Do problems 2, 6, 7, and 13 from Section 6.2.

The following problem refers to Theorem 6.1.5 of the text.
A. Let f be the polynomial $f(x)=2 x^{3}+5 x^{2}-x+1$. We know f is differentiable at each point c in \mathbb{R}, so for each c in \mathbb{R}, there is a Carathéodory function φ which is continuous at c and satisfies $\varphi(c)=f^{\prime}(c)$. That is, for each c in \mathbb{R}, there is φ which is a function of x, but depends on c. We often call functions of one variable that depend on another a function of two variables: Find the polynomial $g(x, c)$ so that for each c in $\mathbb{R}, g(x, c)=\varphi(x)$, where φ is the Carathéodory function for f at the point c.

