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For a bounded analytic function, f, on the unit disk, D, let T, and iVf denote 
the operators of multiplication by f on H2(aD) and L2(aD), respectively. In their 
1973 paper, Deddens and Wong asked whether there is an analytic Toeplitz 
operator TI that commutes with a nonzero compact operator, and whether 
every operator that commutes with an analytic Toeplitz operator has an extension 
that commutes with the corresponding multiplication operator on L2. In the first 
part of this paper, we give an explicit example of an analytic Toeplitz operator 
T6 that settles both of these questions. This operator commutes with a non- 

zero compact operator (a composition operator followed by an analytic Toeplitz 
operator). The only operators in the commutant of T6 that extend to commute 
with Md are analytic Toeplitz operators. Although the commutant of T* con- 
tains more than just analytic Toeplitz operators, T* is irreducible. The remainder 
of the paper seeks to explain more fully the phenomena incorporated in this 
example by introducing a class of analytic functions, including the function 4, 
and giving additional conditions on functions g in the class to determine whether 
Z’, commutes with nonzero compact operators, whether T, is irreducible, and 
which operators in the commutant of T, extend to the commutant of n/r,. In 
particular, we find representations for operators in the commutant and second 
commutant of T, 

The primary purpose of this paper is to give an example that answers several 
questions concerning commutants of analytic Toeplitz operators. After 
presenting the example, we investigate more carefully a class of analytic Toeplitz 
operators that this example suggests. 

For 4 in H” of the unit disk D, the analytic Toeplitz operator, T+ , is the 
operator on the Hardy space H” of multiplication by 4. We denote (A I AT, 
TJ}, the cornmutant of T4 , by {T,)‘. 

In their 1973 paper, Deddens and Wong asked if there is a nonconstant 
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function 4 in Hm such that Td commutes with a nonzero compact operator 
[8, p. 2721. We will find such a function 4 (Theorem 1.1). This question is 
related to the invariant subspace problem. Lomonosov [II] has shown that 
an operator has a nontrivial invariant subspace if it commutes with a nonscalar 
operator that commutes with a nonzero compact operator. Pearcy and Shields, 
in their survey of the Lomonosov technique [18, p. 2251, point out that it is 
possible, though not likely, that this theorem solves the invariant subspace 
problem, that is, maybe every operator commutes with an operator that com- 
mutes with a compact. There is no operator for which Lomonosov’s hypothesis 
is known to fail, however, the unilateral shift, T, , was considered a good 
candidate for such an example. Since the cornmutant of the shift is the set 
of analytic Toeplitz operators, the Deddens-Wong question can be restated: 
“Does the unilateral shift, T, , satisfy Lomonosov’s hypothesis ?” and we 
answer “yes.” Such an example has been found, see [2.5]. 

It is well known that if 4 is a nonconstant function in Hm, the analytic 
Toeplitz operator Td is a pure subnormal operator and its minimal normal n 
extension is the operator il& of multiplication by $, the boundary function 
of gS, on L2 of the unit circle [9, Lemma 3.81. One might hope to find the com- 
mutant of a subnormal operator by studying the operators that commute 
with its minimal normal extension. This can be an effective approach if every 
operator in the cornmutant comes from an operator in the cornmutant of the 
normal extension. (If A commutes with the subnormal operator S, we call 
an operator a a lifting of A if it is an extension of A that commutes with the 
minimal normal extension of A. I f  every operator in {S)-’ lifts, we say the 
cornmutant of S lifts. Bram showed [5, p. 871 that if A lifts, then its lifting 
is unique.) The problem of lifting commutants of general subnormal operators 
has been studied by several authors and examples of subnormals whose com- 
mutants do not lift are known (see, for example, [2, 5, 13, 171). Deddens and 
Wong [S, p. 2721 asked if the cornmutant of every analytic Toeplitz operator 
lifts. In Theorem 1.2, we give an example whose cornmutant does not lift. 

Several authors have studied questions concerning reducing subspaces of 
analytic Toeplitz operators and determining which analytic Toeplitz operators 
are irreducible (i.e., have only the trivial reducing subspaces) (see, for example, 
[l, 4, 8, 14, 22, 231). Since the only analytic Toeplitz operators that are projec- 
tions are 0 and 1, the shift T, is irreducible; indeed if {T,}’ = (T,}‘, then Td 
is also irreducible. Several results on reducing subspaces suggested that the 
converse of this statement might also be true, and this question was explicitly 
raised in a letter to the author by Abrahamse. Abrahamse also asks [2, problem I] 
if the cornmutant of an irreducible subnormal operator lifts. Our example 
answers both of these questions negatively (Theorem 1.3). 

To recapitulate, in Section 1, we exhibit a function 4 in Hm such that Td 
commutes with a nonzero compact operator; {Th}’ does not lift; and T* is 
irreducible. 



It seems appropriate to review some of the earlier work on commutants 
of analytic Toeplitz operators. If+ is a nonconstant inner function (i.e.. : si, ! 
almost ei-eryherc on the unit circle), 7:, is unitarilv equivalent to 3 direct 
sum of copies of the unilateral shift T, . Using this equivalence, it is east III 
qet a matrix characterization of operators in [-/‘,,j ‘. From the matrix charac - 
tcrization, it follows that 7’<,, does not commute witli any non%ero coml~ct 
operators; that {TLh)’ lifts; and that T, is irreducible if and onI!- if 1 rJ,r’ [7’. I’ 
In [%I, 1)cddcns and 1%~ong give some sufficient conditions on ,/‘ for [?‘,I’ to 
rqual ; 7.&j ’ for some inner function 4, and, althou& not euplicitl\; stat<:1 
the questions they raise seem in spirit to be “For f  in H '. is there an inn>! 
function 4 so that (Tf)' - [T,)' ?" 

In [I] :Jbrahamse gave an example of a function F, ;L co\-crin,g map of thl, 
disk OntO an annulus considering the disk as the universal covering space 

of the annulus, for which (T,)-' + (T6, I’ for anv inner function 4. Although 
77 cannc0 1~ written ?T - 12 ‘3 4 in a nontrivial lwav for X an inner functio:? 
7’r has man> reducing subspaces [I, Theorem 21. In [h, 71, the author cxtc’nclc.1 
the rumple of Xbrahamse, showing that, usually, the conunutant of .I ‘L‘ocp!i!~ 

operator \vho:e svmbol is a covering map of the disk ontcj -;I)IIIC’ ylmt- donl:~ln 
is different from commutants of operators arising from inner functrons [6, 19. .2 
On the other hand, it was shown that even if d is a covering map, ‘i:,, d0c.s [),:I 
commute with any nonzero compact operators 16. ;J. 27]: 7’ :’ Ii% [7. ‘I’~~cvJ- 
rem 51; and 71 is irreducible if and only if 1 ‘f+i ’ ’ 7‘ I’ c .,’ 

‘I’herc, are several theorems which girt necessary conditions for an analytic 
‘I’ocplitz operator to commute with a compact operator. To p;““~?hKls” thw 

results, UC have that if T4 commutes with a nonzcro compact c~pcrator-, 4 mup~ 
map (most of) the boundary of the disk into the image of the open disk 
[5. ‘l%eorem IO]; 4 must be an infmite-to-one map oi the disk [6. 1~. 191; .tnl.i 
the compact operator must be quasinilpotent [6, l>. 261. In addition. 4 mu;: 
satisfy a technical condition which eliminates functions automorl~hic under .r 

c1 ~~roup but allows functions automorphic under a semigrouli [6? p. 271. ‘I’!!:: 
questiom on lifting and compacts are related: if :T,{’ lifts. rhcn lca c;mn * 
commutt with any nonzero compact operator-s [7, ‘l’hcorciii i]. TIo~ve\ ci ~ 
as will be clear from the proofs that follow, [Y:>,!’ ?Jl;t\- hi! to lift even Wh~~i! 
‘/1, does not commute with compacts. 

The o~ample of Section 1 is based on a function. related to ;I covering n~lf;. 
which is automorphic under a semigroup of maps from the disk into the disk. 
Tn Section 2. we introduce a class of such functions, \T,hich we cat1 e\-enl! 
semiautomorphic functions and find a general form for operators in ] 7’.,1’ ;lrti 
j T,j” when 4 is in this class. 

In Section 3, we give a geometric condition on the maps in the semigrorri~ 
which enables one to construct compact operators in {7:,) 

Section 4 considers the lifting question for this class of analvtic Toeptitz 
operators. M-e find that if the semigroup is not a group, then t?lc commutani 



172 CARL C. COWEN 

does not lift. However, the operators in the cornmutant associated only with 
invertible elements of the semigroup do have extensions, with the same norm, 
that commute with Mm . 

In Section 5, we discuss reducibility. If there is a nontrivial invertible element 
of the semigroup, then Tb has reducing subspaces. As a partial converse, we 
give an unfortunately complicated algebraic condition on the semigroup which 
enables us to show that no nontrivial projections commute with T, , hence 
that every operator similar to Tm is irreducible. 

As will become clear, this work makes extensive use of composition operators. 
My thoughts on composition operators were inspired by the excellent lectures 
of Eric Nordgren at the conference on Concrete Representations of Operators 
on Hilbert Space held June 1977 at Long Beach [16]. I would also like to thank 
Abrahamse for suggesting the proof of Theorem 1.3 as given (my original 
proof is the proof of Theorem 5.1) and Davidson for suggesting simplifications 
to the proof of Theorem 1.1. 

1. THE EXAMPLE 

To obtain the example, we need to define several functions and operators. 
As a help to our intuition, we define the domain Q = {a 1 Im(za) < -1 and 
Re(z) < 0}, in the second quadrant bounded by a branch of the hyperbola 
2xy = - 1. We let U(Z) = (-1 + i)(z + 1)-112 (where x112 > 0 for x > 0) so 
that 0 is a Riemann map of D onto Q, ~(-1) = co. Define 4 on D by C(z) = 

exp(+N - expWN~ W e see that 4 maps the disk onto a translate of the 
unit disk punctured at 0, and 4 maps the boundary of the disk, one-to-one, 
onto a spiral that approaches the boundary of the image asymptotically. 

Define the map J of the disk into itself by J(a) = u-‘(u(a) + 24. In fact, 
J extends to a continuous map of the closed disk, and 

J(D) n aD = (-13 = {J(-l)}. 

Since the exponential map is periodic, we have 4 0 J = 4. Let C be the operator 
on H2 of composition with J, that is, Cf = f 0 J for f in Hz. This operator 
is bounded [15, 191, but not compact. The operators C and T6 commute since, 
for f in H2, CT&f = (4 0 J)(f o J) = +(f o J) = T,Cf. 

Finally, we let $(a) = +(z + I), so 16 is continuous on the closed disk, 
]]$Ilrn = 1, and 1,4(-l) = 0. 

THEOREM 1.1. The operator CT, is compact and commutes with T, . 

Proof. Clearly CT, commutes with T6 since both C and T* do. 
To see that CT, is compact, it is sufficient to show that lim,,, IlCT, jznHa /j = 0. 

Given E > 0, let K, = {w I w E J(D) and 1 #(w)/ = I $(w + 1)l > c}. Since 
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J(D) C 11 u {-I>, we see that K, is a compact subset of D. Choose iV so that 

for tr -\’ and w in K, , we have 1 w In S, E. For u” in D and n ,B N either 
J(z) is in K, , in which case 1 $(J(z)) J(x)% 1 .S ! +(J(z)); E ( E, or j(a) is not 
in A: , in which case / ~(J((z)) J(z)n j -i c / J(Z)!” : : t. Thus, we have 
“($ ‘- J)(J”)‘:= ,( E for n ;- N. 

Non-, for f in H’L and 71 ‘X N, 

Therefore, CT, Iz,,H2 I/ -( E I! C Ii for n > N, and we see that CTb is compact. a 

Although the nonlifting of (Tm}’ f  o ows from the above result and the thcorenr 11 
“Lifting implies no commuting compacts” [7, Theorem 11, a direct proof 
gives a better understanding of how lifting fails. (In this proof, the interpla! 
between arguments on the boundary and inside the disk is important. Fat 
.f  in N”. . f  will denote the boundary function off in I,“.) 

THEOREM 1.2. C has no (bounded) extension fo L’ that commutes with Mb 

Proqf. Suppose C is an extension of C defined on L” such that CM* = A&C. 
We will show that // C(P)~! - co as n - co, even though I zn :I == 1 for all IZ. 

For II -= I, 2, 3,... we have $@(P) = il/l,nC(%71) = C(&“Z”). Now 9(O) = 0, 
so z divides 4 and &P = (z-~$~)̂  where z-n@’ is in Hz. Thus C(&??) :~ 
[C(z %jn)]^ = [J-“(4 0 J)“]^ = [j-“4”]^ --= (J)m71 f$,l. Now 4 # 0 almost 
evervwhere, so $“C($?) = (J)-7h Jn implies P(P) .~ (1) -‘I, Since p 
max î zc,n<,:q; f(e’ )I . 1 zB 1 IS ess than 1, we see that 

which is unbounded as n - co. 

Thus C cannot be a bounded operator on LL. 1 

The crucial fact in the proof of Theorem 1.2 is that j maps some of the 
boundary inside the disk (in this case {eie j -r/2 -: H < n/2{ was used). 
whereas for Theorem 1.1, we needed the fact that 1 maps nearly all of the 
boundary inside the disk. Thus, if we modify the above construction by taking 
Q” -~: (2 Im z > 0 and Re z < O}; o,, to be a Riemann map of D onto Q, ; 
4&z) _- exp(u”(z)) - exp(o,(O)); etc.; then the operator T”, does not commute 
with any compact operators [6, Theorem IO], but C, does not have a bounded 
extension to L2 that commutes with A$, . 

The following theorem is a special case of a theorem of Nordgren [14. 
Theorem I]. 
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THEOREM 1.3. T* is irreducible. 

Proof. I f  K is a reducing subspace for T* , the orthogonal projection of 
H” onto K commutes with T* . We will show that if P is a self-adjoint projection 
in { Tm}‘, then P is either zero or the identity. 

Since P is self-adjoint, P has an extension P that commutes with A& [5, p. 881, 
and Pz = P by the uniqueness of lifting [5, p. 871. However, since 4 is con- 
tinuous and univalent on aD\(-I}, th e only operators that commute with 
A& are other multiplication operators. Thus, P = n/l, for some h in L”. But 
h = M,‘l = Pl = PI so h is actually in Hz and P = Th Since P is a projec- 
tion, h = h2 and h is either identically zero or identically one, that is, P is 
either the zero operator or the identity operator. a 

More is true than this theorem states. The above argument actually shows 
that the only operators in {T,}’ that lift are the analytic Toeplitz operators. 
Later, in a more general setting, we show that Tm does not commute with any 
projections, so that every operator similar to T6 is irreducible (Theorem 5.1). 

2. SEMIAUTOMORPHIC FUNCTIONS 

In this section we will define a class of functions which includes the function 
4 of Section 1, and compute the cornmutant and double cornmutant of analytic 
Toeplitz operators whose symbol is in this class. Later sections will deal with 
compact commuting operators, lifting, and reducing subspaces for these 
operators. Background material on covering maps may be found in standard 
references, for example, Chap. 3 of Veech’s work [24]. 

I f  4 is a bounded analytic function on the unit disk, we say 4 is evenly semi- 
automorphic with respect to the semigroup P if there is 

(1) a plane domain 2, whose universal covering space is a half plane or 
disk U, and (2) a univalent analytic map o from the disk D into C’ such that 
+ = n o (T, where r: G - ,Z is an analytic covering map. Let G be the group 
of deck transformations of U under which rr is automorphic, let .Q = a(D), 
and let I’ be the semigroup of maps of D into D 

Throughout the rest of the paper, +, Z, U, n, cr, G, Q, and P will be as in 
the above definition. For brevity, we may say “4 is semiautomorphic” when 
this structure is meant. Clearly, if J is in P, we have + o J = 4. We note that 
if J in P maps D onto D, then J is a Mobius transformation and J-1 is also in I’. 

It is apparent that the function 4 of the preceding example is evenly semi- 
automorphic with respect to the semigroup I’ = (J 0 JO ... 0 J (rz times) 1 
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TL ::- 0, I, 2, 3,...j. It is also clear that this class includes the class of co\-ering 
maps (in which case Q = Z), but for our present purposes. we arc less interested 
in these special cases. 

It is somewhat less obvious that this class includes some familiar functions. 
For instance, 4(.x) := (z A 1) 3 is evenly semiautomorphic. Let C be the half 
plane {.z / Re z < In 8); let ~$2) = eZ; and let ~(2) ~- 3 ln(z t- 1) (usual branch 
of the logarithm). Then 4(z) = esp(3 ln(z -~ I)) 7 - U(Z). The group C. 
of automorphisms of C’, is (T(Z) _m: z -I 2nrzi I 11 0, !, II2 ,... I. Since 
~ lm(o-(2)) -:: !+, the only r in G that maps u(D) into U(D) is the identity map. 

SCJ r (identity). We will see below that this implies [T,; lp/’ [T,;‘. (This 
corollarv is hardly new; it is a special case of Theorem 2 of [8].) 

For a in I), let k;, denote the kernel function for evaluation of Ir’ functions 
at Y, that is, k-&(a) ~~~ (I - ix) I. 

LEi\IMX A. Let (b be an ezlen!v semiautomorphic function. For each Y in I), eeer:\~ 
function f  in [(C - (6(a)) HA]’ has a unique representntion ,f == &(,+n(xj d,tY 
where the series ronzerges in nom. 

I’roqf. \Ve will show first that the inner factor of 4 - c&) is a Rlaschkr 
product and that .@’ E ZI : $(/3) == $(a)} . IS an interpolating sequence. 

\Vithout loss of generality, we may assume that the covering space CT associated 
with 4 is the unit disk. Let 01~ == 01, 0~~ , c+, 01,~ ,... be an enumeration of the WI 
{/j E I) ~ d(p) = c$(cu)). For n = 0, 1, 2 ,..., let [, := n(n,J and let iP, , < L! , [-:, (... 
be an enumeration of the set ([E iI ; Z(E) = n(<,,), [ 6 521. From a result (lf’ 
Stout [21, Theorem 6.41 (or see [6, Theorem 6]), we find that (<,)T...., is an 
interpolating sequence, and that the inner--outer factorization of in is 

where R is invertible. 
Since II’ in H’ is outer if and only if log / F(O)’ (1 ‘2~) J:- log / F(e”O), &, 

[lo, p. 621, we see from the Lebesque dominated convergence theorem that 
if F nl=,fn is nonzero , ;fn iIx -< 1 for all 71, and each f, is outer, then 
F is also outer. 

N OV 
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Since each factor 

is less than or equal to one in modulus and since u is univalent, each is outer, 
so the second factor in the expression for rr 0 0 is outer. Similarly, since 5, .$ Sz 
for n < 0 and a is univalent, each factor 

is outer and bounded by 1 in modulus, so the third factor in the above expression 
is outer. Since g is invertible in H”, so is g o u and g o u is outer. Thus we 
have found that the inner factor of ~7 0 u is just the Blaschke product with 
zeros 0~~ , 01~ , 012 ,... . 

We claim that {ti,)Ea is an interpolating sequence in D. Indeed, suppose 
{u,}~=~ is a bounded sequence. We enlarge this sequence by setting a, = 0 
for n = -1, -2, -3 ,... . Since ([,}l;, is an interpolating sequence in U and 
{ala}:, is a bounded sequence, there is a function h in Hm so that h([,) = a, 
for all 12. Therefore, h 0 u is in HE, h(u(ar,)) = h([,) = a, for z = 0, 1, 2 ,..., 
and h 0 u interpolates the given sequence. 

Let {e,}c==, be the usual basis for I 2. Shapiro and Shields showed [20, 
Theorem 21 that since {cY~}~~~ is an interpolating sequence, the map @: 
[($ - $(a)) IPI1 -+ P, given by @‘f = ~~J 1 - 1 LY, 12)1/2f(~,) e, , is an 
isomorphism. This means that @* is also an isomorphism and a simple calcula- 
tion shows that @*e, = (1 - 1 01, 12)lj2 Ka,. It follows that if d, , n = 0, 1, 2,... 
are the unique complex numbers such that CD*-‘f = ~~=a d,(l - / 01, /2)-1/2 e, , 
then f = @*(Liz,, d,(l - / 01, 12)-1/2 e,) = xz=“=, d,K,, , where the series con- 
verges in norm. [ 

We are now ready to compute the cornmutant of the Toeplitz operator 
T* where 4 is semiautomorphic. 

THEOREM 2.1. Suppose q5 is evenly semiautomorphic with respect to the 
semigroup r of maps of D into D. 

If  S is in {T,}‘, then for each J in F, there is a unique analytic function a, defined 
on D so that for each (Y in D and each g in IP 

cww = c aJb)g(Jb>), 
JEF 

where the series converge absolutely for each OL and uraformly on compact subsets 
ofD. 

Conversely, if S is a bounded operator on H2 that has a representation (*), 
then S commutes with Tr4 . 
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I f  / is an analytic map of D into D, we may define the composition operator 
(; on N? by C,z = g 0 J. (C, is a bounded operator [I 5, 191.) We saw in the 
first section that C, commutes with an analytic Toeplitz operator if and onI\- 
if its symbol is automorphic with respect to J. A more revealing, but less precise. 
way of stating the theorem is that an operator S on ZP commutes with 7’. 
if and only if S can be represented by a series S wCJEr a&‘, , where th(c 
coefficients a, are analytic functions defined in D. (The a, need not be bound4 
functions [7].) Th e crucial point here is that the composition operators that 
appear in the series are associated with the maps J such that & J : 4 and 
J(D) CD. The work of the proof is in showing that the maps i such that 
+ 0 j I= 4 but j(D) p D, which may exist because 4 comes from a coverine 
map, make no contribution to the commutant. 

Pwof of Theorem 2. I. Suppose 4 is semiautomorphic with respect to 1‘ 
(as above) and S commutes with Tb . For a: in D, by the Fundamental Lemma 
of [6, p. 31, PK, is in [(C - f/(a)) H2]1, so by Lemma A there are comples 
numbers (ITi,‘, 7 in G, such that S*K, = ZdT”KB where the sum is taken o~-el- 
those 7 in G for which ~(o(a)) E Q, writing /3 for (7 ~‘(~(u(cx))). 

For !I in D and T,, in G, the function h, = (4 - &a))((~ -- T,,(o(Iu))) ’ ic 
bounded on D since (b is in H;o and when Q(Z) - ~,,(cr(~?()) is near zero, then 
h,(z) == (r(u(n)) - z$-r,(a(ac))))(o(.z) - T”(u(E))) i is near ;i’(r,)(~()) which i> 
finite. Thus the map a: --z (Sh,)(a) = \‘It, , S-K,,) is an analytic function 
defined on the disk. Now if TV @ 9 an d a is a point of 11 so that T~(u(cY)) 6 ,Q. 
then h, vanishes at all points ,B in D such that a(a) : $(,B) which means that 
(Sh,)(a) =. 0. Since .Q is simply connected and T” is one-to -one, if 7,,(Q) g Q, 
there are uncountably many a: in D so that ~,,(u(z)) 4 Q and we conclude tha: 
for this 7(, the map ~1 - (Sh,)(ol) is identically zero. 

On the other hand, if 01 is a point of D so that :,)(u(o~)) E 0, then (Sh.,&) 
:~/I, , S*k’,) == c/ha , L’d,EK,) = Zerr’(~,(o(a))). Therefore, for n in the 
disk the map ,u --j d” 7. is the complex conjugate of the anal+ function 1 + 
(Sh,)(tx)(r’(T,(u(a))))-1. It follows that if T,(D) $9, then d:, is zero for all a in /I. 

For J in r, let a, be the analytic function aJ(a) = c where J :: 0 L ‘i T ‘, U. 
We have shown that S*K, = C JEr aJ(a) K,(,, , where (from Lemma A) the 

series converges in norm. Since (Sg)(or) = !g, S;‘k’,~:, the representation (“i 
follows immediately. 

The proof that this series converges uniformly on compact subsets of D is 
a modification of the proof of the lemma to Theorem 5 of [7] and will be omitted. 

Non- if the bounded operator S has a representation (“). then for f  in Ii:‘, 

,X4 - 4(4)f, S*KcJ = W4 - 4(W)(*) 

sW36’2-3 
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Therefore, S*K, is in [($ - #(a)) H211 f or all 01 in D and by the Fundamental 
Lemma [6, p. 31, S commutes with T6 . 1 

Knowing the cornmutant of T4 for a semiautomorphic function $ enables 
us to find the double cornmutant easily. 

THEOREM 2.2. If 4 is evenly semiautomorphic with respect to the semigroup r 
of maps of D into D, then 

(T,}” = (Th j h is in HW and h 0 J = h for all J in r>. 

Proof. Since T4 commutes with T, , {T,}” C {T,}’ = {Th 1 h E Hm}. Since 
T6 commutes with C, for J in r, Th does also when Th is in {T,}“, and h 0 J = h 
for J in r. 

On the other hand, if h is in Hm and h o J = h for all J in r, then Th commutes 
with S when T* does. Indeed, by the representation (*) for S, we have 

(sTd4 = & aJ(a) h( J(4) g( J(4) = h(a) & aJ(a) A J(4) 

= V&)(4 for all 01 in D and all g in H2. j 

Theorem 2.2 characterizes {T,}” in terms of the semigroup r, but we would 
prefer a characterization in terms of 4, in particular we want to know when 
all the operators in {T,}” are functions of T* . For the example of Section 1, it is 
fairly easy to prove that {T,}” = {Th 1 h = g 0 4 where g E Hm(#(D))}. On the 
other hand, {Tts+1)3}” = {Th j h is in Ha} but not every h in Hm is a function 
of (z + 1)3. In general, it seems to be difficult to decide when {T,}” consists 
of functions of T* . 

In [6, p. 41 a function, f ,  in H” was called ancestral if, for each 01 in D, the 
subspace spanned by {S*K, 1 S E {T,}‘) is exactly [(f-f (a)) H211. Also in [6], 
several properties of { T,}’ f or an ancestral function f  were found and the question 
was raised “For h in H= can we always find an ancestral function f so that 
(Th}’ = {T,)’ ?” We see from Theorem 2.1 that the example of Section 1 
answers this question negatively. If {T,}’ = {T,}’ then, by the above, f  = g 0 4 
so that [(f-f (a)) fl]’ I[($ - +(a)) H211. For 01 in the disk, the subspace 
spanned by (S*K,(,, j S E {Tm}‘) does not include K, , so is not all of 

[@ - $(J(d) H211- 

3. COMPACTS IN THE COMMUTANT 

We have seen in Section 1 that, if (G is semiautomorphic, it is possible, but 
not necessary, for T4 to commute with nonzero compact operators. We will 
give a sufficient condition that {T,}’ contain a compact. Theorem 10 of [6] 
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showed that if qS maps a large subset of the circle onto the boundary of d(0), 
then T* does not commute with any compacts. If  4 does map a large part of 
the circle to the boundary of 4(D), then since d, is automorphic with respect 
to r each J in r must map a large part of the circle into the circle. We assume 
in Theorem 3.1 that this is not the case. 

THEOREM 3.1. Let J be an anal3,tic map of D into D and let F = J(D) n iI). 
If I$ is analytic in D, continuous on D, and vanishes on F, then the opwator (;;7:,, 
is compact. 

ProoJ The proof of this theorem is the same as the proof of Theorem 1.1, 
where in Theorem I .I, F = {-I}. a 

COROLLARY. If 4 is semiautomorphic with respect to the semigroup r and 
there is J in r such that F = J(D) n iiD has measure zero, then T,, commutes 

with a nonzero compact operator. 

Boqf. Since F is a closed set of measure zero, we can find a nonzero function 
# in the disk algebra that vanishes on F [IO, p. SO]. C,T, is compact and com- 
mutes with TGb . 1 

Since there are compact composition operators, the reader may wonder if 
there is an example of a compact composition operator that commutes with 
an analytic Toeplitz operator. 

THEOREM 3.2. If h is a nonconstant function in II* and J is an afza]yti( 
map of D into D such that C, commutes with T,l , then C, is not compact. 

FVoof. We have seen that C, and TTh commute if and only if lz 0 J : II. 
that is, if h is an eigenvector for C, with eigenvalue 1. But if h 0 J = -7 h, R (’ 
also have h” c J =m h” for n = 2, 3, 4, 5 ,... . Therefore, if T,, and C; commute, 
1, h, h”, P,... are all eigenvectors for C, with eigenvalue 1. Since h is non- 
constant, these are linearly independent and C, is not compact. a 

4. LIFTING COMMUTAKTS 

In Section 1 we noted that whether a composition operator commuting 
with an analytic Toeplitz operator has an extension to L2 commuting with the 
multiplication operator depends on the boundary values of the map inducing the 
composition operator. (As before, 3 will denote the boundary function off.) 
For J in I’, j(eie) is on the unit circle for almost all B if and only if J is a Mobius 
transformation if and only if J is invertible in r. In this section we state two 
results that relate invertibility of elements of r to lifting the cornmutant of Td . 
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THEOREM 4.1. If 4 is evenly semiautomorphic with respect to the semigroup P, 
and J is a noninvertible map in P, then the composition operator C, does not have 
a bounded extension to L2 that commutes with M+ . 

Proof. Since J is not invertible in r, there is a set E with positive measure 
and a constant p, 0 < p < 1 so that for eiE in E, 1 j(eie)l < p. The proof of 
Theorem 1.2 applies here with the interval [-r/2, r/2] replaced by the set E. 1 

THEOREM 4.2. Suppose 4 is evenly semiautomorphic with respect to the semi- 
group l? Let H be the subgroup of I’, H = {J E P j J-l E P}, and let (X? be the 
subalgebra of {T,}’ of operators 

GE = {S E { Tm}’ j S N .Za,C, where a, = 0 for J $ H}. 

The algebra @ lifts isometrically to the commutant of M6 . 

Proof. The proof of this result is a minor modification of the proof of 
Theorem 5 of [7]. The modifications are possible because each J in H is a 
Mobius transformation so that if B is an inner function, so is B o J. [ 

In the example of Section 1, the subgroup H is just the identity so this theorem 
gives the obvious conclusion that analytic Toeplitz operators have isometric 
liftings. The proof of Theorem 1.3 shows that the converse is true in this case. 

The above theorems, of course, do not cover all cases. It seems likely that 
the converse of Theorem 4.2 is true in general, that is, that S in {T,}’ has a 
lifting if and only if S is in GZ, but I know no proof. 

5. PROJECTIONS IN THE COMMUTANT 

For a semiautomorphic function 4, we would like to find the reducing sub- 
spaces for T* , or at least to determine when Tb is irreducible. In some cases, 
we can find a few reducing subspaces easily. I f  / in r is invertible, it is a Mobius 
transformation and the operator U, = T~,,)I&‘, is unitary [12]. As Abrahamse 
and Ball noted, since it commutes with Tm , the spectral subspaces of U, are 
reducing subspaces for T* [3]. 

A subspace is a reducing subspace for T+, if and only if the orthogonal projec- 
tion onto the subspace commutes with T* . Rather than attacking the irre- 
ducibility question directly, we look at the more general question of determining 
when T,+ commutes with a nontrivial projection, orthogonal or not. 

Before stating the theorem, we need the following definition. 
A function v, whose domain is the semigroup r and whose values are ordinal 

numbers, is called a factorization function for r if for g, g, , g, in r 
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(I) v(g) = 0 if and only if g is the identity, 

and 

(2) if R = glg2, where gr and g, are not both the identity, then either 

lW :;- 4~) or 4~) > 4g2). 

I f  1’ has a factorization function V, then the identity is the only invertibk 
element in r, for if g -# id is invertible, i(ggm’) Mom r(id) ~mm 0 so either v(,<T) 
or V( g ‘) is less than zero, which is impossible. 

The existence of a factorization function should be regarded as a strengthening 
of the hy-pothesis on r that it have no invertible elements except the identity. 
It should be pointed out that any semigroup embedded in a finitely generated 
free group can be the semigroup of automorphisms for some el-enly semi- 
automorphic function, so the existence of a factorization function is more 
an algebraic question than a geometric one. -Although not every- semigroup 
that is embedded in a free group and has no inverses has a factorization function, 
they do exist for some cases of interest. For example. if I’ is a fret semigroup 
with generators g1 , g2 ,..,, gn , that is, I’ is the set of words in the generators 
with nonnegative exponents, then the sum of the exponents is a factorization 
function. Factorization functions need not he this simple hovvcver. T,ct i, 
bc the semigroup in the free group with generators g and h with 

r 
1 

=-z {idI ” ! g”lh’~ . 

’ I’ 
*g%rzn 1 either f  kj -c- 1, I 01 

j;-1 

jJ k, + 1, = 0 and f  kj 1, 11. 
.i -1 j-1 

The function V(W) = (z:j’=, k, 7 I,)w ~- XI’_, k, , where w is the first infinite 
ordinal, is a factorization function for r, . (It can be shown that r, has nt, 
factorization function into the integers.) 

The semigroup for the example of Section 1 is the free semigroup on one 
generator (i.e., the positive integers) so the following theorem applies. -4n 
examination of the proof in this case will show that we are generalizing the 
proof that a lower triangular Toeplitz matrix is not a nontrivial projection. 

THEOREM 5.1. If  4 is evenly semiautomorphic with respect to the semigroup I‘ 
and v  is a factorization function for r, then T* does not commute with aq nontrivial 
projections. 

Proof. Suppose P is a projection that commutes with T,b . \Ve want to 
show that P is zero or the identity. 
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From the representation (*) of Theorem 2.1, we have P*K, = CJEr uJ(ol) KJ(,) 
for each 01 in D. Now 

P*zK, = P” 2 q(m) K,(,, 
(- JET 

= ‘& zr aJ(o1) a&f%% KPJ(~) 

Since P is a projection, we have Pi2 = P*, so we have aJ(Ly) = 

cJ1oJz=JaJz(a) aJl(h(a:)) for a11 J in I’ and 01 in D. (Lemma A justifies equating 
coefficients in this way.) 

Since Y is a factorization function on I’, the identity is the only invertible 
element of r, so the only factorization of the identity is id = id 0 id. Thus, 
we have aid = afd and since aid is analytic, it is the constant function 0 or 1. 
I f  P is a projection that commutes with T, , so is I - P and if aid = 1, then 
the corresponding function for I - P is zero. We therefore assume that aid - 0. 
We have shown that a, G 0 if v(J) = 0 and we proceed by induction. 

Suppose 7 is an ordinal number and we have shown a, = 0 for V(J) < 7. 
If  V(J) = 7, then whenever J = Jr 0 Jz , either v( Jl) < q or V( Jz) < 17 so 
either a, 1 = 0 or a, 2 :E 0, and we have 

We conclude that a, = 0 for all J in I’ so that either P or I - P is zero. a 

Although I do not know a proof, it seems likely that the conclusion remains 
true if we require only that the identity is the only invertible element of r. 

6. CONCLUSIONS 

In this paper we have examined a class of analytic Toeplitz operators whose 
commutants are quite different from the previously known examples. Some of 
these differences are apparently due to the fact that the boundary behavior 
of semiautomorphic functions is not as representative of the behavior inside 
the disk as for inner functions or covering maps. For example, the function 
in Section 1 is one-to-one on the boundary but infinite-to-one on the inside 
of the disk, whereas the boundary function of a covering map of the disk onto 
a plane region is in some sense a covering of the boundary of the region. These 
differences seem to be very important for lifting questions, but less important 
for the description of the commutant. 
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It is clear that the proofs herein depend heavily on the continuability of 
the automorphisms in r, which are just branches of the multiple valued 
analytic function 4.” 0 4. If  f  is a bounded analytic function for which f’ 
vanishes at some points, or for which f’ is never zero, but f  is not semi- 
automorphic, the technical details needed to compute {T,}’ will certainly b(. 
more difficult, and perhaps {T,}’ will exhibit unexpected behavior. 

It would be interesting to use the techniques of Section 3 to find compacts 
commuting with other, more general, operators. In cases where the operato 
to be studied is also multiplication by z and the Hilbert space is a Hilbert 

. . 
space of functions, the direction to proceed is clear. In other cases, a mort 
general notion of composition operators and careful control of converE:encc 
of functions of the operator seem to he required. 
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