An Extension of Brolin’s Theorem & Relevant Tools

Sara Lapan

Northwestern University + UC Riverside

August 15, 2016
Theorem (Brolin, 1965)

If \(f(z) = z^\alpha + \ldots \) is a polynomial of degree \(\alpha \geq 2 \), then there is an exceptional set \(\mathcal{E} \) with \(\#\mathcal{E} \leq 1 \) such that if \(a \in \mathbb{C} \setminus \mathcal{E} \), then

\[
\frac{1}{\alpha^n} \sum_{f^n(z) = a} \delta_z \rightarrow \mu \text{ as } n \rightarrow \infty,
\]

where \(\mu \) is harmonic measure on the filled Julia set of \(f \).

- The limit is independent of \(a \).
- \(\mathcal{E} = \emptyset \) or, if \(f \) is affinely conjugate to \(z \mapsto z^\alpha \), \(\mathcal{E} = \{0\} \).
- This result is specific for polynomials in \(\mathbb{C} \).

Q. Can Brolin’s Theorem extend to other types of maps or spaces?

Yes, with additional assumptions, to:

- rational maps in \(\mathbb{P}_\mathbb{C}^1 \) by Lyubich & Freire-Lopez-Mañé [1983]
- holomorphic maps in \(\mathbb{P}_\mathbb{C}^2 \) by Favre-Jonsson [2001]
Extending Brolin’s Theorem

Theorem (Brolin, 1965)

If \(f(z) = z^\alpha + \ldots \) is a polynomial of degree \(\alpha \geq 2 \), then there is an exceptional set \(E \) with \(\#E \leq 1 \) such that if \(a \in \mathbb{C} \setminus E \), then

\[
\frac{1}{\alpha^n} \sum_{f^n(z) = a} \delta_z \to \mu \text{ as } n \to \infty,
\]

where \(\mu \) is harmonic measure on the filled Julia set of \(f \).

Theorem (Favre-Jonsson, 2001)

Let \(f = [P : Q : R] : \mathbb{P}^2_\mathbb{C} \to \mathbb{P}^2_\mathbb{C} \), where \(P, Q, R \) are homogeneous polynomials of degree \(\alpha \geq 2 \) and let \(E \) be a special set. If \(S \) is a positive closed \((1, 1)\) current on \(\mathbb{P}^2 \) with mass 1 that behaves nicely on \(E \), then

\[
\frac{1}{\alpha^n} f^n* S \to T \text{ as } n \to \infty,
\]

where \(T \) is the Green current of \(f \).
Overview

1. What is a current?

 Focus on positive closed $(1, 1)$-currents on \mathbb{P}^2_C.

2. Precise statement of extension of Brolin’s Theorem to \mathbb{P}^2_C

 Focus on Theorem A of “Brolin’s Theorem for Curves in Two Complex Dimensions" by Favre-Jonsson from 2001.

3. Some Ingredients in the proof

 Including Hartog’s Lemma.
What is a p-current?

Let M be a smooth (\mathbb{R}) manifold of dimension m.

Let $D^p(M)$ be the space of smooth p-forms with compact support on M.

Definition

A p-current on M is a (continuous) linear functional:

$$S : D^p(M) \to \mathbb{R}.$$

Note: The action of S on $\nu \in D^p(M)$ is often denoted $\langle S, \nu \rangle$.

Let $D'_p(M)$ be the space of p-currents on M.

Sara Lapan

Extension of Brolin’s Theorem
Example 1. p-dimensional submanifolds

Let M be a smooth manifold of dimension m.

Let $Z \subset M$ be a closed oriented submanifold of dim p and class C^1.

Geometrically, a p-current can represent integration over Z.

The current of integration over Z, $[Z]$, is a p-current defined by:

$$\langle [Z], u \rangle = \int_Z u, \text{ for } u \in D^p(M).$$

A p-current $S \in D'_p(M)$ can be expressed as a $(m - p)$-form:

$$S = \sum_{|I|=m-p} S_I dx^I,$$

where $I = (i_1, \ldots, i_{m-p})$, $dx^I = dx_{i_1} \wedge \ldots \wedge dx_{i_{m-p}}$, and $i_1 < \ldots < i_{m-p}$.

Sara Lapan

Extension of Brolin’s Theorem
What is a p-current?

Example 2. $(m - p)$-form

A form $\alpha \in D^{m-p}(M)$ with coefficients in L^1_{loc} defines a p-current:

$$\langle \alpha, \phi \rangle := \int_M \alpha \wedge \phi \text{ for any } \phi \in D^p(M)$$

since $\alpha \wedge \phi \in D^m(M)$ is a volume form.

Consequently, a p-current S acts on p-forms and can act as an $(m - p)$-form.

We say that S has dimension p and degree $m - p$.
Extending from \mathbb{R} to \mathbb{C}

Each complex variable, z_j, has 2 corresponding real variables and so we have 2 corresponding differentials. In particular, dz_j and $d\bar{z}_j$.

Note that dz_j is a $(1, 0)$-form and $d\bar{z}_j$ is a $(0, 1)$-form.

More generally, $\alpha = \sum_{|I|=p, |J|=q} \alpha_{IJ} dz_I \wedge d\bar{z}_J$ is a (p, q)-form and we say that $\alpha \in D^{p, q}$.

Notation: $d = \partial + \bar{\partial}$ and $d^c = \frac{i}{2\pi} (\bar{\partial} - \partial)$, where

$$\partial \alpha = \sum_{k, |I|=p, |J|=q} \frac{\partial \alpha_{IJ}}{dz_k} dz_k \wedge dz_I \wedge d\bar{z}_j$$

$$\bar{\partial} \alpha = \sum_{k, |I|=p, |J|=q} \frac{\partial \alpha_{IJ}}{d\bar{z}_k} d\bar{z}_k \wedge dz_I \wedge d\bar{z}_j.$$

It follows that $dd^c = \frac{i}{\pi} \partial \bar{\partial}$.
What is a $(1, 1)$-current?

For simplicity, we now focus on \(M = \mathbb{P}^2_\mathbb{C} \).

Let \(z_1 \) and \(z_2 \) be local coordinates on \(\mathbb{P}^2_\mathbb{C} \).

Let \(D^{1,1}(\mathbb{P}^2_\mathbb{C}) \) be the space of smooth compactly supported $(1, 1)$-forms. Any \(\nu \in D^{1,1}(\mathbb{P}^2_\mathbb{C}) \) can be expressed as:

\[
\nu = \sum_{1 \leq j, k \leq 2} a_{jk} \, dz_j \wedge d\bar{z}_k,
\]

Definition (For \(\mathbb{P}^2_\mathbb{C} \))

A $(1, 1)$-current \(S \) is a linear functional on \(D^{1,1}(\mathbb{P}^2_\mathbb{C}) \) and can be represented as a $(1, 1)$-form with distributional coefficients.
Closed positive $(1, 1)$-currents and why they are special.

Definition

Let S be a $(1, 1)$-current and express it as $S = i \sum S_{jk} dz_j \wedge d\bar{z}_k$. S is **positive** if the distribution $\sum S_{jk} \zeta_j \bar{\zeta}_k \geq 0$ for all $\zeta \in \mathbb{C}^2$.

Definition

A $(1, 1)$-current S is **closed** if $dS = 0$ (Recall $dS = (\partial + \overline{\partial})S$).

Why are closed positive $(1, 1)$-currents special?

Proposition (A.4.1, Sibony – some of the proposition)

1. *Every positive $(1, 1)$-current is representable by integration.* *(The distributional coefficients are measurable)*

2. *If S is a closed positive $(1, 1)$-current, then $\forall z_0 \in M$, \exists an open neighborhood $U \subset M$ of z_0 and a plurisubharmonic function u on U such that $S = dd^c u$ in U. (Note: u is called a potential of S and $dd^c = \frac{i}{\pi} \partial \overline{\partial}$)*
Let S be a positive closed $(1, 1)$-current on $\mathbb{P}^2_\mathbb{C}$ and ω the standard Kahler form on $\mathbb{P}^2_\mathbb{C}$ corresponding to the Fubini-Study metric.

Definition

S has unit mass if $1 = \|S\| = \int_{\mathbb{P}^2_\mathbb{C}} S \wedge \omega$.

Let $f : \mathbb{P}^2_\mathbb{C} \to \mathbb{P}^2_\mathbb{C}$ be holomorphism of algebraic degree $\alpha \geq 2$.

$\Rightarrow f = [P : Q : R], \ P, Q, R$ homogenous degree α polynomials.

We are now prepared to revisit FJ’s extension of Brolin’s Theorem using more precise language.
Theorem (Favre-Jonsson, 2001)

Let \(f : \mathbb{P}^2 \to \mathbb{P}^2 \) be holomorphism of algebraic degree \(\alpha \geq 2 \).

Then \(\exists \) a set \(\mathcal{E} = \mathcal{E}_1 \cup \mathcal{E}_2 \), where:

\(\mathcal{E}_1 \) is a totally invariant, algebraic set consisting of \(\leq 3 \) \(\mathbb{C} \)-lines &
\(\mathcal{E}_2 \) is a totally invariant (i.e., \(f^{-1}(\mathcal{E}_2) = \mathcal{E}_2 \)), finite set,

and \(\mathcal{E} \) has the following property:

If \(S \) is a positive closed \((1, 1)\) current on \(\mathbb{P}^2 \) of mass 1 such that

1. \(S \) does not change any irreducible component of \(\mathcal{E}_1 \);
2. \(S \) has a bounded local potential at each point of \(\mathcal{E}_2 \);

then we have the convergence

\[\frac{1}{\alpha^n} f^n \ast S \to T \text{ as } n \to \infty, \]

where \(T \) is the Green current of \(f \).
Part 1 of Proof of FJ Theorem

Let ω be the Fubini-Study Kahler form on \mathbb{P}^2_C.

$f^*\omega$ and $\alpha \omega$ are cohomologous positive closed $(1, 1)$ currents, so there is a continuous function u such that:

$$f^*\omega = \alpha \omega + dd^c u.$$

Then:

$$f^{2*}\omega = \alpha(f^*\omega) + dd^c(f^*u)$$

$$= \alpha^2 \omega + dd^c (\alpha u + u \circ f).$$

Consequently,

$$f^{n*}\omega = \alpha^n \omega + dd^c(\alpha^{n-1} u + \alpha^{n-2} u \circ f + \ldots + u \circ f^{n-1})$$

and

$$\frac{1}{\alpha^n} f^{n*}\omega = \omega + dd^c \sum_{j=1}^{n-1} \alpha^{-j} u \circ f^{j-1} \to \omega + dd^c G := T \text{ as } n \to \infty.$$
On the previous slide, we had:

\[
\frac{1}{\alpha^n} f^n \omega \to T \text{ as } n \to \infty,
\]

where \(\omega \) was the Kahler-Study form.

When can we replace \(\omega \) with a current and have the same limit?

In particular, we consider positive closed \((1, 1)\) currents of mass 1.

In their proof, FJ use that such a current may affect the size of forward iterates of a ball in \(\mathbb{P}^2 \) to determine sufficient conditions on a current to attain the above limit.
Suppose that S is a positive closed $(1, 1)$-current for which limit \star fails. S can be written as:

$$S = \omega + dd^c u,$$

where $u \leq 0$ is the sum of a psh function and a smooth function.

Then, $\forall n \geq 0$,

$$\alpha^{-n} f^n* S = \alpha^{-n} f^n* \omega + \alpha^{-n} dd^c (u \circ f^n).$$

By assumption, $\alpha^{-n} f^n* S \not\rightarrow T$ and we know that $\alpha^{-n} f^n* \omega \rightarrow T$.

So $\alpha^{-n} dd^c (u \circ f^n) \not\rightarrow 0$. Equivalently, $\alpha^{-n} u \circ f^n \not\rightarrow 0$ in L^1_{loc} since:

$$\int_{\mathbb{P}^2} \alpha^{-n} dd^c (u \circ f^n) \wedge \phi = \int_{\mathbb{P}^2} (\alpha^{-n} u \circ f^n) \wedge dd^c \phi.$$
Recall: We want to determine for which S, $\nu_n := \alpha^{-n} u \circ f^n \not\to 0$.

$\{\nu_n\}$ is a sequence of subharmonic functions bounded above by 0.

Hartog’s Lemma (In Dynamics of Rational Maps on \mathbb{P}^k by Sibony)

Let $\{v_j\}$ be a sequence of subharmonic functions on a domain Ω. Suppose $\{v_j\}$ is bounded above on every compact subset K of Ω.

If $v_j \not\to -\infty$ on K, then there is a subsequence $\{v_{j_k}\}$ converging on L^1_{loc} to a subharmonic function v. In addition,

$$\limsup_{j \to \infty} \sup_K v_j \leq \sup_K v, \text{ for all compact } K.$$

If $\nu_n \not\to -\infty$ on a ball $B \subset \mathbb{P}^2_{\mathbb{C}}$, then there is a subsequence $\{\nu_{n_j}\}$ that converges to subharmonic $\nu < c$, for constant $c < 0$. Then:

$$B \subset \{\nu_{n_j} = \alpha^{-n_j} u \circ f^{n_j} < c\} \Rightarrow f^{n_j}(B) \subset \{u < \alpha^{n_j} c < 0\}.$$
The rest of [FJ] is spent showing that if S satisfies the properties relating to \mathcal{E} from the theorem, then we cannot have:

$$f^{nj}(B) \subset \{ u < \alpha^{nj} \ c < 0 \}.$$

That is done in [FJ] by estimating the volume of $f^{nj}(B)$ from below (using dynamics) and the volume of $\{ u < c\alpha^{nj} \}$ from above (using pluripotential theory).
Brolin’s Theorem, originally for monic polynomials in \mathbb{C}, has extensions to rational functions in $\mathbb{P}^1_\mathbb{C}$ and to holomorphic functions in $\mathbb{P}^2_\mathbb{C}$. We focused on the latter extension.