1. Label the ten vertices in the following plane diagram with digits 0 through 9, using each digit exactly once, so that
 (i) the values at the vertices of each of the three triangles add to a constant sum T; and
 (ii) the values at the vertices of each of the three pentagons add to another constant sum P.
 You may use the template available at
 https://math.iupui.edu/math/highschoolmathcontest

 Below are two attempts: one satisfies T, but not P; and the other satisfies P, but not T. Can you produce a labelling that satisfies both T and P?

 (a) A T-constant labelling ($T=13$)
 (b) a P-constant labelling ($P=26$)
2. Let P be a regular n-gon inscribed in the unit circle and let Q be a regular 2n-gon inscribed in the unit circle. Express the length of a side of Q in terms of the length of a side of P.

3. Keep rolling a fair, six-faced die, and keep adding the outcomes until the running total exceeds 1000. When you stop, the running total must be 1001, 1002, ..., or 1006; but with what probabilities? (Approximate solutions are welcome if you cannot find an exact one.)

4. Let \(x_1, ..., x_n \) be real numbers in the interval \([-a, b]\), where both a and b are positive. Suppose that \(x_1 + ... + x_n = 0 \). Prove that \(x_1^2 + x_2^2 + ... + x_n^2 \leq nab \).

Team Problems

1. Consider a polynomial \(p_c(x) = x^2 + c \). The variable \(c \) is thought of as a “parameter” which will be fixed at various chosen values throughout the problem. Let \(p_c^{on}(x) \) denote the composition of \(p_c(x) \) with itself \(n \) times, for example \(p_c^{o2}(x) = p_c(p_c(p_c(x))) \). A point \(x \) is called periodic for \(p_c \) if there exists a natural number \(n \) such that \(p_c^{on}(x) = x \). The smallest such \(n \) is called the “period” of \(x \).
 a) How many integer values of \(x \) are periodic points for \(p_{-1}(x) = x^2 - 1 \)?
 b) Can you find an integer value of the parameter \(c \) such that \(p_c(x) \) has an integer periodic point \(x \) whose period is exactly 3?
 c) Prove for any integer parameter \(c \) the polynomial \(p_c(x) \) has at most finitely many integer points \(x \) that are periodic.
 d) Is there a uniform bound \(M \) such that for all parameters \(c \) the polynomial \(p_c(x) \) has at most \(M \) periodic points?

2. (a) \(3^3 + 4^3 + 5^3 = 6^3 \). Show how to cut a 6x6x6 cube into as few pieces as possible (composed of sets of contiguously connected 1x1x1 cubes) that can be reassembled into a 3x3x3 cube, a 4x4x4 cube, and a 5x5x5 cube.
 (b) \(10^3 + 9^3 = 12^3 + 1^3 \). Same problem cutting a 12x12x12 cube into as few pieces as possible which, when combined with the 1x1x1 cube, can be reassembled into a 10x10x10 cube and a 9x9x9 cube.