Problem 1. (20)
Let G be a finite group and p be a prime number such that p divides the order of G. Let n_p be the number of Sylow p-subgroups in G. If $n_p \not\equiv 1 \pmod{p^2}$, show that there are two Sylow p-subgroups P and Q such that $[P : P \cap Q] = p$. (Hint: Consider the action of P on the set of all Sylow p-subgroups by conjugation.)
Problem 2. (30)
Let R be a commutative ring with identity. Let \mathcal{N} be the set of all nilpotent elements in R. Prove the following:

(a) \mathcal{N} is an ideal of R.

(b) \mathcal{N} is contained in the intersection of all prime ideals of R.

(c) \mathcal{N} is exactly the intersection of all prime ideals of R. (Hint: If not, let P_0 be the intersection and $a \in P_0 - \mathcal{N}$. Let \mathcal{M} be the partially ordered set consisting of ideals that do not contain any power of a. Show that \mathcal{M} has a maximal element.)
Problem 3. (30)
Let K/F be a finite Galois extension with Galois group of order $3393 = 3^2 \cdot 13 \cdot 29$. Show that there are intermediate subfields E_1, E_2, and E_3 such that

1. $E_0 = F \subset E_1 \subset E_2 \subset E_3 \subset E_4 = K$, where each containment is proper, and
2. E_{i+1}/E_i is a Galois extension for $i = 0, 1, 2, 3$.

Determine the Galois groups $\{\text{Gal}(E_{i+1}/E_i) | i = 0, 1, 2, 3\}$ as a set.
Problem 4. (20)
Let p be a prime number and F be a finite field of order p.

(a) Show that if a is a nonzero element in F, then the polynomial $f = x^p - x + a$ is irreducible over F. (Hint: If α is a zero of f, consider $\alpha + 1$.)

(b) Decide if the splitting fields of $f_1 = x^3 - x + 1$ and $f_2 = x^3 - x - 1$ over $F = \mathbb{Z}_3$ are isomorphic or not. If they are, find an explicit isomorphism between them. If not, explain why.