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1. INTRODUCTION

The Riemann zeta function at integers k ≥ 2 is defined as follows:

ζ(k) = ∑
n≥1

1
nk

We are interested in the arithmetic nature (rational / irrational, algebraic / transcendental) of the
ζ(k)’s. For even k, it turns out that ζ(k) is a rational multiple of πk. We discuss this fact - originally
due to Euler - in Section 4. Since π is transcendental, it follows that ζ(k) is transcendental. For odd
k, much less is known. Apéry [2] broke the ice in 1978 with a miraculous proof of the following:

Theorem (Apéry). ζ(3) is irrational.

Whether ζ(3) is transcendent, or whether ζ(3) is a rational multiple of π3, is unknown. Also,
the irrationality of any specific value of the zeta function at odd integers greater than 3 is unknown.
Two results in this direction are, however, worth mentioning. Rivoal [10] has shown the following:

Theorem (Rivoal). Infinitely many ζ-values at odd integers are irrational.

In fact, we have ([6, Thm.1]): if n ≥ 3 is an odd integer, then the dimension of the Q-vector
space generated by 1, ζ(3), ζ(5), . . . , ζ(n) is at least 1

3 ln n. It follows that there is an infinite
subset of {1, ζ(3), ζ(5), ζ(7), . . . } which is linearly independent over Q. On one hand, at most
one element of the infinite subset is rational, hence the previous theorem. On the other hand, this
linear independence over Q fits the hypothesis that ζ(k) is a rational multiple of πk for odd k, as
well.

Another irrationality result for values of the zeta function at odd integers is due to Zudilin [12]:

Theorem (Zudilin). One of ζ(5), ζ(7), ζ(9), ζ(11) is irrational.

Apéry’s theorem is the main result we are after in this paper. We follow an elegant proof due to
Beukers [4]. Just like Apéry’s original proof (see [9] for a lively exposition), Beukers’ proof deals
with both ζ(2) and ζ(3). The proof that ζ(2) is irrational (Section 2) is interesting here not for the
result in itself, but rather for warming-up the ground for the slightly more involved proof that
ζ(3) is irrational (Section 3).

The basic idea for showing that a given real number ξ is irrational is to construct a sequence
of non-zero integral combinations {an + bnξ}n≥1 (an, bn ∈ Z) which converges to 0. Indeed, if ξ
were rational then an + bnξ would be bounded away from zero independently of n.

Before proceeding to the proofs, let us prepare our tools. First, the Legendre polynomials

Pn(x) =
1
n!

dn

dxn
(

xn(1− x)n) (n ≥ 0)
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which are immediately seen to have integer coefficients. These polynomials are particularly friendly
to integration by parts. For i ≤ n− 1 we have

di

dxi

(
xn(1− x)n)(0) =

di

dxi

(
xn(1− x)n)(1) = 0

so for an integrable function g we can write:∫ 1

0
Pn(x)g(x) dx =

∫ 1

0

1
n!

dn

dxn
(
xn(1− x)n) g(x) dx

=

[
1
n!

dn−1

dxn−1

(
xn(1− x)n) g(x)

]1

0

−
∫ 1

0

1
n!

dn−1

dxn−1

(
xn(1− x)n) g′(x) dx

= −
∫ 1

0

1
n!

dn−1

dxn−1

(
xn(1− x)n) g′(x) dx

Repeating this process n times and taking the absolute value we obtain:∣∣∣∣∫ 1

0
Pn(x)g(x) dx

∣∣∣∣ =
∣∣∣∣∫ 1

0

1
n!

xn(1− x)ng(n)(x) dx
∣∣∣∣(1)

Second, consider the least common multiple of 1, 2, . . . , n:

dn = lcm(1, 2, . . . , n)

We will need the following bound:

dn < 3n (n� 1)(2)

Indeed, notice that dn = ∏ pαp , where the product is taken over all primes p ≤ n and each αp is
the greatest integer with pαp ≤ n. So dn ≤ nπ(n), where π(n) denotes the number of primes no
greater than n. The prime number theorem says that

1 = lim
n−→∞

π(n) ln n
n

= lim
n−→∞

ln nπ(n)

n

so for n sufficiently large we have ln nπ(n) < n ln 3, i.e., dn ≤ nπ(n) < 3n as desired.
Whenever it occurs, the interchange of integral with infinite sum is justified by the monotone

convergence theorem, the interchange of integral with derivative is allowed since the functions
involved are “nice”, whereas the constant use of improper integrals instead of limits of proper
ones is somehow excused by the ”uncertainty principle of writing proofs”: a gain in rigor is a loss
in clarity.

2. MORNING WARM-UP: IRRATIONALITY OF ζ(2)

Lemma 2.1. For all 0 ≤ x, y ≤ 1 we have:

x(1− x)y(1− y)
1− xy

≤
(√

5− 1
2

)5

Proof. Let f (x, y) be the function given in the lemma. Notice first that f vanishes on the boundary
of [0, 1]× [0, 1]. The function f is not defined for (1, 1), but we have f (x, y) −→ 0 as x, y↗ 1.

To find the maximum of f in the unit square, we solve the following system in (0, 1)× (0, 1):

∂

∂x
f (x, y) = 0 =

∂

∂y
f (x, y)

which immediately takes the form:

1− 2x + yx2 = 0 = 1− 2y + xy2
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Express y from the first relation, substitute in the second relation and obtain x3− 2x + 1 = 0, whose

roots are 1, −1±
√

5
2 . Hence x =

√
5−1
2 and, by symmetry, y =

√
5−1
2 ; these are the coordinates of the

point where f achieves its maximum value
(√

5−1
2

)5
. �

In what follows, we use
∫∫

� to mean the double integral over the unit square [0, 1]× [0, 1].

Proposition 2.2. Let r, s ∈N. Then

∫∫
�

xrys

1− xy
dxdy ∈

{
ζ(2) + 1

d2
r
Z if r = s

1
d2

r
Z if r > s

Proof. For any real a ≥ 0 we have

∫∫
�

xr+ays+a

1− xy
dxdy =

∫∫
�

xr+ays+a ∑
n≥0

(xy)n dxdy = ∑
n≥0

∫∫
�

xn+r+ayn+s+a dxdy

= ∑
n≥0

1
n + r + a + 1

· 1
n + s + a + 1

(3)

For the present proof, we only use (3) for a = 0, but the full force of (3) will be needed later, when
dealing with ζ(3). If r = s, then for a = 0 we get:

∫∫
�

xryr

1− xy
dxdy = ∑

n≥0

1
(n + r + 1)2 = ζ(2)− 1

12 − · · · −
1
r2 ∈ ζ(2) +

1
d2

r
Z

In particular, for r = 0 we have the integral representation:

ζ(2) =
∫∫

�

dxdy
1− xy

(4)

If r > s, then we can express the sum in (3) as

∑
n≥0

1
n + r + a + 1

· 1
n + s + a + 1

=
1

r− s ∑
n≥0

(
1

n + s + a + 1
− 1

n + r + a + 1

)
=

1
r− s

(
1

s + a + 1
+ · · ·+ 1

r + a

)
(5)

Setting again a = 0, we get that the last sum can be expressed as a ratio whose denominator is
d2

r . �

Theorem 2.3. ζ(2) is irrational.

Proof. Consider the following integral

∫∫
�

Pn(x)(1− y)n

1− xy
dxdy
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On one hand, this integral is of the form (an + bnζ(2))/d2
n with an, bn ∈ Z, since Pn is a polynomial

with integer coefficients. On the other hand, using (1) we have∣∣∣∣∫∫�

Pn(x)(1− y)n

1− xy
dxdy

∣∣∣∣ =
∣∣∣∣∫ 1

0
Pn(x)

(∫ 1

0

(1− y)n

1− xy
dy
)

dx
∣∣∣∣

=
∣∣∣∣∫ 1

0

xn(1− x)n

n!
dn

dxn

(∫ 1

0

(1− y)n

1− xy
dy
)

dx
∣∣∣∣

=
∣∣∣∣∫ 1

0

xn(1− x)n

n!

(∫ 1

0

dn

dxn

(
(1− y)n

1− xy

)
dy
)

dx
∣∣∣∣

=
∣∣∣∣∫ 1

0

xn(1− x)n

n!

(∫ 1

0

n!yn(1− y)n

(1− xy)n+1 dy
)

dx
∣∣∣∣

=
∫∫

�

xn(1− x)nyn(1− y)n

(1− xy)n+1 dxdy

Hence the integral we considered does not vanish, and by Lemma 2.1 we have:

0 <

∣∣∣∣ an + bnζ(2)
d2

n

∣∣∣∣ ≤
(√

5− 1
2

)5n ∫∫
�

dxdy
1− xy

=

(√
5− 1
2

)5n

ζ(2)

Using the bound (2) on dn, for n sufficiently we have

0 < |an + bnζ(2)| < 9n

(√
5− 1
2

)5n

ζ(2) < 0.9n

which implies that ζ(2) is irrational. �

We can actually compute ζ(2) by using a double-integral representation. It is not really (4) that
we need, but a slightly modified formula:∫∫

�

dxdy
1− x2y2 =

∫∫
�

∑
n≥0

(xy)2n dxdy = ∑
n≥0

1
(2n + 1)2 =

3
4

ζ(2)

To compute the above double integral, we will use a clever substitution:

A =
{

u, v : u ≥ 0, v ≥ 0, u + v ≤ π

2

}
−→ [0, 1]× [0, 1], (u, v) −→

(
sin u
cos v

,
sin v
cos u

)
Some trigonometric gymnastics show that the above transformation is well-defined and it is bijec-
tive, its inverse being given by

(x, y) −→

arctan x

√
1− y2

1− x2 , arctan y

√
1− x2

1− y2

 .

The Jacobian of the transformation is:

∂(x, y)
∂(u, v)

=
∣∣∣∣ cos u/ cos v sin u sin v/ cos2 v

sin u sin v/ cos2 u cos v/ cos u

∣∣∣∣ = 1− sin2 u sin2 v
cos2 u cos2 v

= 1− x2y2

We thus get

3
4

ζ(2) =
∫∫

�

dxdy
1− x2y2 =

∫∫
A

dudv = Area (A) =
π2

8

hence ζ(2) = π2/6.
A higher-dimensional version of this computation allows one to prove that ζ(2k) is a rational

multiple of π2k; see [5], as well as the exposition in [7, §1,2].
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3. NOON CLIMAX: IRRATIONALITY OF ζ(3)

Lemma 3.1. For all 0 ≤ x, y, w ≤ 1 we have:

x(1− x)y(1− y)w(1− w)
1− (1− xy)w

≤ (
√

2− 1)4

Proof. Let f (x, y, w) be the function given in the lemma. Notice that f vanishes on the boundary
of the unit cube [0, 1]× [0, 1]× [0, 1]. On the edges x = 0, w = 1 and y = 0, w = 1 the function f is
not defined, but we have f (x, y, w) −→ 0 as x ↘ 0, w↗ 1 or as y↘ 0, w↗ 1.

To find the maximum of f over the unit cube, we solve the following system in (0, 1)× (0, 1)×
(0, 1):

∂

∂x
f (x, y, w) =

∂

∂y
f (x, y, w) =

∂

∂w
f (x, y, w) = 0

which immediately takes the form:

1− 2w + (1− xy)w2 = (1− 2x)− (1− 2x + x2y)w = (1− 2y)− (1− 2y + xy2)w = 0

Equating the expressions for w from the last two relations gives x = y. Use this in the first relation
and get w = 1

1+x . The last two relations, now rendered equivalent, give w = 1−2x
1−2x+x3 . Equating

these two expressions quickly leads to x2 + 2x− 1 = 0 whose roots are −1±
√

2. Hence x = y =√
2− 1 and w = 1/

√
2; these are the coordinates of the point where f achieves its maximum value

(
√

2− 1)4. �

Proposition 3.2. Let r, s ∈N. Then∫∫
�
− xrys ln xy

1− xy
dxdy ∈

{
2ζ(3) + 1

d3
r
Z if r = s

1
d3

r
Z if r > s

Proof. If r = s, it follows by (3) that for all a ≥ 0 we have:∫∫
�

xr+ayr+a

1− xy
dxdy = ∑

n≥0

1
(n + r + a + 1)2

Differentiate with respect to a to obtain:∫∫
�

xr+ayr+a ln xy
1− xy

dxdy = −2 ∑
n≥0

1
(n + r + a + 1)3

At a = 0 this says∫∫
�

xryr ln xy
1− xy

dxdy = −2 ∑
n≥0

1
(n + r + 1)3 = −2

(
ζ(3)− 1

13 − · · · −
1
r3

)
∈ −2ζ(3)− 1

d3
r

Z.

In particular, for r = 0 we have the integral representation:

ζ(3) = −1
2

∫∫
�

ln xy
1− xy

dxdy

For r > s, recall that relation (5) says the following:∫∫
�

xr+ays+a

1− xy
dxdy =

1
r− s

(
1

s + a + 1
+ · · ·+ 1

r + a

)
Differentiate with respect to a and obtain:∫∫

�

xr+ays+a ln xy
1− xy

dxdy =
−1

r− s

(
1

(s + a + 1)2 + · · ·+ 1
(r + a)2

)
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For a = 0 we get ∫∫
�

xrys ln xy
1− xy

dxdy =
−1

r− s

(
1

(s + 1)2 + · · ·+ 1
r2

)
∈ 1

d3
r

Z

which ends the proof. �

Theorem 3.3. ζ(3) is irrational.

Proof. Consider the following integral:∫∫
�
−Pn(x)Pn(y) ln xy

1− xy
dxdy

On one hand, this integral equals (an + bnζ(3))/d3
n for some an, bn ∈ Z. On the other hand, since

− ln xy
1− xy

=
∫ 1

0

1
1− (1− xy)z

dz

we have∣∣∣∣∫∫�
−Pn(x)Pn(y) ln xy

1− xy
dxdy

∣∣∣∣ =
∣∣∣∣∫ 1

0
Pn(x)

(∫∫
�

Pn(y)
1− (1− xy)z

dydz
)

dx
∣∣∣∣

=
∣∣∣∣∫ 1

0

xn(1− x)n

n!
dn

dxn

(∫∫
�

Pn(y)
1− (1− xy)z

dydz
)

dx
∣∣∣∣

=
∣∣∣∣∫ 1

0

xn(1− x)n

n!

(∫∫
�

dn

dxn

(
Pn(y)

1− (1− xy)z

)
dydz

)
dx
∣∣∣∣

=
∣∣∣∣∫ 1

0

xn(1− x)n

n!

(∫∫
�

(−1)nn!Pn(y)ynzn

(1− (1− xy)z)n+1 dydz
)

dx
∣∣∣∣

=
∣∣∣∣∫ 1

0
Pn(y)

(∫∫
�

xn(1− x)nynzn

(1− (1− xy)z)n+1 dxdz
)

dy
∣∣∣∣

Make the change of variables w = 1−z
1−(1−xy)z (an involution) so dw = −xy

(1−(1−xy)z)2 dz. We get:∣∣∣∣∫∫�
−Pn(x)Pn(y) ln xy

1− xy
dxdy

∣∣∣∣ =
∣∣∣∣∫ 1

0
Pn(y)

(∫∫
�

(1− x)n(1− w)n

1− (1− xy)w
dxdw

)
dy
∣∣∣∣

=
∣∣∣∣∫ 1

0

yn(1− y)n

n!
dn

dyn

(∫∫
�

(1− x)n(1− w)n

1− (1− xy)w
dxdw

)
dy
∣∣∣∣

=
∣∣∣∣∫ 1

0

yn(1− y)n

n!

(∫∫
�

dn

dyn

(
(1− x)n(1− w)n

1− (1− xy)w

)
dxdw

)
dy
∣∣∣∣

=
∣∣∣∣∫ 1

0

yn(1− y)n

n!

(∫∫
�

(−1)nn!(1− x)n(1− w)nxnwn

(1− (1− xy)w)n+1 dxdw
)

dy
∣∣∣∣

=
∫∫∫ 1

0

xn(1− x)nyn(1− y)nwn(1− w)n

(1− (1− xy)w)n+1 dxdydw

Thus the integral we considered does not vanish, and by Lemma 3.1 we obtain:

0 <

∣∣∣∣ an + bnζ(3)
d3

n

∣∣∣∣ ≤ (
√

2− 1)4n
∫∫∫ 1

0

dxdydw
1− (1− xy)w

= (
√

2− 1)4n
∫∫

�
− ln xy

1− xy
dxdy

That is

0 < |an + bnζ(3)| ≤ d3
n(
√

2− 1)4n2ζ(3)

By our bound (2) on dn, for sufficiently large n we have

0 < |an + bnζ(3)| < 27n(
√

2− 1)4n2ζ(3) < 0.8n

which implies that ζ(3) is irrational. �
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4. EVENING CONTEMPLATION: THE ZETA FUNCTION AT EVEN INTEGERS

In this section, we outline several proofs for the following formula due to Euler:

ζ(2k) =
(−1)k+1B2k

2(2k)!
(2π)2k (k ≥ 1)(6)

The Bernoulli numbers (Bn)n≥0 which appear in formula (6) are defined by the Taylor expansion

x
ex − 1

= ∑
n≥0

Bn
xn

n!
.

Focusing on the coefficient of xn in

1 =
(

x
ex − 1

)(
ex − 1

x

)
=

(
∑

n≥0
Bn

xn

n!

)(
∑

n≥0

xn

(n + 1)!

)
we reach the following recursion formula:(

n + 1
1

)
Bn +

(
n + 1

2

)
Bn−1 + · · ·+

(
n + 1

n

)
B1 + B0 = 0

In particular, the Bernoulli numbers are rational numbers (hence, once we establish (6), it will
follow that ζ(2k) is a rational multiple of π2k). Explicitly, the Bernoulli numbers start off as 1, − 1

2 ,
1
6 , 0, − 1

30 , 0, 1
42 , 0, − 1

30 , 0, 5
66 ,. . . . This indicates that Bn = 0 for odd n > 1, and this is indeed the

case: the function
x

ex − 1
+

x
2

=
x
2
· ex/2 + e−x/2

ex/2 − e−x/2

is even, so B1 = −1/2 and Bn = 0 for odd n ≥ 3. 1

One way of obtaining (6) is through the Riemann functional equation. The zeta function is first
defined on the open half-plane Re(s) > 1 (where the series converges absolutely) by

ζ(s) = ∑
n≥1

n−s.

Using contour integration, one extends the zeta function to a function which is analytic throughout
the complex plane, except for a simple pole at s = 1 with residue 1 (i.e., lims→1(s− 1)ζ(s) = 1).
Thus extended, the zeta function satisfies the Riemann functional equation

ζ(1− s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s)

relating the values of ζ on arguments symmetric about the critical line Re(s) = 1/2. Here, the
gamma function is defined for Re(s) > 0 as

Γ(s) =
∫ ∞

0
e−uus−1du

and then extended to a function that is analytic in the whole complex plane, except simple poles
at 0, −1, −2, −3,. . . . Note that Γ(n + 1) = n!.

The zeta function takes a simple form on negative integers:

ζ(−n) = − Bn+1
n + 1

1For even n, an interesting arithmetic information on the Bn’s is given by the Clausen - von Staudt theorem: the denomi-
nator of Bn is ∏

p−1|n
p prime

p.
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We see, in particular, the trivial zeros of the zeta function: ζ(−n) = 0 for even n ≥ 2. On the other
hand, set s = 2k with k a positive integer in the functional equation for ζ to get

−B2k
2k

= ζ(1− 2k) = 2(2π)−2kΓ(2k) cos(πk)ζ(2k) = 2(2π)−2k(2k− 1)!(−1)kζ(2k)

that is, formula (6). Notice that no similar information about ζ(2k + 1) can be obtained by plugging
in s = 2k + 1, since both sides of the functional equation will vanish.

Another way of deriving (6) starts from the following convolution formula for the ζ(2k)’s:

(k +
1
2
)ζ(2k) =

k−1

∑
i=1

ζ(2i)ζ(2k− 2i) (k ≥ 2)(7)

See Williams [11] for a one-page proof using elementary series manipulation. Let us note that (7)
gives that ζ(2k) is a rational multiple of ζ(2)k. As ζ(2) = π2/6, we can already conclude that
ζ(2k) is a rational multiple of π2k.

To obtain (6) from (7), we rely on the following

Lemma 4.1. Let C2k = 1
(2k)! B2k. Then −(2k + 1)C2k = ∑k−1

i=1 C2iC2k−2i for k ≥ 2.

Proof. We have the following series expansion:

x
ex − 1

= − x
2

+ ∑
k≥0

C2k x2k(8)

We will compute in two ways the coefficient of x2k for k ≥ 2 in the expansion of x2/(ex − 1)2.
On one hand, squaring (8) we obtain that the respective coefficient is C0C2k + C2C2k−2 + · · · +
C2k−2C2 + C2kC0. On the other hand, differentiate (8) term by term to obtain:

1
ex − 1

− x
(ex − 1)2 −

x
ex − 1

= −1
2

+ ∑
k≥1

2kC2k x2k−1

Multiply by x and use (8) to obtain:(
− x

2
+ ∑

k≥0
C2kx2k

)
− x2

(ex − 1)2 − x

(
− x

2
+ ∑

k≥0
C2kx2k

)
= − x

2
+ ∑

k≥1
2kC2kx2k

Hence the coefficient of x2k for k ≥ 2 in the expansion of x2/(ex − 1)2 is (1− 2k)C2k. Therefore

(1− 2k)C2k = C0C2k + C2C2k−2 + · · ·+ C2k−2C2 + C2kC0

and, since C0 = 1, we get the required relation. �

In terms of Bernoulli numbers, the convolution formula of Lemma 4.1 reads as follows:

−(2k + 1)B2k =
k−1

∑
i=1

(
2k
2i

)
B2iB2k−2i

This recurrence provides yet another way of proving that Bernoulli numbers are rational numbers.
Lemma 4.1 and the convolution relation (7), together with the fact that ζ(2) = π2/6, yield

ζ(2k) = (−1)k+1C2k(2π)2k/2. But this is just (6).

Finally, formula (6) can be derived from the partial fraction expansion of the cotangent function:

π cot(πx) =
1
x

+ ∑
n≥1

( 1
x + n

+
1

x− n

)
(x ∈ R \Z)
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For 0 < |x| < 1 we can write:

(πx) cot(πx) = 1 + 2 ∑
n≥1

x2

x2 − n2 = 1− 2 ∑
n≥1

(x/n)2

1− (x/n)2

= 1− 2 ∑
n≥1

(
∑
k≥1

(x/n)2k
)

= 1− 2 ∑
k≥1

ζ(2k)x2k

On the other hand we have:

(πx) cot(πx) = (πx)i
ei(πx) + e−i(πx)

ei(πx) − e−i(πx)
= (πix)

e2πix + 1
e2πix − 1

= πix +
2πix

e2πix − 1
Putting z = 2πix in

z
ez − 1

= − z
2

+ ∑
k≥0

B2k
z2k

(2k)!

we are lead to

(πx) cot(πx) = 1 + ∑
k≥1

(2πi)2kB2k
(2k)!

x2k.

We obtain (6) by equating the coefficients of x2k in the two Taylor expansions for (πx) cot(πx).
This is the method explained in [1, Ch.20]; a related discussion is carried out in [9, pp.196–197].
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