]=\{y \in \mathcal{X}: y \sim x\}
$$

From the properties of an equivalence relation, we see that $[x]=[y]$ if and only if $x \sim y$. An equivalence relation therefore allows us to break up a set into disjoint pieces, the equivalence classes. An easy example is modular arithmetic: we say integers m and n are equivalent modulo 2 if $m-n$ is divisible by 2 . This equivalence relation breaks the integers into two disjoint subsets usually called the 'even integers' (the equivalence class of 2) and the 'odd integers' (the equivalence class of 1).

The Construction:

Let \mathcal{X} be the set of ordered pairs of integers with second entry non-zero, that is,

$$
\mathcal{X}=\{(m, n): m \in \mathbb{Z} \text { and } n \in \mathbb{Z} \text { but } n \neq 0\}
$$

We define a binary relation \sim on \mathcal{X} by the following: for integers m_{1}, m_{2}, n_{1}, and n_{2}, we write $\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)$ when $m_{1} n_{2}=m_{2} n_{1}$.
(a) Show that \sim, defined above, is an equivalence relation on \mathcal{X}.
(b) Show that if n_{1} and n_{2} non-zero integers, then $\left(0, n_{1}\right) \sim\left(0, n_{2}\right)$ and show that if m and n are integers with $n \neq 0$ for which $(0,1) \sim(m, n)$, then $m=0$. This shows that $[(0,1)]=\{(0, n): n \in \mathbb{Z}$ but $n \neq 0\}$. We let $\underline{0}=[(0,1)]$.
(c) $\operatorname{Describe}[(1,1)]$ as a subset of \mathcal{X}. We let $\underline{1}=[(1,1)]$.

1. (Continued)

(d) Suppose $\left(m_{1}, n_{1}\right)$ and $\left(m_{2}, n_{2}\right)$ are in \mathcal{X} with $\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)$. Show that $\left(-m_{1}, n_{1}\right) \sim\left(-m_{2}, n_{2}\right)$. This means that letting $(-[(m, n)])$ be $[(-m, n)]$ cannot cause confusion; we say " $(-[(m, n)])=[(-m, n)]$ is well-defined."
(e) For m and n non-zero integers, let $(1 /[(m, n)])=[(n, m)])$. Show that $(1 /[(m, n)])$ is well-defined.
(f) Suppose $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right),\left(m_{1}^{\prime}, n_{1}^{\prime}\right)$, and $\left(m_{2}^{\prime}, n_{2}^{\prime}\right)$ are in \mathcal{X} and $\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right)$ and $\left(m_{1}^{\prime}, n_{1}^{\prime}\right) \sim\left(m_{2}^{\prime}, n_{2}^{\prime}\right)$. Show that

$$
\left(m_{1} n_{1}^{\prime}+m_{1}^{\prime} n_{1}, n_{1} n_{1}^{\prime}\right) \sim\left(m_{2} n_{2}^{\prime}+m_{2}^{\prime} n_{2}, n_{2} n_{2}^{\prime}\right)
$$

Conclude that, for (m, n) and $\left(m^{\prime}, n^{\prime}\right)$ in \mathcal{X}, letting

$$
[(m, n)] \oplus\left[\left(m^{\prime}, n^{\prime}\right)\right]=\left[\left(m n^{\prime}+m^{\prime} n, n n^{\prime}\right)\right]
$$

is well-defined.
(g) Show that, for (m, n) and $\left(m^{\prime}, n^{\prime}\right)$ in \mathcal{X}, letting

$$
[(m, n)] \odot\left[\left(m^{\prime}, n^{\prime}\right)\right]=\left[\left(m m^{\prime}, n n^{\prime}\right)\right]
$$

is well-defined.

The Definition:

Define \mathbb{Q} be the set of equivalence classes of ordered pairs in \mathcal{X}, that is,

$$
\mathbb{Q}=\{[(m, n)]:(m, n) \in \mathcal{X}\}
$$

We usually denote elements of \mathbb{Q} with single characters such as p or q, but it is important to remember that each such element of \mathbb{Q} is $p=[(m, n)]$ for some (many!) pair (m, n) in \mathcal{X}. Thus, proofs about \mathbb{Q} very often rely on choosing appropriate pairs (m, n) to use in the calculations involving the elements of \mathbb{Q}.
(h) Show that \mathbb{Q} with operations \oplus and \odot, the elements $\underline{0}$ and $\underline{1}$, and the definitions of $(-p)$ and $(1 / p)$ given in parts (d) and (e) above makes \mathbb{Q} into a field, that is, show that the axioms (A1), (A2), (A3), (A4), (M1), (M2), (M3), (M4), and (D) on page 23 of the text are satisfied.

The Positives:

Let \mathcal{P} be defined by

$$
\mathcal{P}=\{[(m, n)]: \text { for } m \in \mathbb{N} \text { and } n \in \mathbb{N}\}
$$

(i) Show that \mathcal{P} as a subset of \mathbb{Q} satisfies the order axioms (O1), (O2), and (O3) on page 25 of the text.

We conclude that the set \mathbb{Q} as defined above is an ordered field. We call this ordered field the rational numbers and we write ' 0 ' for the element called $\underline{0}$ above, ' 1 ' for $\underline{1}$, ' + ' for $\oplus,{ }^{\prime} 1 / 2$ ' for $[(1,2)]=[(12,24)]=[(39,78)]$, etc.

In a similar process, starting with the rational numbers (as defined above, for example) it is possible to define the set \mathbb{R}, the real numbers, so that all of the axioms/properties described in the text for the real numbers (in Sections 2.1 and 2.3) are true. In fact, to do so will be an 'A' List problem for Math 44500.

Definition (for Problem 2.) A set E of real numbers is said to be dense if for each real number r and each $\epsilon>0$, the ϵ-neighborhood of r includes a point of E.

In particular, a set E is dense if and only if every real number is a cluster point of E.
2. (Open Dense Sets)

The set $U=\{x \in \mathbb{R}: x \neq \sqrt{2}\}=(-\infty, \sqrt{2}) \cup(\sqrt{2}, \infty)$ is an open and dense set in \mathbb{R}.
(a) Prove: If $V_{1}, V_{2}, \cdots, V_{n}$ are each open and dense sets in \mathbb{R}, then $\cap_{j=1}^{n} V_{j}$ is also an open and dense set.
(b) Find a sequence $U_{1}, U_{2}, U_{3}, \cdots$ of open and dense subsets of \mathbb{R} such that

$$
\bigcap_{j=1}^{\infty} U_{j}=\{x \in \mathbb{R}: x \text { is irrational }\}
$$

3. Sometimes it is annoying that a sequence does not converge and you wish you could 'make it converge'. This is a useful idea and, often, it can be done. We will call this extension of the idea of limit a weighted limit. This exercise will show that if a sequence has a limit, then the weighted limit is the same number, but that weighted limits allow more sequences to 'converge'. Let $\left(a_{n}\right)$ be a sequence. For each positive integer n, let b_{n} be defined by

$$
b_{n}=\frac{2}{3 n}\left(a_{1}+2 a_{2}+a_{3}+2 a_{4}+\cdots+\rho_{n} a_{n}\right)
$$

where $\rho_{n}=2$ if n is even and $\rho_{n}=1$ if n is odd. This is sets up a weighted limit with weights 1 and 2 .
(a) Show that if $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$ also.
(b) Find an example of a sequence $\left(a_{n}\right)$ that does not converge, but for which the weighted limit with weights 1 and 2 , that is, the sequence $\left(b_{n}\right)$, does converge.

The more general idea is as follows: For ℓ a positive integer, let $w_{1}, w_{2}, \cdots, w_{\ell}$ be positive numbers and let $W=w_{1}+w_{2}+\cdots+w_{\ell}$. Given a sequence $\left(a_{n}\right)$, for each positive integer n, let c_{n} be defined by

$$
c_{n}=\frac{\ell}{n W}\left(w_{1} a_{1}+w_{2} a_{2}+w_{3} a_{3}+\cdots+\rho_{n} a_{n}\right)
$$

where $\rho_{n}=w_{j}$ if $n \equiv j \bmod \ell$.
4. (Sequel to Exercise 11, page 75 of Bartle and Sherbert, $3^{r d}$ Edition.)

Later this semester, we will define the natural logarithm function to be

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

From this, we will prove the usual properties of the logarithm and the exponential functions. You may use the properties of these functions as well as the usual properties of the Riemann integral to do this problem, even if we have not yet covered the material this semester. This exercise recapitulates work of Euler on estimating the size of $\sum_{k=1}^{n} 1 / k$.
(a) Use an easy estimate connected to Riemann sums to show that

$$
\frac{1}{n} \leq \ln (n)-\ln (n-1) \leq \frac{1}{n-1}
$$

(b) Use part (a) to show that

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} \leq \ln (n) \leq 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}
$$

Define the sequence (E_{n}) by

$$
E_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}-\ln (n)
$$

(c) Use parts (a) and (b) to show that the sequence $\left(E_{n}\right)$ is a non-negative, bounded sequence.
(d) Prove that the sequence $\left(E_{n}\right)$ is decreasing.
(e) Notice that the definition of E_{n} shows that

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}=\ln (n)+E_{n}
$$

is an exact equality! Use this to compute

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}\right)
$$

History: (Much of this note is from the Wikipedia article on the topic.) The limit of the sequence $\left(E_{n}\right)$ is denoted γ and is called Euler's constant or perhaps more properly the Euler-Mascheroni constant.

$$
\gamma \approx 0.57721566490153286060651209008240243104215933593992
$$

Surprisingly, it is not known whether γ is rational or irrational, but it is widely believed to be irrational. Its decimal expansion has been computed to about 30 billion places, and it has been proved that if it is rational, its denominator must be more than 10^{242080}.
5. Let \mathcal{F} be the family of real valued functions

$$
\mathcal{F}=\{f: f \text { is continuous on }[0,1] \text { and } f(0)=f(1)=0\}
$$

If f is a function in \mathcal{F} and ℓ is a number, ℓ is called a secant of f if there is a number a such that $0 \leq a \leq a+\ell \leq 1$ such that $f(a)=f(a+\ell)$. We call ℓ a ubiquitous secant if ℓ is a secant of every f in \mathcal{F}. Clearly $\ell=0$ and $\ell=1$ are ubiquitous secants. Find all ubiquitous secants (and prove your answer).
6. (Open Dense Sets, II)

Can you find a sequence $V_{1}, V_{2}, V_{3}, \cdots$ of open and dense subsets of \mathbb{R} such that

$$
\bigcap_{j=1}^{\infty} V_{j}=\{x \in \mathbb{R}: x \text { is rational }\}
$$

7. (Open Dense Sets, III)

Let $V_{1}, V_{2}, V_{3}, \cdots$ be a sequence of open and dense subsets of \mathbb{R}. Is the set

$$
\bigcap_{j=1}^{\infty} V_{j}
$$

always a dense subset of \mathbb{R} ?
Definition (for Problem 8.) Let \mathcal{Z} be a set of real numbers. A point p in \mathcal{Z} is said to be an isolated point of \mathcal{Z} if there is a neighborhood U of p such that for all z in \mathcal{Z}, with $z \neq p$, then z is NOT in U. (Recall that U is a neighborhood of p if there is a number $\delta>0$ such that $U=\{x \in \mathbb{R}:|x-p|<\delta\}$.)

Definition: Let \mathcal{Z} be a set of real numbers. The set \mathcal{Z} is said to be a discrete set if every point of \mathcal{Z} is an isolated point of \mathcal{Z}.
8. (a) Give an example of a set that is countably infinite and discrete.
(b) Give an example of a set that is countably infinite and NOT discrete.
(c) Show that every discrete set is countable.
9. (a) Let χ (for characteristic) be the function defined by

$$
\chi(t)= \begin{cases}1 & t \text { is rational } \\ 0 & t \text { is irrational }\end{cases}
$$

For which real numbers t, if any, is χ continuous? (Prove your answer.)
(b) Let σ (for stair) be the function defined by
$\sigma(t)= \begin{cases}\frac{1}{q} & t=\frac{p}{q} \text { for } p, q \in \mathbb{Z} \text { with } q>0 \text { where } p \text { and } q \text { have no common factors } \\ 0 & t \text { is irrational }\end{cases}$
For which real numbers t, if any, is σ continuous? (Prove your answer.)
(c) For which real numbers t, if any, is σ differentiable? (Prove your answer.)

