Problem 1. Let \(p \) be a prime number and \(G = \mathbb{Z}_p \times \mathbb{Z}_{p^2} \) the product of cyclic groups of orders \(p \) and \(p^2 \).

a) Count the number of subgroups of \(G \) of order \(p \).

b) Count the number of subgroups \(K \subset G \) such that \(G/K \) is isomorphic to \(\mathbb{Z}_{p^2} \).

c) Count the number of subgroups \(K \subset G \) such that \(G/K \) is isomorphic to \(\mathbb{Z}_p \times \mathbb{Z}_p \).

Problem 2. Let \(A_n \subset S_n \) be the alternating group. For which \(n \) is \(A_n \) a semidirect product of two non-trivial subgroups? Explain.

Problem 3. Let \(R \) be a commutative ring. Give the definition of a prime ideal \(I \subset R \). Suppose \(I, J, I \cap J \) are all prime ideals of \(R \). Show that \(I \subset J \) or \(J \subset I \).

Problem 4. Let \(F_5 = \mathbb{Z}/5\mathbb{Z} \) be the field with 5 elements. Show that the quotients \(F_5[x]/(x^2 + 2) \) and \(F_5[x]/(x^2 + x + 1) \) are fields.

Construct an explicit isomorphism of fields: \(F_5[x]/(x^2 + 2) \rightarrow F_5[x]/(x^2 + x + 1) \).

Problem 5. Give a definition of a Galois extension. Let \(K \subseteq M \subseteq L \) be fields. True or false? Explain!

a) If \(L : K \) is a Galois extension, then \(M : K \) is a Galois extension.

b) If \(L : K \) is a Galois extension, then \(L : M \) is a Galois extension.

c) If \(M : K \) and \(L : M \) are Galois extensions, then \(L : K \) is a Galois extension.

Problem 6. Give a polynomial \(p(x) \in \mathbb{Z}[x] \) with Galois group

a) \(\mathbb{Z}_6 \).

b) \(\mathbb{Z}_3 \).