1. For any numbers \(a, b \), let \(C_{a,b} \) be the curve in the domain \(x > 1 \) with the following parametrization: \(x = at + 1, \ y = t + b, \ z = at + b \). Find all vector fields \(V(x, y, z) \) in the domain \(x > 1 \) such that for any \(a, b \), the curve \(C_{a,b} \) is an integral curve of \(V \).

2. Solve the initial value problem in the domain \(x > 0 \): \(xy^3z_x + z^2z_y = -y^3z \), and \(z = y^2 \) on the hyperbola \(xy = 1 \).

3. Consider the differential equation \((z + 1)z_t + z_x = 0\) for \(t \geq 0 \).
 a) For the initial condition \(z(x, 0) = \frac{1}{x^2 + 1} \), find \(t_c \), the value of \(t \) when the shock develops. Sketch the graphs of \(z(x, 0) \) and \(z(x, t_c) \) as functions of \(x \). Point out the feature of the graph of \(z(x, t_c) \) that indicates the shock developing. The graphs should be sufficiently accurate.
 b) Find the minimum and maximum values of \(z(x, t) \) as \(-\infty < x < \infty , \ 0 \leq t < t_c \).
 c) Compute the integral \(\int_{-\infty}^{\infty} z(x, t_c) \, dx \).
 You do not need to find an analytic formula for the solution \(z(x, t) \).

4. Let \(\Omega \subset \mathbb{R}^2 \) be the domain \(x > 0, \ y > 0, \ x + y < 1 \).
Find all solutions of the boundary value problem
\[
\Delta u(x, y) = 0 \quad \text{for} \quad (x, y) \in \Omega, \\
u(x, y) = y^3 - 3x^2y \quad \text{for} \quad (x, y) \in \partial\Omega.
\]

5. Use separation of variables to solve the boundary value problem in the strip:
\[
\Delta u(x, y) = 3u \quad \text{for} \quad 0 < x < \pi/2, \ y > 0, \\
\frac{\partial u}{\partial n}(0, y) = 0, \quad u(\pi/2, y) = 0 \quad \text{for} \quad y > 0, \\
u(x, 0) = \cos^3 x, \quad \text{for} \quad 0 < x < \pi/2, \\
u(x, y) \text{ is bounded} \quad \text{as} \quad y \to \infty.
\]
6. Use D’Alembert’s method to solve the problem for the wave equation in the quadrant:

\[4u_{tt}(x, t) = u_{xx}(x, t), \quad x > 0, \quad t > 0, \]

\[u(0, t) = \sin t, \quad t > 0, \]

\[u(x, 0) = 0, \quad x > 0, \]

\[u_t(x, 0) = 0, \quad x > 0. \]

Find the limit \(\lim_{x \to \infty} u(x, t) \) as a function of \(t \).

7. Let \(\Omega \) be a bounded normal domain in \(\mathbb{R}^3 \) and \(f \in C(\overline{\Omega} \times \mathbb{R}_{\geq 0}) \).

Prove that the initial boundary value problem

\[u_t(x, t) = \Delta u(x, t) + f(x), \quad x \in \Omega, \]

\[u(x, t) = 0, \quad x \in \partial \Omega, \]

\[u(x, 0) = 0, \quad x \in \Omega. \]

has at most one solution in \(C^2(\overline{\Omega} \times \mathbb{R}_{\geq 0}) \).