Math 554 Qualifying Exam

January, 2017

Ron Ji

You may use any theorems from the book. Other results you use must be proved. Make sure to double check your calculations and support your arguments.

1. Let

\[A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}. \]

(a) (10) Find the invariant factors and Jordan canonical form of \(A \).

(b) (10) Find a diagonalizable matrix \(D \) and a nilpotent matrix \(N \) such that \(A = D + N \) and \(DN = ND \).

2. (15) Let \(T \) be a linear operator on the finite-dimensional space \(V \) over a field \(F \), let \(R \) be the range and \(N \) be the null space of \(T \). Prove that \(R \) has a \(T \)-invariant complement if and only if \(R \) and \(N \) are independent. (Note: Two subspaces \(U \) and \(W \) are independent if whenever \(u + w = 0 \) with \(u \in U \) and \(w \in W \), then \(u = w = 0 \).)

3. (20) Let \(T \) be a linear transformation on a finite dimensional vector space \(V \) over the field \(F \). Let \(W \) be a proper nontrivial subspace of \(V \). Show that \(\dim(TW) + \dim(N(T) \cap W) = \dim W \) where \(TW \) is the image of \(T \) on \(W \) and \(N(T) \) is the null space of \(T \).

4. Let \(T \) be a linear operator on a finite dimensional inner product space \(V \) over \(\mathbb{C} \). Let \(W \) be a \(T \)-invariant subspace of \(V \). Let \(W^\perp \) be the orthogonal complement of \(W \).

(a) (5) Show that \(W^\perp \) is \(T^* \)-invariant.

(b) (5) If \(T \) is normal and \(W \) is a span of some eigenvectors of \(T \), then \(W^\perp \) is both \(T \) and \(T^* \) invariant. (Note: \(T \) is normal if \(T^*T = TT^* \).)

(c) (10) If \(T \) is normal and \(W \) is \(T \)-invariant, show that \(W \) is also \(T^* \)-invariant.

(d) (5) Show that if \(T \) is normal and \(W \) is both \(T \) and \(T^* \) invariant, then \(T|_W \) is normal on \(W \).

5. (20) Let \(T \) be a linear operator on a finite dimensional inner product space \(V \) over \(\mathbb{C} \). Prove that \(T \) is self-adjoint if and only if \(\langle T\alpha|\alpha \rangle \) is real for every \(\alpha \) in \(V \). (Note: \(T \) is self-adjoint if \(T^* = T \).)