1. Let \(f, g : X \rightarrow Y \) be continuous maps, where \(X \) is a topological space and \(Y \) is a Hausdorff space. Prove that the set \(S = \{ x \in X | f(x) = g(x) \} \) is closed.

2. Let \(X \) and \(Y \) be topological spaces and let \(p : X \rightarrow Y \) be a quotient map, and suppose that each fiber \(p^{-1}(y) \) is connected and \(Y \) is connected. Prove that \(X \) is connected.

3. Prove that if \(X \) is a topological space and \(Y \) is a compact space then the projection \(\pi_1 : X \times Y \rightarrow X \) is a closed map. (You may use the Tube Lemma without proving it.)

4. In the plane, let \(X \) be the union of the coordinate axes and the line \(x + y = 1 \), and let \(Y \) be the union of \(X \) and the positive quadrant. Prove that there is no retraction of \(Y \) onto \(X \).

5. Draw a subset \(Z \) of the plane homeomorphic to the one-point compactification of \(Y \) from the preceding problem. How many connected components does the complement of \(Z \) have, and how many of these are bounded?

6. Let \(E \) and \(B \) be topological spaces and let \(p : E \rightarrow B \) be a two-sheeted cover. Describe a non-identity homeomorphism \(h : E \rightarrow E \) satisfying \(h \circ h = id \) and prove that \(h \) is a homeomorphism.

7. Consider the space \(X \) consisting of a sphere glued, along its equator, into the hole of a torus. Use Seifert-van Kampen to compute the fundamental group of \(X \).