3rd: page 74: 1, 3, 4, 11 and 3rd: page 80: 1, 5, 11, 12
4th: page 77: $1,3,4,10$ and 4th: page 84: $1,5,11,12$
A. Do problem 9 in the problem set for Section 3.3 of the text. Then answer the following:
(a) Let B be the set $B=\{3+1 / k: k \in \mathbb{N}\}$. What is sup B ? If $A=B$ what does your proof of the result in problem 9 give for $\left(x_{n}\right)$, or if your proof is not constructive, find an sequence that satisfies the conditions of problem 9.
(b) Let C be the set

$$
C=\{7-3 / j-4 / k: j \text { is an even number in } \mathbb{N} \text {, and } k \text { is an odd number in } \mathbb{N}\}
$$

What is $\sup C$? If $A=C$ what does your proof of the result in problem 9 give for $\left(x_{n}\right)$, or if your proof is not constructive, find an sequence that satisfies the conditions of problem 9.
B. Define a sequence recursively by $c_{1}=5$ and $c_{n+1}=3-1 / c_{n}$.
(a) Prove (by induction) that $c_{n} \geq 1$ for all n in \mathbb{N}.

Lemma. For each n in \mathbb{N} with $n \geq 2$, we have $c_{n}-c_{n-1} \leq 0$.
Proof: The number c_{1} is 5 and the number c_{2} is 2.8 which is less than $c_{1}=5$, and $c_{2}-c_{1} \leq 0$. We will use induction to show that for each n in \mathbb{N} with $n \geq 2$, then $c_{n}-c_{n-1} \leq 0$. The inequality above, $c_{2}-c_{1} \leq 0$, is the case $n=2$.
Suppose the result is true for $n=k$, that is, that $c_{k}-c_{k-1} \leq 0$, we will show that $c_{k+1}-c_{k} \leq 0$. We have $c_{k+1}-c_{k}=3-1 / c_{k}-c_{k}$. On the other hand, $c_{k}=3-1 / c_{k-1}$, so the expression above is

$$
\begin{aligned}
c_{k+1}-c_{k} & =3-\frac{1}{3-1 / c_{k-1}}-\left(3-1 / c_{k-1}\right)=3-\frac{1}{3-1 / c_{k-1}}-3+\frac{1}{c_{k-1}} \\
& =\frac{1}{c_{k-1}}-\frac{1}{3-1 / c_{k-1}}=\frac{\left(3-1 / c_{k-1}\right)-c_{k-1}}{c_{k-1}\left(3-1 / c_{k-1}\right)}=\frac{c_{k}-c_{k-1}}{\left(3 c_{k-1}-1\right)}
\end{aligned}
$$

Since $c_{k-1} \geq 1$ by part (a), it follows that $\left(3 c_{k-1}-1\right) \geq 0$. This means that $c_{k}-c_{k-1} \leq 0$ implies $c_{k+1}-c_{k} \leq 0$ and the result is true for $n=k+1$ also. Thus, the Lemma is true by induction.
(b) Prove that $\lim _{n \rightarrow \infty} c_{n}$ exists and find the limit.

