TOPOLOGY FOR THE BASINS OF ATTRACTION OF

NEWTON'S METHOD IN TWO COMPLEX VARIABLES

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

by
Roland K. Roeder

August 2005



(© 2005 Roland K. Roeder

ALL RIGHTS RESERVED



TOPOLOGY FOR THE BASINS OF ATTRACTION OF NEWTON’S METHOD IN

TWO COMPLEX VARIABLES

Roland K. Roeder, Ph.D.

Cornell University 2005

In a recent paper, John H. Hubbard and Peter Papadopol $teidymamics of the Newton
map,N : C2 — C?, for finding the common zeros of two quadratic equati®psy) = 0 and
Q(x,y) = 0. The mapN has points of indeterminacy, critical curves, and invarircles
that are non-uniformly hyperbolic. Most of the work in thpaper is spent resolving the
points of indeterminacy ofl, and creating a compactification 6% in a way that is both
compatible with the dynamics & and that has “tame” topology. This part of their work
requires two very technical tools call&drey Blow-upsandReal-oriented blow-updn a
different direction, Hubbard and Papadopol show that tisénbat attraction for each of the
four common zeros dP andQ is path connected. However, most further questions about
the topology of these basins of attraction remain a mystery.

The dynamics o is much simpler if the common roots & andQ lie on parallel
lines, for instance wheR(x,y) = x(x— 1) = 0 andQ(x,y) = y? + Bxy—y = 0. The first
component oN depends only o, while the second component depends on ahdy.
Many of the complexities described by Hubbard and Papaddipappear: one must still
do an infinite sequence of blow-ups in order to méka well defined dynamical system,
but one can avoid the Farey Blow-ups and the Real-orientea-bps.

Let r{ andr, be the roots in the lin& = 0 andrz andr4 be the roots in the ling =1

and letW(rq1),W(r2),W(r3) andW(r4) be the corresponding basins of attraction of under



iteration of N after this infinite sequence of blow-ups has been performEdere is a
symmetry exchanging; with ro and exchangings with r4, but for a givenB the pair
(r1,r2) behaves differently from the pairs,r4). More specifically, one pair “attracts” the
points of indeterminacy dfl, and the other does not. We consistently make the restrictio
thatB € Q = {|1— B| < 1} which guarantees that the pdin,ry) attracts the points of
indeterminacy.

We will prove thatH1(W(r1)) andH1(W(r)) are infinitely generated for eveB/c Q.
There is an invariant circle within the line= 1 that is super-attracting in thedirection
and hyperbolically repelling in the line= 1. LetW; be the super-stable “manifold” cor-
responding to this invariant circle. For the valuesBoE Q for which W, intersects the
critical value parabol&(x,y) = 0, Hy(W(r3)) andH1(W(r4)) are infinitely generated. For
all otherB € Q, H1(W(r3)) andH1(W(ra)) are trivial.

In addition, for the parameter valu@sthat are not in the bifurcation locus—which is
exceptional in the sense of Baire’s Theorem—the staterabotge remain true if we replace

the closures of the basins with the basins themselves.
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Chapter 1
Introduction

We will consider the dynamics of the Newton may, C? — C?, for finding the com-
mon roots of two quadratic equatioRéx,y) = 0 andQ(x,y) = 0. This map has points of
indeterminacy, critical curves, and invariant circlest @ non-uniformly hyperbolic.

In a paper to appear as a Memoir of the American Mathematwaes/, John Hubbard
and Peter Papadopol [35] analyze the dynamics of this systepecially how to create a
compactification ofC? that is both compatible with the dynamicsifand that has “tame”
topology. In a different direction, Hubbard and Papadopa general principles to show
that the basin of attraction for each of the four common radt® and Q is both path
connected and is a Stein manifold. However, most furthestiues about the topology
and the detailed structure of these basins of attractioaireenmystery.

In this dissertation we will restrict our attention to thegdaerate case in which the
four roots of P andQ lie on a pair of parallel lines. In this case, the first compura
N(x,y) depends only or, while the second component depends on kathdy, providing
a dramatic simplification of the dynamics. Systems of thisffare commonly referred to
asskew product the literature and they are often used as “test cases” \wheeloping
new techniques. We develop techniques that allow a much wchetaled study of the
topology of the basins of attraction for this degeneratéesgsWhile we rely upon the fact
thatN becomes a skew product, we hope that some of the techniqueloped here can
eventually be adapted to more general systems.

The reader who would like to skip forward to see a statemeatiofnain results should
turn to Section 4.4 on page 31.

To put our work in perspective, we present a brief accountrefipus work on New-
ton’s Method and relevant work on complex dynamics in mamatdes. There is much
more work than we can present here, and we apologize for apgriant works that are
unmentioned.

Classical theory

GivenF : C" — C" of classC? and a poinig € C", Kantorovitch’s Theorem [39] provides
sufficient conditions depending diF (ao)||, ||[DF (a0)] || and the Lipshitz constant of
DF guaranteeing that the initial seaglis superattracted to some raatdf F under iteration
of the Newton map

N(x) = x— [DF (x)] "F (x).

The reader who would like to see a precise statement and pfé@intorovich’s Theorem
is encouraged to read sections 2.6 and 2.7, as well as appsh and A6 of [37] or the
original source [39].

Newton’s method as a dynamical system in one complex variadbl

WhenF(z) is a polynomial, the Newton mal is a rational function, and many proper-
ties of the dynamics dfl follow from general work on complex dynamics in one variable
Those interested in a survey of one variable dynamics maly teisonsult Milnor’s text-
book [43].



Specific results about Newton’s method in one complex véiaiziude the work of
Hubbard, Schleicher, and Sutherland [31], who show thBti$ a polynomial of degree
d, there is a finite se§;, dependent only od, with the property that given any root
of F there is at least one point & converging under iteration df to ri. An extension
of this result by Schleicher [46] studies the number of tieres necessary to obtain good
approximations to the roots starting with these initialdsee

In a different direction, works by McMullen [41, 42] show th@r polynomials of
degreeal > 3 there is no purely iterative rational root-finding methbdttworks for almost
all complex polynomials of degreeand for almost all initial conditions.

A study of Newton’s Method applied to transcendental fumrtis provided by Haruta
[27].

Newton’s method in many complex variables, as a dynamical syem

The topological degreék(g) of a mappingg : P" ~~ P" is defined as the generic number
of inverse images of a point. Whenis a function of more than one variable, the Newton
mapN has

e topological degree;(N) > 1 (and correspondingli has critical curves), and

e points of indeterminacy.

To this author’s knowledge, the only paper specifically dbdewton’s method as a
global dynamical system in many complex variables is [35he Ppapers [45] and [26],
which we will describe in more detail below, study ergodiogerties of more general
classes of mappings th&hand their results are applicable to the global dynamids aé
well.

Dynamics in many complex variables

Although not nearly as complete as the theory of dynamicshiemapmplex variable, there
are many papers on the dynamics of mappings with one or tlee oftthe two difficulties
mentioned above.

Mappingsg : P" ~ P" with di(g) > 1, but without points of indeterminacy are maps
given by polynomials of degree 1 in each component. Such systems have been studied
by Briend [10], Briend and Duval [11], Dinh and Sibony [16prRaess and Sibony [21,
23, 22], Hubbard and Papadopol [36], Jonnson [38], and U&ela [

Meanwhile, birational mapg : P" ~» P" (rational maps with rational inverse) are ex-
amples of systems with points of indeterminacy, but vadtfg) = 1. The famous Henon
mappings fromH : P2 ~ P2 fall under this class. Such systems have been studied ex-
tensively by Bedford and Smillie [2, 3, 4, 5, 6, 8, 7], Bedfotgubich and Smillie [1],
Devaney and Nitecki [14], Diller [15], Dinh and Sibony [1Tujardin [18], Favre and
Jonsson [19], Fornaess [20], Guedj [25], and Hubbard andsbd&orth [32, 33, 34].

Dynamics of mappingsg : P" ~» P" with di(g) > 1 and with points of indeterminacy
Not nearly as much is known about mappigg®" ~~ P" with topological degree;(g) > 1
and with points of indeterminacy.

The work of Russakovskii and Shiffman [45] considers a meathat is obtained by
choosing a “generic” point, taking the each of its inversages undeg®" and giving them



all equal weight in order to obtain a probability measuyeUnder appropriate conditions
on g they show that the measurgs converge to a measugethat is independent of the
initial point.

In [35], the authors present a proof by A. Douady thaloes not charge points in the
line at infinity, a result not obtained in [45].

A recent paper by Guedj [26] proves further properties ofRlnssakovskii-Shiffman
measurgl He shows that if the topological degreég) is sufficiently large, them does
not charge the points of indeterminacygoéind does not charge any pluripolar set. He then
uses these facts to establish ergodic propertigs of



Chapter 2
Newton’s Method in C2

In this chapter we review the basics facts from the p&pmrton’s method applied to two
quadratic equations irC2 viewed as a dynamical systdsg John H. Hubbard and Peter
Papadopol [35]. Our notation and perspective on Newton’shbkk is virtually entirely
based on this paper. We will outline the first chapter of [3%] &ll in the proofs which we
feel will be useful for later in this dissertation.

Certain readers may wish to skip this chapter, returningftarireference as needed.

2.1 Standard background about Newton’s Method

Given two vector spaceg andW of the same dimension and a mappkgV — W, the
associated Newton may : V — V is given by the formula

Nk (x) = x — [DF (x)] " }(F(x). (2.1)

It is important to allow thaFE maps a spac¥ to a different spac® (of the same dimen-
sion.) For example, in the real worl&,(x) will commonly represent a measurement in
terms of some units (say Newtons force) anlill be some quantity in different units (say
meters).

Having mentioned the real world, ever so briefly, we might al mention that New-
ton’s method is of immense importance in the real world. [the most common (and
almost the only) method used to numerically determine tobésrof a nonlinear equation.

The most used and important property of the Newton Mapis that so long as the
roots of F are non-degenerate, i.BF(r;) is invertible for each root; of F, then roots of
F corresponds to a super attracting fixed poinNef Conversely, every fixed point &g
is a root ofF.

Since each fixed poimt of N is super-attracting, there is some neighborhdpdf r;
for which each initial guessy € Ug will converge tor;. Probably the most used theorem
about Newton’s Method is Kantorovich’s Theorem [39], whigstes a precise lower bound
on the size of this neighborhod4.

One of the most useful general properties of the Newton M#paist transforms nicely
under linear and affine changes of variables:

Proposition 2.1.1. (Transformation rules)If A:V — V is affine, and invertible, and if
L:W — W is linear and invertible, then:

NLoFoA = A lo Ng o A. (2.2)

The proof is an exercise in the careful use of the chain ruleos& who wish to see
it should consult [35], Lemma 1.1.1. The fact thats linear, whileA is merely affine
indicates that we only care about the originih but not inV.



2.2 The intersection of conics

In the paper [35], the authors quickly specialize to conmsmdeonly the dynamics of New-
ton’s Method for finding the intersection of two quadraticwas. Using a dimension count,
they prove the following:

Proposition 2.2.1.Newton’s Method to find the intersection of two conics dep@&mtly on
the intersection points and not on the choice of curves.

For the proof, see Corollary 1.5.2 [35].

Using the transformation properties proved in Proposifidnl, one can normalize the
systemN in many different ways. The normalization that we will mostranonly use is:
Normalization 1: We can normalize so that the roots arg@t (5), (3), and(g). In this

normalization if we letA = PTO‘ andB = 1%[3 then

Q-GAD)-G) e

The Newton Map is given by:

X\ _ (X 2x+Ay—1 Ax 1/ X2+ Axy—x
NF(Y) - <Y)_[ By ZY+BX—1] <y2+Bxy—y)
_ 1 ( X(BXE 4 2xy+ Ay? — X — Ay) ) (2.4)

A\ y(BX +2xy+ Ay — Bx—y)

where
A = 2BXC + 4xy+ 2Ay? — (2+B)x— (24+A)y+ 1. (2.5)

Figure 2.1 shows a slice throudl? along the liney = (1+ .1i)x for the parameters
(a,B)=(1.240.3i,0.2+0.5i). Three successive zooms are made, with the location of each
zoom indicated by the black box in the previous image. Thigrégand all of the computer
images to follow were computed in the computer program BtAsim [44], written by Karl
Papadantonakis.

Normalization 2:
Hubbard and Papadopol also use another normalization ér twghrove many of the basic
properties about Newton’s Method:

One can normalize to have

X X2 —y+a
" <y> - (y2 — X+ b)’ =9
and correspondingly

NF<3);) - (3);)_4xy1—1[21y 21X]<§(/§:¥i§)
B 1 2x%y+y? —2ay—b 27
B 4xy—1(2xy2+x2—2xb—a)' (2.7)




Figure 2.1: Slices througli? along the liney = (1 + .1i)x with parameterga,f) =
(1.2+0.3i,0.2+0.5i). Three successive zooms are made, with the location of eswh z
indicated by the black box in the previous image.



y=x’+a

X=V¥?+b

y

Figure 2.2: Geometric computation N (c, d)

There is a nice geometric interpretationNyf in this normalization. Given a poir(ﬁ),
to find N (§), one first finds the point§, ) on the paraboly = x* +a and the point
(dz;b) on the parabola = y?+d. Then,Ng(3) is the intersection of the line tangent to
the parabolay = x? + a at (. ,) with the line tangent tor =y + b at (d2d+b). Figure 2.2
illustrates this process.

One can easily check from Equation 2.7 that this geometterpnetation is accurate.
Sometimes the two tangent lines are parallel, or even atgncivhen they are parallel,
one can defind\x (§) to be the point “at infinity” inP? defined by the direction of the
two parallel lines. When the two tangent lines coincides fails, and there is a point of
indeterminacy of\r at (). Both of these issues will be discussed later.

2.3 Global properties of Nk
Many of the methods used in [35] and in this dissertation uglygn extending\r to P2, the
complex projective plane.

Proposition 2.3.1.Ng extends to a mappingN P? — P2 with 5 points of indeterminacy,
the three intersections of the invariant lines and the twimisoat infinity on the axes of the
parabolas.

We prove Proposition 2.3.1 in the appendix since it invob@®e lengthy, but elemen-
tary computations in homogeneous coordinates. The extetisat we obtain is:

Ne([X:Y:Z]) =



[2Y X2 +Y?Z— 2aYZ2—bZ®:2XY2 4+ X?Z — 2XZ?b—aZ® : 4XY Z— 7).

The points of indeterminacy are the points whigg [X : Y : Z]) = [0:0: O for some
triple [X:Y :Z] #[0:0:0. They are easy to find using Equation 2.8 wltes: 0, this
gives[2Y X2 : 2XY2 : 0], which is zero wheneveX = 0 orY = 0, corresponding to the
point at infinity on the axes of the parabolas: x> + a andx = y? +b. It is more difficult
to use Equation 2.8 to determine the points of indetermimadiie finite plane Z £ 0).
However, using the geometric interpretationNyf in Normalization 2.4, we see that the
points of indeterminacy if©? are the pointgc,d) that result in a common tangent to the
two parabolas. There are three common tangents to the pasabo there are exactly three
points of indeterminacy ift2.

Note: if we were working in Normalization 2, these points ndéterminacy that are
in C? are the points of intersection of the lines joining the roibtat are not the roots
themselves.

One can do “Blow-ups” to extenlr to a continuous mapping on a modificationfot

Proposition 2.3.2.If the parabolas of equation x> +a and x= y? + b are not tangent,
then the mapping N extends to the blow-up @&? at the five points of indeterminacy,
mapping each exceptional divisor to a line tangent to botlapalas.

We will refer the reader to Proposition 1.5.4 from [35], ®nwe will do plenty of
blow-ups later in this paper.

In fact, performing the blow-ups at these points of indetaauy is not sufficient to
makeN a well-defineddynamical systemWe will say more about this in the following
section.

It is a classical result (known to Cayley?) that the dynarofdbe Newton maN(z) to
solve for the roots of a quadratic polynomlz) is always conjugate to the map— z°.

For the latter, the unit circl&! forms the boundary between the basin of attraction of 0
and ofw. If @is the map conjugatindl(z) to z— 7%, then@ 1(S?) is the line inC that

is equidistant from the roots gf. This line forms the boundary between the the basin of
the two roots ofp(z) and the dynamics on this line (once you add a point at infirztg)
conjugate to angle doubling on the unit circle.

Proposition 2.3.3.(Invariant lines and invariant circles) The lines joining the roots of F
are invariant under Newton’s Method glNand on these linesiNinduces the dynamics of
the one dimensional Newton’s method to find the roots of argtiagpolynomial.

Within each line is an invariant “circle,” corresponding tihe points of equal distance
from the two roots in the line.

(See Proposition 1.5.3 in [35])

Proof: This is easy to see in Normalization 2.4. Given any pair ofsa@d F, there is an
affine mapping taking them tf) and (5) and a third root td$) The new system is also
within the form of the normalization 2.4, but with the chogmir of roots on thec-axis.
Using Proposition 2.1.1, we see that if the we can show tleat-#xis is invariant undeXg,
then we will have shown that the line connecting the chos@ngbaoots is also invariant



Figure 2.3: Invariant lines and invariant circles

underNg. But this is easy to see because there is a factgrimthe second coordinate of
equation 2.4 folNg, giving that thex-axis is in fact invariant.
The dynamics on thg-axis correspond to taking the first coordinate\gfin the nor-

malization 2.4 withy = 0. One findsx — 2Bx§93(§+_é())x+1 = 2;‘51. This is the Newton’s
Method to solvex(1—x) = 0. Using the transformation rules from Proposition 2.1.&, w
see that the dynamics on each invariant line must be corgugé#tis map via an affine map,
hence it must be the dynamics of Newton’s method for findileg tiots of a quadratic poly-

nomial. The “invariant circle” is the line of equal distanioetween the two roots, and the

dynamics on this circle are conjugate to angle doubling erctictle.[] .

These invariant lines will be important throughout this @ag-igure 2.3 shows all six
invariant lines for a certain choice 8fandB. The roots o are marked by filled dots, and
the three points of indeterminacy Nf are marked by open dots and labefed, andr.

The fact that each invariant line intersects only two basirattraction is visible irR?.
Figure 2.4 shows the basins of attractiorififiin Normalization 1, when the fourth root
is at(a,B) = (2,3). Notice that each of the invariant lines appears to intérsely two
basins.

Chapter 2 of [35] focuses on the stability of these invara@rdes, which is quite a del-
icate issue, since they are not uniformly hyperbolic. Fone@arameter values Hubbard
and Papadopol are able use holomorphic motions to provétbse circles have topologi-
cal stable manifolds.

Given four points inC2, so long as no three of these points lie on a line, they determi
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Figure 2.4: Newton’s Method iiR? with the root(a,B) = (2,3)
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exactly two parabolas.

Proposition 2.3.4. The critical value locus of Nis the union of the two parabolas that go
through the four roots of F.

In Normalization 2.7, the critical value locus is therefdhe union of the two curves
y=x2+aand x=y?+b. The critical points locus is the union of the two cubicsafation
2xy? — X2+ 2xb—y+a =0 and2x?y —y?> + 2ay— x+ b = 0.

Proof: Denote the parabola= x*+a by Y and the parabola = y>+ b by X. We first
check that any pointug, Vo) that is not on the curveX orY is a regular value. To do so,
we’ll show that given any inverse imag®y, Yo), there is a locally defined analytic inverse
from a neighborhood of (up, Vo) to an neighborhood dfxg, yo). We denote this mapping
by ® = (@1(u,Vv), @(u,v)) for (u,v) € U.

We chooséJ to be some small neighborhood (@b, vo) which is disjoint fromX andY.
We check thatp (u,Vv) is an analytic function itJ. A tangent line fromu,v) to'Y can be
obtained by a slight change in the original tangent line figg+ b, yo) to (uo, Vo). Using
this new tangent line, defin(u,v) = (x,y). Clearly@; (u,Vv) is the first coordinate af,, so
checking thatp is analytic will prove thatp; is analytic.

The mappingp is defined implicitly by the following equation:

Gi(xy,u,v) = 2X(u—x)—v+y=0
Ga(x,y,u,v) = X>—y+b=0

since the first equation states tliatv) is on the tangent line t¥ at (x,y) and the second
states thatx,y) is a point onX. One can solve fofx,y) as an analytic function dfu, v) if
the following Jacobian is non-singular:

det| 2u=x) =2 11 _ oy 42x—2x= —2(Uu—x)
2X -1

Hence, is analytic for every(u,v) in the neighborhootll sinceu = x for a solution
of this equation implies that=y, contrary to the fact tha is disjoint from the curveX
andY. Therefore, the first coordinate dfis analytic ornJ.

An entirely symmetric proof gives that the second coordiraft® is also analytic on
U.

Looking carefully at the above proof, one can see that pant andY are actually
critical values. At inverse images of these poibtsr only covers the line tangent to the
curve. Hence, at inverse images of pointsXoor onY, but not on bothDNg has rank 1.
At inverse images of points on bo¥andy, i.e. the roots themselveBNr is identically
zero.

In Normalization 2.7, one can check thit maps the cubicsX8? —x?+2xb—y+a =0
and X%y —y? 4 2ay— x+b = 0 toX andY with degree 2

The reader should be aware that the critical value locus imTdbzation 1 is not generally
the union of the zero sets BfandQ. In this normalization the zero setsi®findQ are not
parabolas.
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X=VY?>+b

y

Figure 2.5: Geometric computation of inverse images

Proposition 2.3.5. The Newton Map has topological degree 4.

Proof: Recall the geometric interpretation b in Normalization 2.7. Given a point
(§) that is not in the critical value locus, hence not on eithethef parabolay = x* + a

or x =y + b, there are two lines fronfS) tangent to each of the parabolas. The points
mapped to(j) by Nr are then the points of intersection between the verticaklihrough
the points of tangency of these lines with= x* + a and the horizontal lines through the
points of tangency t& = y? +b. There are four such points, 8 has degree 4]

We note that this extends nicely to show that a point on oné@ptarabolas has two
inverse images, unless it is a rootf in which case it has a single inverse image under
Ng, the root itself.

Figure 2.5 shows the four inverse images of the black dotilmddaby the method de-
scribed above.

2.4 Making N a well-defined dynamical system

If the one wants makB a continuous mapping, one can blow-up at the points of imdete
nacyp, g andr. After doing this, since we have blown-up@treplacingp by the complex
line (exceptional divisorky, it is not clear to which point or points d, Nr should map
(x,y). To makeNg(x,y) well-defined, we need to blow-up &t,y). (In fact, if (x,y) is
a critical point, we will have to blow up two or more times abd¥,y)). But doing this
results in points of indeterminacy at each point that waspado(x,y) by N.
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To makeNg well-defined at each of the repeated inverse images of thegof inde-
terminacy,p,q, andr we need to blow-up at every repeated inverse image, @f andr.
(Formally this is achieved by an inverse limit.)

So long as there is no degeneracy (like one of the cdPiosQ reducing to a pair of
parallel lines), the points that one blows up accumulaf?inwithout further work, these

points of accumulation are terribly wild (for instance, gvaeighborhood has infinitely
generated second homology.)



Chapter 3
General facts about the topology of the basins.

Given a rootr; of F, denote the basin of attraction undér by W(r;). In this chapter we
will review the results that were proved by Hubbard and Papababout the topology of
theW(r;) and we will then explain why it is necessary to consider tHesgns after the
sequence of blow-ups mentioned in section 2.4 has beenrpextb

3.1 Facts proved by Hubbard and Papadopol aboutV(r;)

In [35], Hubbard and Papadopol prove two surprising reabtsut the topology ofV(r;):
W(ri) is path connected andg(W(r;),C) = 0.

Proposition 3.1.1. The basin of attraction of each roqgtis path connected.

Proof: The mapping\r is locally four-to-one near the roots. So, we can choose a con
nected neighborhoddy of rj such that); = N=*(Up) is connected. Defindy = Nz (Uy_1);

we must prove that each of th is path connected. Suppose thitis the first discon-
nected one, choosee Uy, and choose a pathin Uy_; connectingNg (x) to some point

in Ug. By a small perturbation of, we may assume thgtdoes not intersect the critical
value locud 1 Ul 5, or the three double tangernits, L,,L3. Then, the inverse image §f
consists of four arcs, all ending at pointddgn. One such arc must lead xan U,. Hence,

we have connected every pointllj to a point inUy, which is connected. This contradicts
the assumption that, was disconnected.

Compare to Theorem 1.5.9, [35, p. 28].
Proposition 3.1.2. (Hubbard and Papadopol) For any root , W(r;) is a Stein domain.
We refer the reader to [35, p. 122].

Theorem 3.1.3.1f M is a Stein Manifold of complex dimension n, theiiMi C) =0
forn<i<2n.

This is carried out in detail in Chapter 5 of Hormander [2{lminating in Theorem 5.2.7
which states that iM is a Stein manifold of dimension thenH'(M,C) = 0 fori > n.
Because we hawv€ coefficientsH;(M,C) = Hom(H'(M,C),C) =0, fori > n, as well.CJ

Corollary 3.1.4. For any root f, H3(W(ri),C) = 0.

3.2 Why do we use blow-ups?

In the proof that the basins of attraction are path conne¢tetbard and Papadopol used
in an important way the fact that the patis one-dimensional. They were able to choose
thaty is disjoint from the critical value locus and from the thremile tangentkq, Lo, Ls.
These double tangents are in the image of the exceptionigbdsvat the three points of

14



15

indeterminacyp, g, andr. By choosing thay is disjoint fromLj,Lo,L3. we were able to
completely ignore the blow-ups.

Our further considerations about the topology of 4V will be done after performing
the sequence of blow-ups described in Section Bat.instance, in the remainder of this
paper, we will studyH;(W(r;)) for each of the basins of attraction. Suppose that we had
not done blow-ups to resolve the points of indeterminacythatiwe are working irC2.

In this case we can generate many homologically non-trigi@bs in a basin of attraction,
but the loops formed this way are in some sense tautological:

Choose one of the double tangents, §ay One can find a small open ball that
intersectd.,, is disjoint from the critical value locus &, and entirely contained with in
the basin of attraction of a single ro(r;).

ThenN—%(U) consists of four disjoint open sets which are entirely cimeta in the
basinW(r;), except for the point of indeterminagy, which is not in any of the basins.
Three of the components df~(U) intersect the three curves N *(L;) and the remain-
ing component contains the point of indeterminagy, Denote byU the component of
N~1(U) containingp.

By constructionlJ is disjoint from the three curved—1(L;) because if there were an
intersection, it would be itN-1(U), andU is disjoint from the other three components of
N~1(U). Furthermore, becauss is an open ball, there is a deformation retractiortJof
ontoU NLg. This deformation retraction lifts vidl to a contraction ob) to p.

Take a small closed curwewithin U that is linked withL; with linking number 1. By
linked, we mean that is chosen such that any 2-chairhavingdo = y must interseck
with algebraic intersection number 1. Sinde inU, N~1(y) consists of four closed curves
each in a different component b 1(U) c W(r;). Lety be the one that is itJ. We will
show thafy corresponds to a non-trivial elementhia (W(r;)).

Becausé is contained in the contractible 48t there is a 2-chaio in U with do = §.
SinceU is disjoint from the three curves M—*(L1) o is as well, hence has algebraic in-
tersection number 0 with each of these curves. The algeintaisection number depends
only on the homology class @f, and since we are working i@i* (which hasH,(C?) = 0)
every two chairt with 0t = ¥ has algebraic intersection number 0 with each of the three
curves inN~1(Ly).

This will imply that if 0t = ¥ thent must contain the point of indeterminapy Since
01 =V, N(1) is a 2 chain withdN(1) = y. Because we chosgeto have linking number 1
with L1, N(T) must have algebraic intersection number 1 wigh Sincet has algebraic
intersection number 0 with three curvesNimt(Ly), this can only happen if contains the
point of indeterminacyp.

Since p ¢ W(r;), T is not entirely inW(ri) and hencey is non-trivial in Hy(W(r;)).
Figure 3.1 provides an illustration of this construction.

Similarly, after appropriately perturbing away from théical value locus oN, curves
in N=2(y),N=3(y),--- would all correspond to non-trivial elements Bf(W(r;)), and,
in fact, one could easily prove that they correspond to amitefiset of generators of
Hi(W(ri)).

Within this paper we will do the sequence of blow-ups, avagdbops of the form con-
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A y=x+a

X=VY?>+b

Y

Ly

Figure 3.1: Without blow-ups, one can easily create nonalrloops around the points of
indeterminacy.
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Figure 3.2: Does a curve surrounding this bubble corresporadnon-trivial loop in the
orange basin? We will not be able to answer this questionweuwill address a simpler
but related question later in this dissertation.

structed above. We are interested in the much more subtitigonewnhat is the topology
of W(rj) within X*, the space obtained froi#? after having performed the sequence of
blow-ups. In particular, we will ask: withiXX® what isH1(W(r;)). This is a much more
difficult question.

By drawing slices inC? through the basins, one finds many “bubbles” and other geo-
metric objects which may or may not correspond to non-trisiements oH;(W(r;)) and
Ha(W(r;)). See for instance the beautiful bubble shown in Figure 3.2.

The groupsHi(W(ri)) andH2(W(r;)) are currently too difficult for our study, so in
the remaining chapters of this dissertation, we will stttyW(r;i)) andH2(W(r;)) in the
degenerate case where the paralidlaecomes a pair of parallel lines. Hopefully some
of the techniques developed in this degenerate case wiliuiuf for some of the non-
degenerate cases.



Chapter 4
The degenerate cased = 0.

The case where the roots Bf lie on two parallel lines is exceptional and presumably
much simpler that the general case, because one variabesviadependently of the
other. More precisely, if we sé&& = 0 in Normalization 1 obtaifP(x,y) = x(1—x) and
Q(x,y) = y?+ Bxy—y and the roots lie on the parallel lings= 0 andx = 1. The common
roots ofP andQ becomer; = (0,0),r, = (0,1),r3=(1,0), andrs = (1,1 — B).

Equation 2.4 for the Newton map simplifies in the followingywa

NF<§> - %(y(égf;aygx)gy))

X2
< y(Bx2+22>§<_yEBxfy) ) (4.1)
> DBy

Using that wherA =0
A = 2BX 4 4xy— (2+B)x—2y+1 = (2x— 1)(Bx+2y—1).

In the remainder of this dissertation we will drop the sulpgd¥ writing N for the Newton
map with the understanding that we are always solving

F(5)= (6 )= (8):
4.1 Basic properties

The critical value locus is the union of the two parabolasigdhrough the four roots. One
of these coincides witR(x,y) = x(1—Xx), while the other is the non-degenerate parabola

B2 , B2
C(x,y) = y*+ Bxy+ sz— ZX-y=0 (4.2)

We will often refer to the locu€(x,y) = 0 byC. Figure 4.1 shows the the curveégx,y) =0
andQ(x,y) = 0, the critical value parabola, and the four roots;;,r,,r3, andrg.

Another property from Chapter 2 that continues to hold i$ thhas topological degree
4. One can also see this directly from Equation 4.1, sincarlgieveryx # 0,1 has two
inverse images and the second component is an equation rafediegp iny.

Recall from Proposition 2.3.3 that any line containing tviithe roots is invariant under
N. There are six such lines and, in this degenerate case, lihesehave six points of
intersection inC2. Four of these intersections correspond to the rogts,r3, andra,
while the remaining two correspond to points of indeterraynavhich we labelp andg.
These are labeled gsandq in Figure 4.1.

The mapping governing thecoordinate ix — 2xx—il which is itself the Newton Map
corresponding to the polynomiglx— 1), with Julia set consisting of the line Rg = 1/2.

18
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Figure 4.1: The degenerate case: 0.

The dynamics of this one variable Newton map are easily wholed, consequently, the
dynamics of the Newton map in the form of Equation 4.1 is mua$ier to understand:
all points inC? with Re(x) < 1/2 are super-attracted to the lire= 0 and all points with
Re(x) > 1/2 are super-attracted to the like= 1. The vertical line ak = mis mapped to
the line atx = m?/(2m— 1) by the second coordinate of 4.1, which is in fact a rationgh ma
of degree 2, except at those valueswivhere the numerator and the denominator in the
second coordinate of 4.1 have a common factor. This occustlgxwhenx = 1/B,x =
1/(2—-B), andx = 1/2. The first two correspond to the points of indeterminaandq.

Another way in which the dynamics simplifies for the degeteecaseA = 0 is that one
can compactify the space obtainihg: P x P — P x P sincex evolves independently. In
fact, we will only compactify in the-direction obtaining\ : C x P — C x IP, for reasons
that will become apparent in the next chapter. In this simgdenpactification, it is easy to
see that the invariant circles in the linexat 0 andx = 1 are in fact super-attracting in the
x-direction. We will denote these circles By andS;. (This is sharply in contrast with the
non-degenerate case of Newton’s Method in which the corifjzation toP? resulted in a
dense set of points on each of the invariant circles havinigjpliar exactly one.)

Notice that every point i€ x P that is not above R&) = 1/2 is superattracted to the
line x= 0 or the linex = 1, and consequently converges to one of the four roots, ané¢o o
of the two circlesg andS;. From this, we immediately know th&t has no wandering
domains and that there are no attracting periodic cyclégrdhan the fixed points them-
selves.These are two questions that we have no idea how to answergarapproach, in
the non-degenerate case,B\~ O, but which are easy to answer in this degenerate case.

The points inC x P that are above R&) = 1/2 form a real 3-dimensional manifold
that is invariant undeN.

In Chapter 6 we will show that these circles have local supbls manifoldgN(')OC
andW,°¢. By pulling Wi°¢ andW,°¢ back under the Newton map we generate superstable
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“spaces”Wp andW;, which are not generally manifolds, but real-analytic g§sacThe
space\\p will form the boundary between the badi(r;) andW(r,), andW will form
the boundary between the ba¥if{rz) andW(r4). For this reason, we will call\p andW
superstable separatricefigure 4.2 shows an illustration of these separatrices.

re(x) =1/2

Y ! /
:ﬁ rs

—

Figure 4.2: Superstable separatrices in the degeneragca).

The following symmetry will play a surprisingly importamie in the last chapter of
this paper.

Proposition 4.1.1. (Axis of symmetry) Let T denote the vertical reflection about the line
Bx+2y—1=0, thatis: 1(x,y) = (X,1—Bx—Y). Then,t is a symmetry of N:

ToN=NoT.
Furthermore, N maps this axis of symmetry to the liredy.

Below it will be convenient to denote the second componeM(afy) by R(y). This
symmetryt is illustrated by the dotted arrows in Figure 4.3.
Proof: This vertical symmetry abouty2- Bx— 1 = 0 is exactly the affine map that inter-
changes with r, and interchanges; with r4. LetF (;) = (g((’;i’/))) so thatry,ro,r3, andry
are the roots of . By Proposition 2.2.1, the Newton mal ¢ for finding the roots of o1
is the same ahl, since they have the same roots. By the transformationdBropn 2.1.1,

Neor =T 1oNot. Hence:

1

ToN=ToNrst=ToT "oNoTt=NoTt

Alternatively, one can just check computationally. Sirtcdoes not change the



re(x) =1/2

M4

Axis of symmetry

Figure 4.3: The symmetry.

coordinate, only check that(zXX—fl,Rx(y)> (2;‘21, W (T(X, y)))

2
1_5(2 : 1) R(Y)

_ (2x=1)(—Bx+1-2y) B X2(—Bx+1-2y)

 (2x—1)(—Bx+1-2y) <(2x—1)(—Bx+l—2y))
y(BX2 4 2xy— Bx—Y)
- (2x—1)(Bx+2y—1)
(1—Bx—y)(BX — 2x+2xy+1-Y)

(2x—1)(—Bx+1—2y)
(1—Bx+Y)(BX +2x(1— Bx+Y) — Bx— (1—Bx+Y))
(2x—1)(Bx+2(1—-Bx—y)—1)
= Rx<1_BX_y)

The naturality mentioned above is the reason why this coatjout actually works.

The axis of symmetr8x+ 2y — 1 = 0 is mapped to the ling = © by N because of
the factorBx+ 2y — 1 = 0 in the denominator dR,. Sincey = o is invariant undeN and
attracted to the points at infinity on the invariant circlas inWp andW, soBx+2y—1=0

is also inWp andW;. O

Because this symmetry swapsandr, and swapss andry, it interchange$V(r1) with

W(r2) and interchange#/(r3) with W(r4).
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4.2 Computer exploration of N

In this section we will show computer images of the basingéetion for the four com-
mon zeros oP andQ for B=0.769— 0.625, andB = 0.887— .1371. The separatricésp
andWj are clearly visible in these images forming the smooth bamnbtetween pairs of
basins. The symmetmywill also be evident, especially in slices along verticaek.

According to our computer images, these two parameter salogespond to different
types of dynamics: In the first, both of the superstable sepeesW, andW intersect the
critical value parabol&, and in the second case, the superstable sepavsjrintersects
C, butW, appears not to interse€t More specifically, forB = 0.769— 0.625 there are
clearly clearly points in the green basin sharing a commambdary with points in the red
basin in Figures 4.4 and 4.5. This common boundaWis)C and the common boundary
between the blue basin and the gray basings C.

ForB=0.887—.1371i, one cannot find any places where the green and red basirs shar
a common boundary in Figures 4.8 and 4.9, so there appeaesio intersection between
W; andC. We do see many places where the blue and the gray basinsessbharemon
boundary, corresponding to the intersection betwaigandC.

Case 1:B=0.769— 0.625

The first kind of slice that we will be looking is that of thetazal value parabol&,
i.e. C(x,y) = y?+Bxy+ %sz — Bsz—y = 0. Figure 4.4 shows an example of such a slice
and Figure 4.5 offers a zoomed in view of the region enclogeitié rectangle drawn in
Figure 4.4. The center of the symmetrig in the center of Figure 4.4, but outside of Figure
4.5. Notice how reflection across the center of Figure 4.4siggnametry interchanging the
basins of attraction.

The other type of one dimensional slice is along a verticaimglex) line, that is a
complex line of constamt. Figure 4.6 shows the vertical line through the panhat is
labeled from Figure 4.5, above, as well as the vertical lthesugh three inverse images
of a. We have places the center of the symmetat the center of these images. Notice
how reflection across this point is clearly a symmetry of ¢hesages that interchanges the
basins.

Notice how the linex = a; is divided into two regions iW(r1) and two regions in
W(r2). This is because we had chosen thas a point on the superstable separathix
separatingN(r1) from W(rz). The vertical line ak = ap and atx = agz are also shown.
The linex = a is divided into three regions W(r1) and three regions W(r2). The line
X = ag is divided into five regions iW(r1) and five inW(rz). This behavior is expected
and we describe it in detail in Chapter 8.

Figure 4.7 shows a similar sequence of vertical lines, higtttme with the first line
chosen to contain the poibtin Figure 4.5. In these vertical liné®) forms a boundary
betweenN(r3) andW(ra).

Case 2:B=0.8871-0.1371

Figure 4.8 shows the intersections of the basins of atmadtrW(r1), W(r2), W(rz),
andW(r4) with the critical value parabol@. Notice that there are clearly intersections of
the superstable separathiyh with C, these are just the boundary between blue and gray.
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Figure 4.4: The critical value parabdlafor B = 0.769— 0.625. The boundary between
the green and red basinsWg N C and the boundary between the blue and gray basins is

WoNC.
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Figure 4.5: Zoomed in view from Figure 4.4.
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Figure 4.6: Vertical line through poirat from Figure 4.5 and three inverse images of this
line. The boundary between the blue and grap basins is teesattion of\p with these
vertical lines. Notice that there are many closed loopsgnvithin these vertical lines. The
center of the symmetryis at the center of these images.
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Figure 4.7: Vertical line through the point labelbdn Figure 4.5 and three consecutive
inverse images of this line. The boundary between the greémed basins is the intersec-
tion of W with these lines. Notice how there are an increasing numbelosed loops in
W, within the repeated inverse images of the vertical lineugit.
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However, we see no boundaries between the red basin andetie lgasin, indicating that
Wi might not intersedE. Figure 4.9 shows zoom-ins looking for intersections betww#
andC.

Figure 4.8: Critical value parabotafor B=0.8871—0.1371. The boundary between the
blue and the gray basins\% NC. We see no boundaries between the green and the red
basins, indicating thad4y might not intersecC.

As for the previous value @, the vertical lines above points of intersectiogfwith
C and the vertical lines mapped to them dycontain many interestingly loops that are in
Wo.

We cannot find any intersections\0f with C, so in Figure 4.11 we display the inter-
sections of 4 vertical lines wittV/(r3) andW(r4) above points very near to the separator,
Re(x) = 1/2. Notice howW; appears very bumpy, almost fractal, and how there are no
visible closed loops.
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Figure 4.9: Zoomed in views @&. There is no evidence of any boundaries between the
green and red basins, nor any points in the green basin aealte there is no evidence of
intersections betweaf; andC.
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Figure 4.10: Vertical line through a point of intersecticetweenWp andC, from Figure
4.8, and three inverse images of this line. As for the previalue ofB, repeated inverse

images of the vertical line through a point of intersecti@ivieenWy andC lead to an
increasing number of closed loopsWy in each of these lines.
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Figure 4.11: A vertical line through a point in the red ba¥if{y3), within C, from Figure
4.8, and three inverse images of the vertical line. The combuwundary between green

and the red basins i84. Notice that there are no closed loops/if within any of these
lines.
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4.3 Parameter spacé&

Let X = {(x,y) e CxP: Re(x) > 1/2} and X = {(x,y) € Cx P: Rex) < 1/2}. As
mentioned earlier, botK, andX; are invariant undeN. (The subscript stands for “to the
right of 1/2” and the subscrigtstands for “to the left of 12”.)

Figure 4.1 shows the case when both points of indetermipandq are inX;. In terms
of parameteB, the coordinates of andgarep = (3,0) andq = (515,5-8). Itis easy to
check thatp andq either are both ifX;, both in the separator Re = 1/2, or both inX;.
Let

Q={BeC:|1-B|>1}.

If we assume thaB € Q then bothp andq are inX,. Using the transformation properties of
the Newton Map under affine changes of variables (Proposkit.1) one can check that
we can make this restriction without ignoring any conjugalass of dynamics. Hence,
from this point on we will always assume tHat Q, so thatp,q € X;.

There is a decompositioR = QregU Qpif, where the “bifurcation locus™Qyt, is the
values ofB for which there is a tangency betwedg andC or betweeW; andC, and the
“regular locus” Qyeq, is the complement of the bifurcation locus.

4.4 Statement of The Main Theorem

Let X™ be X after performing the sequence of blow-ups necessary toedsfat p, g, and
all inverse images gb andq. Let\Wp andWj be the superstable separatrices of the invariant
circle in the linesx = 0 andx = 1.

The goal of this paper is to prove:

Theorem 4.4.1.LetW(r1) andW(r,) be the closures in X of the basins of attraction of

ri1 = (0,0) and r, = (0,1) under iteration of N and lIetV(r3) andW(r4) be the closures in
X, of the basins of attraction ogr= (1,0) and r; = (1,1—B).

e H; (W(r1)> and H (W(r2)> are infinitely generated for every8Q.

e ForB e Qif W, intersects the critical value parabola&, y) = 0then both H (W(rg))

and H (W(r4)) are infinitely generated, otherwiseifW(r3)) and Hi(W(r4)) are
trivial.

For B € Qreq, the separatrices are genuine manifolds, and, as we wilhséhapter 6
the basins and their closuresXf andX; have the some homotopy type. Hence:

Corollary 4.4.2. For B € Qreg Theorem 4.4.1 remains true when replacing the closures of
each of the basins with the basins themselves.

Indeed, forB € Qreg, W(ri) is @ manifold with boundary, hence the inclusidtiri) C

W(ri) is a homotopy equivalence.



Chapter 5
Compactification and resolution of points of
Indeterminacy

Because the variabbe evolves independently frory it it natural to first compactify the
system as a rational m&@J x P, instead of the compactification & that was used for the
non-degenerate systems from the previous chapters. Wnédgly, this compactification
is not the end of the story becaulkehas points of indeterminacy at four pointp:=
(1/B,0),q= (1/(2B),(1-B)/(2— B)),(®,), and(w,B/2).

We can ignore the points of indeterminacy at infinity by onbyisideringN as a map
from C x P! to itself. We lose compactness, but are able to avoid manyeoflifficulties
described in [35]. The Newton map naturally extends to thatpaty = o by (X, ) —
(/(2x—1), ).

What do we do about the points of indeterminacgindg in C x P! and their inverse
images? To make the Newton Map a well-defined dynamical syste need to perform
blow-ups at each of these points and at every inverse imageanéq.

To simplify notation, we will denote b, the spac€ x PL. Before discussing points of
indeterminacy, notice that we can partitiiinto three invariant subsexg = {(x,y)|Re(x) <
1/2}, X172 = {(%,Y)|Re(X) = 1/2}, andX; = {(x,y)|Re(x) > 1/2}. (The subscripts “I” and
“r" are meant to indicate “left of 12” and “right of 1/2”.) The invariance of the subsets
follows directly from the invariance of the correspondindpsets inC underx — % the
first component oN.

We denote the space obtained by this infinite sequence ofbfmbyX.,. This space
will presumably have a very complicated topology at any fwimhere repeated inverse
images of the points of indeterminaqyandq, accumulate. In [35] elaborate techniques
including Farey Blow-upsandReal-oriented Blow-upare used to “tame” the topology at
these points.

Using the invariance of the three subsktsX; ,, andX; underN, we can think ofN
as giving separate dynamical systemsXprand onX;. Understanding each of these two
systems is sufficient for a study of the topology of the basfretraction for the four roots
r1,r2,rs, andrs because none of the pointsXq,, are in these basins.

Because we assume that Q, the two points of indeterminaqy, g € X, so all iterates
of N are well-defined for for evergxo,yo) € X;. The points of indeterminacy,q € X do
present a problem and we do need to do blow-ups at these @oidtall of their inverse
images, obtaining the spa¥¢ as the projective limit, on which we can iterate

The advantage of splitting ug this way is that in the spacg, the inverse images ¢f
andgq do not accumulate, instead they go to the “EndsXjof {Re(x) < 1/2} x P without
accumulating. This makes the topologyX§f manageable.

(Note for the reader: those who have a sense of humor sonsetefer toX™ as the
“bad side” andX; as the “good side”.)

Most of the material in this section and in the following sectclosely follow the works
of Hubbard and Papadopol [35] and Hubbard, Papadopol, asiows0].
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5.1 Construction of X and Ne, : X — X.

In this section we will describe the sequence of blow-upsessary to makél°k well
defined for eactk and the inverse limit that is necessary to make a dynamicdkesy
which we will call No, : X — X/.

Substitution of the pointp andq into C(x,y) yields (B — 1) and%, so values
of B at which these expressions are non-zero, nephesr q is a critical value.

More generally, leS C Q be the subset of parameter space for which no inverse image
of the point of indeterminacyp or of point of indeterminacy is in the critical value locus
C. It will be easiest to first describe the constructiorXgffor parameter valueB € S, and
then explain the necessary modifications for special cistante whe ¢ S.

It is relatively easy to show that the conditiBne Sis generic, in the sense of Baire’s
Theorem.

Theorem 5.1.1.The set S is generic in the sense of Baire’s Theorem, i.e.umtable and
dense im.

Because of its computational nature, we will leave it for Apgix B.

Construction of X when Be S:

Proposition 5.1.2. Let )ﬁo be the spacepblown up at the points p and g and e : X|° —
X be the corresponding projection.

e The mapping N extends analytically to a mapping |><l10 — X.

e Np maps the exceptional divisorg,Bnd E; to the line x= ﬁ by isomorphisms.

Proof: We will show the calculation in some detail fprand just state the extension fgr
The definition of a blow-up and many examples are availabfgipendix C.

We will work in the chart(x, m) — (X, m(x— %), m) € X| x PL. Denote the components
of the Newton map in Equation 4.1 by (x,y) andl}lg(x, y) sothatN(x,y) = (N1(X,y), N2(X,y)).

B2 _ _ 1
2% - B(2-B)"

In these coordinates we clearly haNg(x,m) =

[EEY

1 1 1
No(xm) = m(X— £)(Bx? 4+ 2xm(x— &) — ?X_ m(x—3))
(2x—=1)(Bx+2m(x—5) — 1)

B(Bx—1)(BX +2xm(X — 5) — Bx—m(x— %))
(2x—1)(&" +1)(Bx—1)

B(Bx2 4+ 2xm(x — &) — Bx—m(x— 3))
(2= (B+1)

When restricted to the exceptional divigey the mapping becomes

L BEdrAG -y B omE-g)  mG-1
E-D&E+1 (-D(2m+B)
m(1—B)
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If instead we had been working in the chéytm') — (m'y+ 1,y,n7), we would have ob-
tained a similar extension and the mapping on the excepiilviaor is: m' — %.
This is consistent with the extension in termso$ince one is obtained from the other by

the change of variables = W
Both of the expressions fdx restrlcted toEp are linear-fractional transformations,
henceN mapsE, to the liney = (2 B) by an isomorphism.

We now compute the blow-up gtin the coordinate$x m) — (X+ 5= B,m(x— 2715) +
ﬁ m). Just as for the poirt, N1 (x,m) = ( We also havéy(x, m) =

B
(M(X— 515) + 372) (BX + 2X(M(X — 55) + 3=5) — BX— (M(X— 515) + 3=2))
(2x— 1) (Bx+2(m(x— 25) +58) - 1)
(M(X— 525) + 27B) (X — 525) (Bx+ (1— B) + m(2x— 1))
(2x—1)(B+2m)(x— 55)
(M(x—22g) + 5B) (Bx+ (1—B) +m(2x— 1))
- (2x—1)(B+2m)

On the exceptional divisdf, this map is:

(1-B)(m—2+2B-B?)

B(2—B)(B+2m)
one can check thad also extends analytically to the one pointi&pnthat was not covered
by this chart (corresponding th = .)

Both of the expressions fdx restrlcted toEp are linear-fractional transformations,
henceN mapsE, to the linex = (2 B) by an isomorphisni]

m—

We will denote the vertical ling = m by V, since we use this line so frequently.
This is the vertical line that is tangent@at its “vertex”.

Because we assume tHaE S we assume that neithgrmor q are critical values, each
has four inverse images undss. Because we have blown-up ptand g, each of these
inverse images becomes a point of indeterminacyNgrWe can then blow-up at each of
these eight points obtaining the spageand the projectiony : X! — X°. One can then
extendNo to the exceptional divisors, obtainimg : X — XP.

To make iteratedl°® of N well-defined for allk we must repeat this process for théh
inverse images, obtaining successive bIow-tqps)(,k — X,k*1 for everyk. The following
proposition describes the extension\bfo these spaces:

Proposition 5.1.3. Denote by X the space kl blown-up at each of thes2-: 4% k-th
inverse images of p and q.

e The mapping N 1 extends analytically to a mapping lek — Xikfl.

e Suppose that z is one of the k-th inverse images of p or q arateldre exceptional
divisor over z by E Then, N maps E to Ey(,) by isomorphism.
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Proof: This entire construction is done as Proposition C.4.1 ireghgendix. We summa-
rize the results here. As in Proposition 5.1.2 denote thedasponent oN by Ni(X,y)
and the second component By(x,y). Then, in the coordinatex, m) — (x,mxm) in a
neighborhood oE; the mapping is given by:

m—- ——

which is just the linear-fractional transformation indddeom DN atz. SinceDN is non-
singular atz, this gives an isomorphism fro, to Ey ;).

So long asB € S that is none of th&-th inverse images gb or of g are critical points,
the extension works in this same way at each of the@¥ goints.

Hence, by repeated blow-ups we obtain a sequence of spat@s@ections:
R R R R (5.1)

The extensions of the Newton maito these spaces that we calculated in Propositions
5.1.2 and 5.1.3 we obtain another sequence of spaces andgsipp

X 2 X0 St B x? B xS xS xS (5.2)

However, we do not have a single spag® nor a single mappinfjl, from this space
to itself. However, there is a standard procedure ubiugrse Limitdo create such a space
and mapping from a sequence of spaces 5.1 and the sequenephgs like 5.2. That
is, we will let X™ be the inverse limit of the blown-up spaces and projectiarseguence
5.1 and then use the sequence of extensions of the NewtonSriaps define a mapping
No : X” — X which naturally corresponds to an extensiomof

There are two ways to describe the inverse limit, the firstavimiversal property and
the second via a construction. We will briefly describe both.

Definition 5.1.4. An Inverse system denoted M;, 0;), is a family of objects Min a cate-
gory C indexed by the natural numbers and for every i a morplis: M; — M;_.

Thelnverse Limit of an inverse systeliM;, g;), denoted byjm(Mi,oi), is an object X in
C together with morphismg; : X — M; satisfyinga;_; = o; o a; for each i satisfying the
following universal property:

For any other pair Y3; : Y — M; such thaf3j_1 = gj o 3, we have a unique morphism
u:Y — X so that for each i we hag = a; o u.

For our uses, the category will always be analytic spaceshanthorphisms holomor-
phic maps. One should notice that we have restricted theig to be indexed by the
natural number®. Inverse systems and inverse limits are typically definedbjectsM;
indexed by a filtering partially ordered sktbut we do not need this level of generality
here.

The following proposition gives a construction of [iM;, 0i) as a subset of the product
spacdl;M;.
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Proposition 5.1.5.Given an inverse systefivl;, o;) indexed byN (i.e. g; : Mj — M;_1), we
can construct the inverse limit as follows:

lim(M;, 0i) = {(mo, M, Mp, Mg, -+ )[my € Mj andaj(m;) = mi_1}.

We defineX™ = [im()(,k,ru(). Using Proposition 5.1.5 we can state more concretely that

X = { (X0, X1, Xz, X3, )% € X and T4(x) = X1}

We now need to extend the mappiiggto a mappindN. : X* — X* using the sequence
of mappings 5.2.
We defineNe, : X* — X by

NOO((XO7X17X27X37 T )) = (N]_(X]_), NZ(X2>7 N3(X3)7 o )
Notice thatNi(x;) € X/ ~* so that this definition makes sense.

Construction of X when B¢ S:

For parameter valueB ¢ S, the blow-ups done gt andq in Proposition 5.1.2 are exactly
the same, since we have seen tNagxtends to these blow-ups for any valueBof (It is
worth noticing that there is actually a critical pointifon bothE, and onE.)

However, special care needs to be taken whé&rtrainverse image op and ofq is a
critical point ofN critical points. We describe the process here, althougrelsame of the
details for the appendix.

The goal is to produce a spaxé and a projectiormn : X,k — X,k*1 in such a way that
N extends to a map (without singularitie) : XK — X1, If we can create the spack
and extensionsly at every “level’k, we can use exactly the same process above to make
X andNe, : X™ — X™.

So, suppose for the moment tlzas ak-th inverse image op and that none of the-th
inverse images op for n < k were in the critical locusN\=1(C). In this case, there is a
single exceptional divisor ib(ik’l aboveN(z). Because theis critical, the extension dfl
to E; will map all of E; (except for one point) to a single point iy ;). (See Appendix,
section C.4). However, at the slopger € E; Which is in the kernel oDN, the extension to
E; has another point of indeterminacy! Consequently, onedbotv-up this point or,,
obtaining a second exceptional diviggrabovemyg,. In Proposition C.4.2 from Appendix
C, we show thalN extends tdE, by an isomorphism fronk, to En(z- Figure 5.1 shows
this situation.

These two blow-ups abow&are sufficient to exteni.

However, the fact that there are two exceptional divisovalz results in a further
complication at every poinv that is mapped t@. Suppose that we have blown-up at
w. The extension ol to E, has a point of indeterminacy at point that is mapped to
Mger € E;. Because of this, one has to blow-up a second time abvdeeresolve this point
of indeterminacy. In fact, at every repeated inverse imdgeome will have to blow-up at
least twice to resolval.

There are further problems is an inverse image iafagain critical. At such a point,
one will have to do even more blow-ups to resdN/eA detailed description of this process
becomes rather tedious, and we will stop here.
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Figure 5.1: Blowing up a point on an exceptional divisor.

5.2 The mappings fromE; toV

We saw in the previous section tidimaps each exceptional divisor that was newly created
in X,k to one of the exceptional divisors newly created(,th by either an isomorphism, or

a constant map. Sind¢maps eaclt, andEq isomorphically to the lin& the composition
N°k+1 maps each of the newly created exceptional diviggréin XX to V either by an
isomorphism, or a constant map. In summary:

Proposition 5.2.1. Let E; be one of the exceptional divisors newly createdﬁraxd let Vv
be the line x= 1/(B(2— B)). Then N¥"1 maps E to V by an isomorphism, or a constant
map.

5.3 Homology ofX; and of X

Our eventual goal is to relate the homology of the basinstad@ton for the four roots of
F to the homology of the spaceé andX and to the homology of a “separator” which
happen to be the superstable sets of the superattracticigscatx = 0 andx = 1. The
next section is devoted to these superstable spaces. (V¥paegs because they may have
singularities for some values of the parame®ex In this section, we will compute the
homology ofX; andX*.

Given a se6, we will denote byZ(S the submodule of the the produf® where each
element has at most finitely many non-zero components.

We will often find it necessary to encode information abow ¢fenerators of these
homology spaces within the notation describing them. Famele, the modul& ¥}
means the modulg that is generated by the fundamental clasggf

Proposition 5.3.1.We have:
o Ho(X)=Z
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o Hy(X) =ZF])
e Hi(X)=0,foriz#0or2.

The homology ofX is much more complicated. Unfortunately homology does not
behave nicely under inverse limits.

Therefore, instead of directly using the fact thét is an inverse limit to compute it's
homology, we will writeX is a union of open subsetl C Uy C U C --- in such a way
thatHo(U;) = ZEYUIVD wherel is the set of fundamental classes of exceptional divisors
contained irJ; and[V] is the fundamental class of the vertical IMegiven byx = ﬁ.

Recall that the projectiomn: X — X is continuous, we will create an exhaustion of
X by open setblop C Uy C Uy C --- as inverse images of open subsetXin

LetVik =X — Un_k{N""(p),N~"(q)}. ClearlyVi is an open subset &f, so we will let
Uk = 1 1(W). Itis also clear thalt); C U, C Uz C --- and thatJy_; Uk = X.

Lemma 5.3.2. For each k, H(Uy) = Hp(XK)

Proof: Notice thatUy canonically isomorphic t&* — Up_ {N~"(p),N~"(q) }. Removing
a discrete set of points from a 4 (real) dimensional manitidés not affect the second
homology. Hencet,(Ux) 22 Ha(XF). O

Lemma 5.3.3. Hp(XK) =2 Z(MUHVID | where |y is the set of fundamental classes of excep-
tional divisors in X.

Proposition 5.3.4. Hy(X*) = z\UVID, where L is the set of fundamental classes of ex-
ceptional divisors in X and V] is the fundamental class of the vertical line V.

Proof: SinceX™ = Ug_; Uk andHa(Uy) = H2(X|k) =~ 7LUVID, we have thaty(X) =

lim (2« (M)), which is clearlyz( V1)

In the generic case where none of the inverse imagp®o€ underN are in the critical
value parabol&, we can describel>(X*) somewhat more explicitly:

Proposition 5.3.5.Let p=(1/B,0) and g= (1/(2—B),(1—B)/(2—B)) be the two points
of indeterminacy for N. If none of the inverse images of p ondeu N are in the critical
value parabola C, we have

e Ho(X?") =2
o H(X™) = ZIM) & (B pZE) ) @ (B —q 215

e Hi(X”)=0,fori#0Oor2.

That is, the second homology o Xs generated by the fundamental clag$ of the ver-
tical line V := {x= ﬁ}, from the original product Re(x) < 1/2} x P1, and by the
fundamental classes of the exceptional divisors at thetpaihindeterminacy p and q and
at every inverse image of p and q.
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Proof: This is just a restatement of Proposition 5.3.4 using thanihe S only a single
blow-up is necessary at eaktth inverse image op and ofq for everyk. [

We will need the following proposition about the intersentof classes i (X):

Proposition 5.3.6. Let [V] and [E;] be the fundamental classes of a vertical line V and an
exceptional divisor Ein Hx(X™) then:

e [V]- V] =0, and
o [E]-[E]<-1

Proof: We have chosen the vertical liveso that points on it are never blown-up, hence
within X it has self-intersection number 0, just as it didin

If no points on the the exceptional diviseg have been blown-up, then it is a classical
result thatlE,| - [E;] = —1. Otherwise, if points ifE; have been blown-up, it is a classical
result that each blow-up reducs] - [E;] by 1, hencdE;] - [E;] < —1. (See [24].)

0



Chapter 6

Superstable separatrice$\p and W;.
6.1 Superattracting invariant circles

Recall the invariant circle§y and$S; in the linesx = 0 andx = 1 equidistant fronr; and
ro, equidistant fronrz andr4 respectively. Using that; = (0,0),ro = (0,1),r3 = (1,0),
andrg = (1,1— B) we have:

S = {xy)eX®: x=0ly[=[1-Vy[}
S = {(xy)eX:x=0,y=[(1-B)—-yl|}.

Proposition 6.1.1. The invariant circles and § have multiplierO in the x-direction and
they have multiplie2 in the direction normal to the circle, within the invarianéntical
line.

Proof: The vertical linesc = 0 andx = 1 are superattracting in thedirection, hence the
circlesS andS; within the lines are superattracting as well. Within thesgigal lines,N
is the Newton’s method for finding the roots of the quadratitypomial with rootsr; and
ro (orrz andrg), so the invariant circle is repelling with multiplier 2]

In this next proposition we will show that these circles himgal superstable manifolds.

Proposition 6.1.2. The invariant circles $and § have local superstable manifold%‘w
and W°c,

More specifically, there are neighborhoodg,U; C C of x= 0 and x= 1 and subsets
WO € X, Wi°C C X; so that:

o N(WPC) c WIe® and N(W,°°¢) C W;°°

° Wgoc is the image of som@g : Up x S — X which is analytic in the first coordinate
and quasiconformal in the second.

° W1'°C is the image of som@1 : U1 x S; — X, which is analytic in the first coordinate
and quasiconformal in the second.

In the following proof we will use the theory of holomorphi®tions and thé-Lemma
of Mafe, Sad, and Sullivan [40], instead of the more stahdaaph transformation ap-
proach. The following argument is due to Sebastien Krief.ofewhat different stable
manifold theorem for the invariant circles in the non-degyate caseA + 0) is proved us-
ing theA-lemma in [35]. While points in the manifolds obtained in puoof are genuinely
attracted to the circle§ andS,, the situation in [35] is much more complicated, with dense
sets of points that are not attracted to the invariant @rcle

Proof: To simplify computations we will make the change of variattex) = ;*; and
w(y) = y%l which conjugates the first coordinate Mfto z— 72 and places the invariant

40
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circleS at{z=0,|w| = 1}. In the new coordinateg, w), the Newton map becomes:

N( z ) - ( vvz—i—(Bw—ZBzwz)z—vvzzz ) . (6.1)

1+(B—Bw)z+(BW24-B—1-2Bw)Z

and the critical value locus ®f in these coordinates is just the imageainder the change
of variables, which we denote If. Because we are only interested in local properties of
N, we can restrict our attention ta,w) € D¢ x P C X* whereDg is an open disc of radius
€ centered at 0.
Let

DAes={(zy)eX”: |7 <eand 1-6< |y| <1+3}

so thatA 5 is an open neighborhood &. The boundary of\; 5 consists of the vertical
boundan®” A, 5 = {|z| = €} and the horizontal boundady'A, 5 = {|y| = 1+ 8}.
We must choose andd so that:

1. A¢ 5 is disjoint from the critical value locus’, and

2. N mapsA; 5 into D x P so thatN(aHA&g,) is entirely outside ofA, 5 and so that
N(0V A 5) is entirely inside ofz] < .

Figure 6.1 shows a depiction of the second conditior{Zgy) € R x C.

The first condition is easy to ensure. The critical value $€lintersects the vertical
line z= 0 transversely atv = 0 andw = . Because the intersection is transverse, we can
choosee sufficiently small so thaE’ intersectD; x P outside ofA& 1

Now, we must show that we can redug@nd d so that the second condition holds.
Because the first coordinate Nfis justz — z2, we need not make any further restrictions
to ensure thal(d¥ A, 5) is entirely inside ofz| < €. In the linez= 0, N(z,w) = w2, so by
continuity we can clearly choogeandd small enough thatl(aVA&e;) is entirely outside of
De 5.

Let D¢ be the open disfz| < € in C for thise. Conditions 1 and 2 oaandd are chosen
so that the following lemma is true:

Lemma 6.1.3. Suppose that [0 A; 5 is a complex disc which is the graph of an analytic
functionn : Dg — P. Then N"}(D) N A 5 is the union of two disjoint complex discs, each
given as the graph of analytic functioig, {2 : D¢ — P.

Proof of Lemma 6.1.3: The locusN~1(D) N A, 5 satisfies the equatidd(z w) € D, which
is equivalent taNy(z,w) = n(Z%), because is the graph of). BecauseD C D¢, D is
disjoint fromC’, sodyNz(z w) is non-zero in a neighborhood bf-%(D), and we can use
the implicit function theorem to solve fav = {1(z) andw = {»(z). There are exactly two
branches becaud®(z,w) is degree 2 irw.

The graphs of; and{, form the two complex discBl*l(D) N 5.

U Lemma 6.1.3.
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Figure 6.1: The Newton ma mapso" (A¢ 5) outside ofA; 5 andN mapsd¥ (A 5) inside
of inside of|z| < e.

In the old coordinate$x,y), the liney = o« is invariant undeN and attracted to the
point (0,») € . The image of this line under the coordinate change is 1, which is
therefore invariant undeM in the coordinate$z, w) and attracted to the poin0,1) € &.

Let Do = {(z,w) : |2 < &,w= 1}. This disc will form the first part o¥\°c.

SinceDg C A 5, satisfies the conditions of Lemma 6.1.3, lettg= N—1(Do) Nl 5
we obtain two complex discs iy, 5 each of which is given by the graph of some analytic
functionn : D¢ — P and each of which is mapped withidy by N. These discs interseg
ande and the first inverse image of.

Because each of the discsDn satisfies the hypotheses of Lemma 6.1.3 we can repeat
this process, lettin®, = N~1(Dy) N4 5, which this lemma guarantees is the union of four
disjoint discs inAg 5, each of which is the graph of some analytic functipnDe — P.
These four discs interse§ at the four inverse images of.

Of course we can repeat this process indefinitely, obtaiDingonsisting of 2 disjoint
complex discs im 5, each of which is given by the graph of an analytic functiohe3e
discs interseck at the 2 inverse images ob.
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Let:
Doo — U Dn
n=0

which consists of a union of disjoint complex discs throughbteof the dyadic point® on
S. Each of these discs is the graph of an analytic function fipnto P, and every point
in Dy is forward invariant td&& underN.

Looking atD., a different wayD., prescribes &olomorphic motion

Q:DexD—P

whereq(z, 0) is given byn(z) wheren : D¢ — P is the analytic function whose graph is the
disc inD., containingd € &.

By the A-lemma of Maie-Sad-Sullivan [40§ extends continuously to a holomorphic
motion onS, the closure ofD.

QP:DexSH—P

Then, the mapb : S x Dg — D x P C X given by(z,6) — (z,¢(z,0)) is holomorphic in
z and quasi-conformal if. We letW)°¢ be the image of>. Clearly N(W.°¢) c Wi°¢ and
every point il is forward invariant tc.

The existence ofV,°C is an easy adaptation.

[J Proposition 6.1.2.

Because the local superstable manifag8® andW,°¢ are forward invariant unde,
we can define global invariant sétg andWj by pulling back undeN:

00

Wo= NI, wa= [N,
n=0 n=0

Recall from Chapter 4 that we defined the “bifurcation locQsj; C Q to be the set of
parameter values for which there is a tangency betWdeandC or a tangency between
W andC and that we defined the “regular locu@feg = Q — Qps.

One might expect thaty andW; are manifolds, since the inverse function theorem
gives that the pull-back dfi—%(W.°¢) (or N~¥(W/°¢)) by N is “locally manifold” at points
whereN—%(WJ°%) (or N=*(W/°¢)) is disjoint from or transverse to the critical value locus
C. However, we do expect that there will be some values of tliarpaterB for which
there is a tangency betwediTK(W)°%) (or N=X(Wi°%)) andC. Therefore, aB € Qpir Wo
(orWi) will not be a manifold, but foB € Qreg bothWp andW; will be manifolds. Instead
of calling Wy andW; manifolds in general, we will call therseparatricesand only call
them manifolds wheB € Qe

Proposition 6.1.4. The bifurcation locufyj; is residual inQ in the sense of Baire’s The-
orem.
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Proof: This is relatively standard use of Baire’s Theorem, so wet timei details[]

Proposition 6.1.5. For every B, the separatricesg/@nd W are real analytic subspaces of
X and X, each defined as the zero set of a single non-constant redjiamequation in
an neighborhood of $and in a neighborhood of YWrespectively.

Proof: As in the proof of Proposition 6.1.2, we make the change aabéesz = ;*; and
W= % and in these coordinates
7

N ( z ) = ( W24 (Bw-BvR)z w2z ) , (6.2)
1+(B—Bw)z+(BW24-B—1-2Bw)Z

with & is given by{z= 0, |w| = 1}. We will show that

oz w) = lim (N(zw))**
is well defined and converges on a neighborhoodpto thatw(z,w) = log|@(z,w)| is a
non-constant real analytic function in a neighborhoo@gfvanishing or\\p.

For every(z,w) € Wo, |NJ(z w)| converges to 1 becaus = {|w| = 1} and hence
log|(N3(z, w))¥2"| converges to 0. So, we only need to show thét w) is a non-constant
real analytic function in a neighborhood\. The proof will be reminiscent of the proof
of Bottcher’'s Thoerem in one variable dynamics. (See Mi[d8, Section 9].)

Notice thatwis defined with the invariance propeyN(z w)) = 2-w(z,w). Therefore
we can assume that] is arbitrarily small.

With these restrictions, the second coordinatdl@an me written as:

N2 (z,wW) = W2+ zg(Z, W)

with g(z w) which is analytic in the neighborhodd < ¢ for an appropriately smadl.
We can writep(z,w) := limp_..,(NJ(z,w))Y/?" as a telescoping product:

®(z,w) = Na(z,w) (6.3)

so that the general term is of the form

1/2k+1

NS L(z, w)1/2" (N3(z,w))?+ND(zw) - g (N]'(z,w),NJ(z w))
NJ (z,w)%/2" (ND(z,w))?
n 1/2k+1

Zz NN
- <”<N9<z,w>>2‘g(zz ’NZ(Z’V”))

using thaN)(z,w) = 2,
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In order to define the pow%yi—1 we need to check that we can restrict, if necessary, the
neighborhood of definition fop(z w) so that

72" -
'W'g@z“z(zw)'s

The only real difficulty is wheriz,w) € W(r1) so that(N5(z,w))? goes to 0. However,
there is a neighborhodd c W(r1) of the linez= 0 in which the term in the numerate?’
will be sufficiently small to make the entire term 6.4 small:

In [35], the authors perform blow-ups at each of the four spand observe that the
Newton mapN induces rational functions of degree 2 on each of the exaegitidivisors
Er,, Er,, Er;, andE;,. Let's compute the rational functiost. E;, — E;,. In the coordinate
chartm= VZV the extension t&;, is obtained by:

: (6.4)

NI =

_ mPw?(1+ (B—Bw)mw+ (BW? + B — 1 — 2Bw)mPw?)
S(m) = vlJLno W2 + (Bw— Bw2) mw— w2mPw?2
m?
1+Bm’

sincew = 0 onk;,.
The rational functiors(m) hasm = 0 as a superattracting fixed point, so there is a
neighborhood ofn= 0 € E,, within W(r1) so that for any pointz, w) in this neighborhood,

liMp o ‘NZ%:W)‘ = 0. Pulling back this neighborhood und&rwe find a neighborhood
V C W(r1) of the linez= 0 in which this limit is true.

So long as we restrict the poin{s w) € W(r1) to be within this neighborhood and
restrict all other point$z,w) in X so that‘ﬁ : g(z,w))‘ is less than 12, we can assume

that condition 6.4 holds.
Because Equation 6.4 is satisfied for evezyw) € A, we can use the binomial formula
to define the factors in the product 6.3/

a—1)---(a—n+1)
n!

> a
(1+u)® = Z) ( u”, whenju| < 1.

n=
Now that the terms in the product 6.3 are well defined, we cliieakthe product con-

verges on the neighborhoddof &. For this product to converge it is sufficient to show
that the corresponding series of logarithms convergesgéheral term in this series is:

k-+1
Lz log2

log <1+ﬁ;\/)>2~g(zzn,NS(z,w))) < onr

using Equation 6.4 and the triangle inequality so that

2 5 -g(zzn,NS(z,w))‘ < 2.

‘” (NDzw)
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This is clearly sufficient for the series of logarithms to werge and hence for the
product 6.3 to converge to the analytic function @fz,w) on A. This way w(z,w) =
log|p(z,w)| is a real analytic function oA, and by the invariance properties@bn w(z, w)
is an analytic function on a neighborhoodvi.

The proof that\, is the zero locus of a non-constant analytic function is \&enyilar.
0

Understanding the topology @ andW; will become very important to us since know-
ing their topology helps us study the topology of the basiregtoaction for the four roots.
Two preliminary observations are:

Proposition 6.1.6. Every point in X° that is not attracted toy or ry is on the separatrix
Wp, i.e. X° =W(ry) UW(r2) UWp.

Similarly, every point in Xthat is not attracted tog or r4 is on the separatrix WV i.e.
X = W(I’g) UW(I’4) UW

Proof. Every point inX is attracted to the lin@ = 0. The only invariant sets on this
line are the two roots;q, ro, and the invariant circl&, hence the points that are not in
W(r1) orW(ry) are inWp. Similarly, every point inX; is attracted to the line= 1, and the
decomposition follows[]

Proposition 6.1.7. The fundamental classéSy| and [S;] are non-zero in H(Wp) and
H1(W,), respectively.

Proof: The proof is the same for each circle, so we prove itSorf [S] = O, then there is
some 2-chaimw in Wp with 00 = Wp. Every point inX is attracted to the ling = 0. Since
o is a compact subset ¥, one can chooske so thatN(a) is within an arbitrarily small
neighborhood 0&.

The Newton magN mapsS to itself by angle doubling, sbl*(S) = 2. Since
0NK(0) = NK(do) = 2K, this would give thaf{S] is torsion within this neighborhood.
However, small neighborhoods & C Wy are topologicallyS x D and[Sy] is not torsion
in Hi (S x D). = z{IS O

Proposition 6.1.8.(Neighborhoods ofWp and W) Within X and X there are neighbor-
hoodsA (Wp) and A (W) of Wy and W that deformation retract onto Y\and W.

Proof: Any A C M that is globally defined by the vanishing of a single non-tamisreal-
analytic functiong: M — R has this property:

Sinceg: M — R is non-constant and real-analytic, the critical pointg cinnot accu-
mulate, consequently we can choose a neighborligo8l) so that the only critical points
of gin A((A) are actually inA. Similarly, the only critical points of? will have be onA.
Hence, the vector field-Og? will be zero onA, but it will have no zeros of\((A). Flow
along this vector fields provides a deformation retractibd@A) ontoA. [J
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6.2 Mayer-Vietoris computations

By Proposition 6.1.6 we have thgf’ =W(r1) UW(r2), andWp =W(r1) N"W(rz). Because
of the neighborhood\((Wp) that deformation retracts oni, we can use the Mayer-
Vietoris exact sequence to relate the homologWgf,) andW(r») to that ofX™ andWp.
For a reference about the Mayer-Vietoris exact sequencegezanmend [9] and [28].

Denote the inclusiongp — W(r1) andWp — W(r2) by i1 andi, and the inclusions
W(r1) — X andW(rz) — X by j1 andj>. We have:

0 — Ha(Wo) =725 Hy(W(r1)) @ Ha(W(rz)) 272 Hy(x®) 2
0 — Ha(Wb) =2 Ha(W(r1)) @ Ha(W(rz)) 272 Hy(x) %
0 — Ha(Wo) 272 Hy(Wi(rp)) @ Ha(W(r2)) 272 Ha(x) &
0 — HiWo) 22 Hy(W(rp)) @ Hi(W(r2)) 272 1y () &
0 — Ho(Wb) =2 Ho(Wi(ry)) @ Ho(W(r2)) 22 Ho(X) — 0

Recall from Proposition 5.3.4 thak(X*) = 0 fori # 2,0 from this we obtain:

Ha(W(r1)) @ Ha(W(r2)) = Ha(Wb),  H3(W(r1)) ©Ha(W(r2)) = Ha(Wb).
and the exact sequence:
0 — Ha(Wib) 222 Hy(W(rp)) @ Ho(Wirp)) 22
Ha (%) 2 Hi(Wb) =2 Hy (W(ry) @ Hi(W(r2) -0 (6.5)

since we can truncate the 0-th homology from Exact Sequericbegause each of these
spaces is connected.

We can repeat these calculations¥n We denote the inclusions4 — W(rz) and

Wi — W(r4) by iz andis and the inclusion8V(r3) < X, andW(r4) — X; by j3 and ja.
Using thatHo(X,) = Z{®'1} andH;(X;) = 0 fori # 2,0, we get:

Hy(W(r3)) ©Ha(W(ra)) =Ha(Wo),  Ha(W(rs)) ®Hs(W(rs)) = Hs(Wo).

and the exact sequence:

0 — Ha(Wy) 28, Ha(W(r3)) © Ha(W(rs)) el
Z B 2 Hy (W) 2% 1y (W(rs)) @ Hy(W(ra)) — O

Lemma 6.2.1. The boundary map : Z{F'1 — H; (W) from exact sequence 6.6 satisfies
0([P1]) = [Sy]. In particular,d is injective.

Proof: One can choose the vertical lixe= 1 as the generatd? of Hy(X;). SinceW;
intersects this line transversely alogg we haved[P!] = [S]. O

In combination with exact sequence 6.6 we find:
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Corollary 6.2.2. The map

Ha(Wa) 2%, Ho(Wirs)) & Ha(W(ra)) (6.6)

is an isomorphism and the sequence

0— Z{P 2 Hyowh) 224, 1y (WiTrs)) @ Hi(W(ra)) — 0 (6.7)
IS exact.

6.3 Replacement ot(r;j) with W(r;).

In many cases one would prefer to make statements about thelbgy of the genuine

basins of attractiolV(r;), instead of the closures of the basigr;).

Proposition 6.3.1. For the parameter values B in whichpé a manifold, Wr1) is homo-
topy equivalent t&V(r1) and W(r») is homotopy equivalent dV(r»).
Similarly, for parameter values B in whichy\\l a manifold, Wr3) is homotopy equiv-

alent toW(rz) and W(r4) is homotopy equivalent ¥(r4).

Proof: This follows from the relatively standard fact thaMfis a manifold with boundary,
thenM and the interior oM are homotopy equivalent

Recall thatQreqg C Q is the set of paramete for which there are no tangencies be-
tweenWp andC and no tangencies betwedh andC. For these parameter values, bdif
andW,; are manifolds and hence:

Corollary 6.3.2. For every Be Qeg, H.(W(ri)) = H,.(W(rj)) fori =1,2,3, and4.
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Morse Theory for Wy and W,

In this chapter we will use Morse Theory to prove thatfn C = 0, thenW, is homotopy
equivalent td5; and we will also see why the same method fails to work/br

In general\p andW; are not manifolds but merely real-analytic spaces. However
will only end up using Morse theory o in the special case whevé NC = 0 and hence
W, is a genuine manifold.

Recall Short Exact Sequence 6.7 from Corollary 6.2.2:

0— Z{FH & Hy(Wh) — Hy (W) ©Hy (VW) — 0.

By Lemma 6.2.1 we have tha([P]) = [S], so that ifW; is homotopy equivalent t&;,
thenHy(Wy) = Z{&]} = Imaged). By exactness of the sequence, this will show that if
Wi NC =0, thenH1(W(r3)) = 0=H1(W(rs)). SinceW, is a genuine manifold in this case,
Proposition 6.3.1 will give thatl;(W(r3)) = 0= H1(W(ra)), as well, which is part of the
third statement in Theorem 4.4.1.

7.1 Morse Theory forW;, and Wy

Consider the functioh: C x P — R given by

(7.1)

which is chosen so that

h<N©) B Z_i—il N xz_xzzx+1':h(<§))2~ (7.2)

The extension ofi to the exceptional divisors is given by extendigg in the standard
way (algebraically) then composing with the modulus The result is & function on
h: X* —R.

We will consider the restriction df to the super-stable separatvig andW, and use it
as a Morse function to study their topology.

There is a geometric description of the critical pointshofNotice thatWp and Wy
intersect the critical value parabdlain real-analytic sets. Leéf be the set of points i€
whereWp N C (or Wy NC) and the level curves df|C are parallel. The critical points df
are inverse images of pointskhand repeated inverse images of pointKinnderN.

It is relatively easy to search for pointsknfor specific parameter values. Figures 7.1
and 7.2 show the part of the critical value parabolas for tiffereént values oB, with the
level curves oh|C superimposed. Some of the pointsnare marked for each of these
parameter values.

49
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Figure 7.1: Level curves of the Morse functibiwithin the critical value parabol@a. The
points labeleds, ko, k3 andks are all inK, as well as any others. The critical pointlo€
is labeledS,
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Figure 7.2: Level curves of the Morse functibnwvithin the critical value parabol@. The
points labeled;, ko, andks are all inK, as well as any others.
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Proposition 7.1.1. Let K be the set of points in C whergy\WC (or W, NC) is parallel to
the level curves of|€. Then, the set of critical points of h orp\&hd W is U4 N*k(K).

Proof: Applying the chain rule to Equation 7.2 we find:

a()o)-a()wl) s

Notice that}h(?) } = 0 only wherx = 0. Therefore, Equation 7.3 gives thaD'h(?) =0.
for a point(?) onW, then either:

1. Dh (N(§)> = 0 giving that(?) is an inverse image (possibly arth inverse image)
of another critical point oh. Or,

2. DN (;) is singular andh (N (;)) is 0 within the image oDN.

The condition in the second case says tla) is on the critical points locus df, and
thatDh(N(x,y)) is zero when restricted to the image@N. Geometrically, this says that
the curvé\p NC is tangent to the level curves bfC atN(x,y). [

It is also possible that there may be critical pointhpfp that are some of the excep-
tional divisorsE; that were introduced in the constructionXf. We ignore this possibility
for the moment, and eventually we will restrict our attentio Morse Theory irk;.

Notice that ifh : Wo — R has no critical points, or ifi: Wy — R has no critical points
(except atx = 0 andx = 1), then the negative gradient flow(lh gives a deformation
retraction oy to § or the gradient flowlh gives a deformation retraction @, to S;.

Although we cannot find any specific values of the parant&ter which we can prove
thatWy does not interse®@, our computer calculations indicate that this may oftenhee t
case. For example, this is probably the case in Figure 7d. ckearly is not the case in
Figure 7.2. W, andC are disjoint, there are clearly no critical pointshof

Proposition 7.1.2. If there are no points of intersection between Whd the parabola
C(x,y) = y* + Bxy+ %zxz — %zx— y = 0, then W is homotopy equivalent tg S

Corollary 7.1.3. If there are no points of intersection betweenaid the parabolaCx,y) =
0, then the basins of attraction k) and W(r4) for the roots g = (1,0) and r; = (1,1—B)
have trivial first and second homology groups.

Proof: ForH1(W(r3)) andH1(W(rs)) this is a consequence of our discussion at the be-
ginning of this chapter. For the second homology it is a cquneace of the isomorphism
6.6.

We will never have this special situationXf’ for the following reason:

Proposition 7.1.4. There are always critical points of W\ — R.
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Proof: First, notice that there is a unique critical pointto€: Implicit differentiation of
C(x,y) =0 gives

dx B2 dx B2Zdx
+B—y+BX+ X7 — —— — 1=0
a4 dyy y

which is equivalent to:

Therefore the unique point of intersection between theBixe 2y — 1 = 0 and the parabola
C(x,y) =0 is a vertical tangent t6 and hence a critical point ¢f|C. This critical point is
labeledSin Figures 7.1 and 7.2.

The lineL., = {y = o} is clearly withinWp, and the lineBx+ 2y — 1 = 0 is mapped to
L. by N, hence it is in\p as well. Therefor, this critical point df|C is actually inWp. By
Proposition 7.1.1, the inverse images of this point uidlare critical points oh|W. [

One might consider using further details about the crifcahts ofh in order to study
the topology ofAp andW, when there are intersections with the critical value lo€ydut
this seems like a difficult approach, especially since tlsgsees may have singularities,
and we will avoid it.

Instead, in the next chapters we will use linking numbersravg that ifW, intersects
the parabol&(x,y) = 0, then the basins of attraction for the ro(its0) and(1,1— B) have
infinitely generated first homology. We will also prove tha thasins of attraction for the
roots at(0,0) and(0, 1) always have infinitely generated first homology, as a consecg!
of the fact thai\p always intersects the parab@éx,y) = 0.



Chapter 8
Many loops in Wp and W,.

In this chapter we will show that intersections betw&gnand the critical value locus
lead to an infinite number of closed loopsW and that intersections betwe®h and
C lead to an infinite number of closed loopsW. In the chapter following this one we
will show that infinitely many of them are homologically drstt, finishing the proof of
Theorem 4.4.1.

8.1 The mapping on fibers

Denote the projective line i@ x P above a fixed value of by Px. Often we will informally
call such a set a “vertical line”. Notice thabit# 1/2 thenNg mapsPy to P2 /5, _1) by the
rational map:

_ Y(BX2+2xy—Bx—Y)
R = > DBxry—1)

It is worth noticing that whemr = % and whernx= le, a common term cancels from the
numerator and denominator B, giving Re(y) = 5 + % andRy(y) = ¥, respectively.

In this section, we will use the details Bf to understand the topology of intersections
of Wp with vertical linesPx having Réx) < 1/2 and the topology of intersections b4
with vertical linesPx having Réx) > 1/2.

Recall thatX” is the spaceC x P having Réx) < 1/2, after the infinite sequence of
blow-ups that is necessary to resolve all iterate ahd thatX; is the spac& x [P having
Re(x) > 1/2, and that no blow-ups were necessarin

If a vertical linePy in X; does not contain a point that we have blown-up, it naturally
corresponds to a subsetXP. Otherwise, if the vertical lin@y does contain a point iX
that we have blown-up, then by the vertical liigin X we mean the proper transform of
Px under the blow-ups. Hence, it is meaningful to discuss e@irtinesX™.

Proposition 8.1.1. The critical values of Rare the intersections of the critical value
parabola C with the linéPy. There are two distinct critical values, except whea %.

Proof: The critical value curv€(x,y) = 0 for N is exactly the image of the locus where
oyNx(x,y) = 0. Hence, the critical values & are just the points of intersection between
C(x,y) = 0 andPx. There are two such points of intersection, except whentheliscrim-
inant (Bx— 1)2 — B?(x? — x) = (B? — 2B)x+ 1 = 0, that is, wherx = ﬁ. This makes
sense because the vertical lines contairpramdq and the exceptional divisoEs, andEg

each map to the line= ﬁ by isomorphisms.]

Re-stating the previous proposition in somewhat more tmgioal terms:

Corollary 8.1.2. For vertical lines not at x= 3,x = 525, i.e. not containing p or g, the
mapping R : Py — Py2 j(2x-1) is a ramified covering map of degree 2 with two distinct
points of ramification.

54
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8.2 Intersection ofWp and Wy with vertical lines.

The goal of this section is to show that if there is an intetisa®f\W with the critical value
parabolaC(x,y) = 0 in X, then the super-stable separatiis divides certain sequences
of vertical lines into arbitrarily many simply connectedndains and, otherwise, if there
is no such intersection then every vertical lineXfi is divided into exactly two simply
connected domains Byp. We will also show that the same statement holdsXoif we
replacé\p with W;. More formally:

Proposition 8.2.1.Let % be the i-th iterate of x underx 2xx—i1
For x havingRe(x) < 1/2:

o IfWoN{C(X,y) =0} = 0for each i, then \WN Py forms a simple closed curve divid-
ing Py into two simply connected domains.

e If there is some k with YWh {C(xx,y) = 0} # 0, then Wy N Px forms a curve dividing
Py into at least2k + 2 distinct simply connected domains.

Similarly, for x havingRe(x) > 1/2:

o IfW N {C(x,y) =0} = 0for each i, then WN Py forms a simple closed curve divid-
ing Py into two simply connected domains.

e If there is some k with Wh {C(x,y) = 0} # 0, then W NPy forms a curve dividing
Py into at least2X + 2 distinct simply connected domains.

Figure 8.1 illustrates this proposition.

The closed loops generated ipAhd W bounding the simply connected domains guar-
anteed by Proposition 8.2.1 will be used the next chaptehtwsthat H (W) is always
infinitely generated and to show that if\Mtersects C, then HW,) is infinitely generated.

We prove Proposition 8.2.1 fo4®, since it follows in a similar, although easier way for
X;. The proof will require some build-up.

Lemma 8.2.2.For any choice of B, there am® > 0 ande; > 0 so that if[x— 0| < €g, then
W NPy forms a simple closed curve and so thakif- 1| < €1, then W§N Py forms a simple
closed curve.

Proof: This is a direct consequence of Proposition 6.1.2 where weepihe existence of
WLCS andwj°c. O

Lemma 8.2.3.Let R: P — P be a ramified covering map of degree d and let P be a
simply connected open subsePafontaining the image of at most one point of ramification
of R. Then, RY(U) consists of a finite number of disjoint simply connected dosna
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Figure 8.1: Forming many closed loops\W. A sequence of vertical complex lines
Py, Py, , Py,, andPy,, one mapped to the next By. Because/\y intersect<C in the line
Py, Proposition 8.2.1 states that these vertical lines arneelivbyWs into at least 106, 4,
and 2 simply connected domains.

Proof: BecausdJ is a simply connected open subsetiyfU is contractible. Left; :
U x [0,1] — U be this contraction having; (U) = up, some base point ib. Recall that
contractions satisfg: (ug) = up for all t.

If U does not contain the image of a ramification point, tlienR(U) — U is a
genuine covering map, and by the homotopy lifting propériy tontraction lifts, providing
a contraction ta&®-1(U) to the pointsR—(up).

Otherwise, ifU contains a ramification point, we can modify our contractiso that
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the base pointyg is this ramification point. Then, the mappi@lifts over U — ug and
clearly extends by continuity over since itc;(ug) = up for all t.

Hence,R~1(U) consists of a collection of disjoint simply connected damsai The
number of these domains is bounded above by the degree

O

Letx, = %%_1 so that we hav&y, : Py, — Py,. The symmetry 4.1.1 gives us two nice
properties: First, since the critical valuesRy{ occur at symmetric points, eithég NPy,
contains both critical values or neither of them.

Second, Since the symmetry interchangég1) with W(r2), any simply connected
domain inPy, —Wp and its image under the symmetry are disjoint. Since the twcal
values ofRy, are at symmetric points, such a domain can contain at mosbbtieese
critical values. Therefore, the inverse image of a simplyrnaxted domain will be some
finite number of simply connected domains. The following theaxcounts this number:

Lemma 8.2.4.Let x = x3/ (2% — 1) and suppose that U is a simply connected domain in
Py,

e If U contains one of the critical values ofRthen I%l(u) is a single simply con-
nected domain.

e If U contains does not contain a critical value of,Rthen F;'jol(U) is two simply
connected domains.

Proof: Notice thatRy, : R;01(U) — U is a ramified covering map of degree 2, so the
Riemann-Hurwitz formula applies giving(Rgol(U )) = 2X(U) —kwherek is the number

of critical values ofRy, inU. (Here,k =0 ork= 1.) SinceU is a single simply connected
domain and?;ol(u) is a finite union of simply connected domains, the Euler attarastic
just counts the number of domains. Henceé) i€ontains a critical valu&k = 1, and there
are 2—1=1 domains irR;ol(U). Otherwise, ifU does not contain a critical valuk~= 0
and there are 2 0 = 2 domains irR;ol(U). O

2
Corollary 8.2.5. Letx = %. If Wo dividesPy, into m simply connected domains then

o If WoN Py, contains the critical values of Rthen VY dividesPy, into exactly2m
simply connected domain.

o IfWoN Py, does not contain the critical values of Rhen W dividesPy, into exactly
2m— 2 simply connected domains.

Proof: If Wo NPy, contains the critical values &, then none of then domains inPy,
contain a critical value. By Lemma 8.2.4, each of these dostaas two domains as inverse
image undeRy,, and henc&\p dividesPy, into exactly 2n simply connected domain.
Otherwise, at most two of the domainsliy, contain critical values oRy,. Each of
these two domains has a single domain as inverse image ygewhile each of the
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remainingm— 2 domains has 2 domains as inverse image, giving a totakd(2n— 2) =
2m— 2 domains inPy,
0

Proof of Proposition 8.2.1: Let xx be thek-th iterate ofxg underx — % Suppose that
Wp divides the vertical liné?y, into m pieces. Because the lixe= 0 is globally attracting
in X, there is somd so that|xx — 0| < g9 Using Lemma 8.2.2\p NPy, forms a simple
closed curve irPy, and hence divideBy, into only two simply connected domains.

Let x, be the last point in the sequengg Xy, - - -, X« havingWp N {C(xn,y) = 0} # 0
Repeated use of Lemma 8.2.5 gives the lower baang 2"+l —2n-1_on-2_ ... _ 2 —
2n1_ 21 2 — 271 2 The upper bound on the number of simply connected domains is
clearly 21, so we have 2+ 2 < m < 2"*1,

This proves Proposition 8.2.1 fo§™. The proof is virtually identical fok;. [J

8.3 Sizes

Suppose thatp NPy dividesPy into 2m simply connected domains. By the symmetry,
of these domains are in the ba¥if{r1) andm of them are inV(r). Denote the domains
inW(rq) by Uy, --- Uy and the domains iV(r2) by Va,---,Vin. Letk be chosen so that
Wp forms a simple closed curve ik, (wherex, is thek-th iterate ofx underx — %.)
Denote byJ the domain inPy, within W(r1) and byV the domain iriPy, within W(r»).

Under the mappind\, each of the domaindy,-- - ,Un, coversU with some degree
l1,---,lm and each of the domaing, - - - ,Vy, coversV with degreeps,---, pm. Then, the
following is true:

Proposition 8.3.1.

il k il Kk
LR e

Proof: The sumy ", |; counts the number of times tHatis covered by ,U; C Px. Since
Py coversPy, with degree ® we must haves™, I; = 2%, The proof for the second sum is
the samel]

Given a regiorlJ; in W(r1) we will can assign sizg);) = —% and given a regioW
in W(r2) we can assign siz¥;) = %. Wherek, l;, and p; are as in the above proposition.
This is well defined because givepnandk, as above, thg corresponding té; and thel;
corresponding té will differ by 2k—kz,

Corollary 8.3.2. Suppose that YW Py dividesPyx into 2m simply connected domains:
Uy, - ,UnCW(r1) and M, -+ ,Vim CW(rq). Then:

m m

_leize(ui) =-1 leize(\/i) =1
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Figure 8.2: Example of a curwg surrounding a simply connected doméainin some
vertical line. In the next chapter we will prove that curvéghos form are non-trivial in
H1(Wo) (or H1(W1)) by linking these curves with an object that is disjoint fravs (or from
Wi.)

8.4 Many loops inWp and Wy

Given a regionJ; orV; in some vertical linéPy let y; be the curve ifp boundingJ;. Since
Vi is a subset oi\p N Py, it is a piecewise smooth curve. (This will be useful latelewhve
want to consider the cla$g| € H1(Wp).)

In the next chapter we will see that sfizg) for such a region equals the linking number
for y; with an appropriate geometric objectX. (This object will remain mysterious for
the moment.) These linking numbers will descend to the hogyH;(Wo), which will
allow us to show that if there is an intersection betw#grandC(x,y) = 0, thenH;(Wp)
is infinitely generated. The similar statement about singoiynected domains in vertical
lines inX; will be true as well.



Chapter 9
Linking numbers

The classical scenario is the linking of two oriented loapandd in S2. The linking
numberlk(c,d) € Z is found by taking any oriented surfa€ewith oriented boundarg
and definingk(c,d) to be the signed intersection numbeirofvith d. For example, in the
following diagramlk(c,d) = +2.

d

To see thatk(c,d) is well-defined inS®, we can express this computation in terms of
homology, lettingc andd be one-cycles and a 2-chain wittdl = c. (Becauséd;(S?) =0,

[c] = 0, so the existence df is guaranteed.) We can then consifdirc H;(S3,c) and
r] e3H2(S3,c). We defindk(c,d) = [[] - [d], where- indicates the intersection product on
H.(S°,c).

Suppose thaF’ is some other 2-chain witAr’ = ¢, thend(l' —I'") = [c] — [c] = O,
and so(I" — ") forms a homology class iH(S®). SinceHy(S%) = 0 we must have that
[T —I''] = 0 and so the intersection numbeflis-I''] - [d] = 0. Therefore{l']-[d] =[I"]-[d],
giving thatlk(c, d) is well defined.

The two properties that we used were tf@t= 0, so that there are 2-chaifiswith
oI = 0 and thaH,(S3) = 0 to check that the linking number is independent of the @noic
of I'.

To summarize: ifM is a 3-dimensional manifold witki2(M) = 0, letZ;(M) be the
1-cycles inM andBy (M) C Z1(M) be the 1-boundaries M. Given a 1-cyclel, letB§ (M)
be the 1-boundaries Nl that are disjoint frond. Then, we have homomorphism, which
we write

Ik(-,b) : B§(M) — Z
defined bylk(c,d) = [I'] - [d], wherel is a 2-chain withdl" = c. Since we require thatbe
disjoint fromd, there is no ambiguity about this intersection number.

In this chapter we will build up the tools necessary to deforae notion of linking in
X, which has an infinitely generatéth(X*). Making linking numbers well defined in this
space will be a major difficulty that we overcome in the nextgections.

60
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9.1 Linking in manifolds M with non-trivial intermediate homology.

Suppose tha¥l = S2 x S, so thatHa(M) = Z{5%} . Letc be the equator &2 crossed with
some point orp € St and letd be the copy o§! above say the north pole 8f. Figure 9.1
shows these curves B? x [-1,1], and it is left to the reader to identify the endpoints of
each interval, in order to visuali&# x S.

Figure 9.1: Linking in a weird space.

Let’'s see thatk(c,d) is not well defined: Suppose thgt is the northern hemisphere
of S? crossed withp and that”; is the southern hemisphere $# crossed withp. Choose
orientations fol'; = candodlh, = c.

Sincel 1 has intersection number 1 withandl > has intersection number 0 with we
see thatk(c,d) is not well-defined! This follows from the simple reasléd] - [d] = 1.

Let d’ be the copy of! above say the north pole 82 minus the copy 08! above the
south pole of?. This way,[d']-[S?] = 0 so thaf 1 - [d] = I'»-[d'] for anyl'; andl, having
boundaryc. In this caselk(c,d’) = +1.

This is the same as showing that the curve&homologically non-trivial ir§? x S with
the two curves formingd’] removed:[c] # 0 € Hy(S? x St —d).

Linking kernel: LZy(M)

Suppose thal is a 3-dimensional manifold witkl2(M) # 0. As in the previous ex-
ample, we can define a linking number, so long as the secondartd has|d]|- o = 0 for
everyo € Hy(M). We define£Z1(M) C Z1(M) to be the sub-module &t (M) with this
property. As before, gived € £Z;(M), we denote by%(M) the 1-boundaries iM that
are disjoint fromd. Then, the map:

Ik(-,d):BY(M) — Z

given bylk(c,d) =T -d is well-defined, i.e. independent bf
In a manifoldM of dimensionm, one can define a linking number between boundaries
c of dimensionn and cycledd of dimensionp so long an+ p=m-—1. If Hy;1(M) =0,
Ik(c,d) =T -d for ann+ 1-chainl" with dI" = c provides a well-defined linking number.
Otherwise, one must make a similar restriction as aboveaetsy tod € LZ,(M) sat-
isfying [d] - o = O for everyo € Hp1(M). We will then denote bad(M) then-boundaries
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in M that are disjoint frond. We get

Ik(-,d) : BY(M) — Z.

9.2 Linking kernel for X

Recall from Chapter 4 that except in the exceptional situmatvhen one of the inverse
images of the points of indeterminacy is on the critical Bcu

Ha(X) =7Vl g ( @ Z{[Ex]}) ® ( @ Z{[Ex”’)

NK(x)=p NK(x)=q

Recall from Proposition 5.3.6 that each exceptional divigg has|E] - [Ei] < —1 and
that[V] - [V] = 0 so that ifw = ap[V] + a1[E1] + - - - an[En], and satisfieso- 0 = 0 for every
0 € Hx(X™) & = 0 for alli # O, that is,w = a[V].

In summary,LZ,(X™) consists of only the 2-cycles that are homologous to meipl
of [V]. The particular curves that we will consider here, i.e. héave linking number 0
with V], since each of these curves is entirely within some vertical So, to show that
all of these curves are non-trivial, we will need to look aleere for something to link
with. We will do this by extending the definition of linking tmking with “positive closed
currents”.

9.3 Linking with currents

Just as distributions are defined as the topological duahoish functions with compact
support, currents are the topological dual of smooth difial forms of compact support.
In fact, naturally, the dual 04\8(M) is the space afi-currents (or generalizedforms), not
generalized functions as is usually stated.

More precisely, if we leAd ?(M) denote thén — g)-forms with compact support on a
smooth manifoldM, the linear map3 : A{ (M) — C that are continuous are tarrents
of degreeq (or, as some say, the currentsddfnensionn — g) and are denoted b%(M).

If M has a complex structure, one defines the currents of bi-dépre), denotedDP9(M)
as the topological dual of th@ — p,n— q)-forms with compact suppofe P"~%(M).

The reader who would like more background on currents shooitgult [24, section
3.1 and 3.2], or one articles on complex dynamics which oeglithe basic properties of
currents and their use in dynamics, [36, 48, 47].

Throughout the remainder of this section we will only be iagted in currents on 2-
dimensional complex surfaces and complex curves.

We will be interested in a very small sub-space of curretiscksed, positive (1,1)
currents T which, according to theld®-Poincaré Lemma, are locally expressedlas:
dd®ofor a plurisubharmonic functioq.
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Reminder: An upper semicontinuous functian: U — RU {—o} is said to besubhar-
monicif for every x € U and everyr > 0 for whichB(x,r) c U, and for every real val-
ued functionh on B(x,r) that is harmonic orB(x,r) and satisfied > g on 0B(x,r), it
holds thath > g on B(x,r). Given a domaim\ C C", an upper semicontinuous function
g: N\ — RU{—w} is said to beplurisubharmonidf for every lineL, f|L is subharmonic

onAnNL.

We will try to avoid using many details about plurisubharnedanctions, but we will
occasionally need to use them to describe the geometry sédtpositive currents. Denote
by Zi’l(M) the closed-positivél, 1) currents orM. Given a currentl € Zi’l(M), and a
piecewise smooth 2-chamhavingdo disjoint from the support of , we have the pairing:

Co(M) x ZHH (M) — R

defined by(o,T) = [, T. It is a well known result that this depends only on the homglog
class ofo.

Denote byLZi’l(M) the space of positive closed curreiithaving [; T = O for every
0 € Ha(M). GivenT € in’l(M), let B] (M) be the 1-boundaries iNl that are disjoint
from the support off. We can define a linking number with respeciitdy:

Ik(-,T):B](M) = R

bylk(c,T) = [ T, whererl is any 2-chain witl' = c. SinceT < LZ_lgl(M), we have that
Jr T = J{ T for any other™ with I’ = ¢ since fr_ T = 0. Sincec is disjoint from the
support ofT, there are no problems.

9.4 Finding an element ofLZi’l(Xﬁ)

In this section, we will find an element oifzi’l()(,“) by successively determining elements
of £Z1(X), £Z21(X0), L2 (XY), £LZ1H(XP), --- whereX, is the space after having
completed the blow-ups at levgl In the limit, we will find an element otZ_lgl(Xi“),
which in the next section will be useful for linking.

Let L; be the invariant line that goes throu@® 0) and(1,0), i.e. y= 0 andL; be the
invariant line that goes throud®, 1) and(1,1—B), i.e.y+Bx—1= 0. (To remember the
indexing, think that.; containsr; andL, containsr,.) Note that we can use the Poincaré-
Lelong formula (see for example [24, p. 388] or [48] to expriee fundamental classes of
these lines as positive-closed currents:

_ 1 C _i C o
L] = -dd®loglyl,  [Lz] = o-dcClogly+Bx— 1]

Notice that each of these lines intersects any given véfimealP with intersection number

1, or equivalently that
/[Ll] —1= /[Lz]
P P
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Hence, becausy | is the sole generator ¢f2(X ) we have thafly| —[L1] € in’l(xo.
Now, suppose that we want to find an elemenlmﬁ’l(x,o), that is, a positive-closed
1-1 current that evaluates to 0 on every elememdX?) = Z{VLEol.[Edl} | n fact, we also

have that:
/Ep[Ll]zlszl[Lz]

/Eq[L1]=0=/E[Lz]

So, in fact[Ly] — [L1] € £LZ7H(X0)
However, this luck will not continue. Let be one of the two preimages-imagespof
that is in the invariant liné;. SincelL; andL, intersect at the single poimt z ¢ L,. This

results in the fact that
[ =120= [ [La].
EZ EZ

So that[Lo] — [L1] ¢ £Z1H(XY).
Consider the inverse images undérof the linesL; andL,. The Poincaré-Lelong
formula gives
1
-1 _ _— AdAc
INT(L] = grdelogNe(x )l
N"H(L2)] = 5-ddlog|Ni(xy) +B-Na(xy) — 1|
whereN;(x,y) and Na(x,y) are the first and second components of the Newton hap
Let's check thafN~1(L2)] — [N"1(Ly)] € £ZFH(XD).
This is slightly easier to prove if we instead work witd—2(L1)] and [N—2(L;)], the
second inverse images bf andL.

In general, if we denote bk (x,y) andNX(x,y) are the first and second coordinates of
N2, then:

_ 1

IN(L)] = 5-dd’log|N5(x.Y)].

_ 1

NT(L2)] = o -dd’log|Nf(x.y) +B-Ni(x.y) - 1

Before proceeding, we will need the following lemma:

Lemma 9.4.1.For every k> 0 we have
| INHL) = [ i)
% Y

Proof: Thek-th inverse imagedl—*(L1) andN—K(L,) both have degreedn y, so they
each intersect a generic vertical line exactfytines. This intersection number coincides
with the integrals]
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Suppose thaE; is one of the exceptional divisors qul From Proposition 5.2.1 we
know thatN' induces a ramified covering frofg, to V = P1/(B(2—B)) Of some degree
(which is possibly 0) where= 1 orl = 2. Then we can compute the following:

JoINFw) = [ N =d [N
LN = [N = d N

and these are both equal becayigh®'L1) = fi,[N>'L,] by Lemma 9.4.1
SinceHz(X!) is generated by the fundamental classe¥ oEp, Eg, and those intro-
duced at the inverse images pfand ofg, we conclude thafN=2(L,)] — [N72(Ly)] €
11,1
L7,
There was nothing special about this situation; it genegalito give the following
proposition.

Proposition 9.4.2. [N~ kD (L)) — [N~k (L)) e £23H(X¥)

Proof Let E; any one of the exceptional divisors )qf Using Proposition 5.2.1, there is
somed and somé < k+ 1 so thalN' mapsE; toV by a ramified cover of degrek(possibly
with d = 0.) Then, just as in the discussion above:

—(k+1) _ —(k I —(k |
/EZ[N (L)) = /NI(EZ)[ D+ d/ FDH L]
/EZ[ —(k+1) ( )] _ /Nl(EZ)[ —(k+1)+l L2 d/ —(k+1)+ ]

and these are both equal, using Lemma 9.4.1.

SinceHk(X!) is generated by the fundamental classeg ahd the fundamental classes
of each of the exceptional divisoEs we conclude thafN~(k+ (L,y)] — [N~ KD (L)) e

1,1
LZH(KK). O

Fundamental classes such[bsk(L,)] and[N~¥(Ly)] probably seem quite abstract at
the moment. Because the inverse images of these lines adammX”, which is a rather
complicated 2 complex-dimensional manifold, they areeattifficult to visualize. One
can actually see somethinglk?: In the top of Figure 9.2 we shoi~*(L;) (in gray) and
N~1(Lp) (in black) inR?, with B = —0.3. In the bottom of Figure 9.2 we shoW2(Ly)

(in gray) andN~2(L») (in black). The points where these two curves cross are gidimgs
in indeterminacy, which are labeled. We hope that this wiledhe reader some idea about
these inverse images.

SinceX” = lim (K, 1) and becausé~ (<1 (L)] — [N~ k3 (Ly)] € £LZ7(XK) it seems
that a limit ask — oo of [N~ (L,)] — [N~*k+D(Ly)] will be an element of2Z7*(X®).
We must be careful to make clear what limit we are taking, beithy so below.
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Figure 9.2: Newton map iR?, B = —0.3. Top: N~%(L,) in black andN~%(L;) in gray.
Bottom: N—2(L,) in black andN~2(Ly) in gray.
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First, we choose to normaliZél~(k+1(L,)] and [N~(K+1(L,)] so that their integrals
overV are 1. By dividing by the degrees, we define:

1
A = xIN™ “(Lo)] = —ddc < 10gINF(x.)I,
1
NS = x[N” “(L2)) = —ddc < 10gINF(x,y) +B-N5(xy) — 1|

Both Ak and\X are still positive closed currents because we have onlyed/by .
We let

Moo= Jim )\k_—ddcllm —Iog\Nz(x ).
Ay = Ilm}\k_—ddcllm—Iog\Nl(xy)+B NX(x,y) — 1.

We will first check that these limits exist and define poskiesed 1-1 currents, and
then we will show thak, —A; € LZ_lgl(X,w).

Proposition 9.4.3. The limits
.1 K
Gi(xy) = lim = 10g|Nx(x.y)]

.1
GZ<X7y) = llmog log‘Nﬁllf(X?y) + B- N|2((X7y) - 1‘

exist and are plurisubharmonic functions in the basins ¢faation W(r1) and W(r»),
respectively. Hence\; = 5-dd°Ga(x,y) andA, = 5-dd°Gy(x,y) are positive closed 1-1

currents on XX, thatis: Ag,A € Zi’l(x,“).

Proof: To see thatGi(x,y) andGy(x,y) are well-defined and plurisubharmonic, we will
show thatGs(x,y) andG,(x,y) coincide with the potential functions that were described
in [35, p. 21] and [36]. We will do this fo6G1(x,y), and leave necessary modifications for
G2(x,y) to the reader.

Supposing that0,0) is a root, Hubbard and Papadopol [35] consider the limit

.1
GHP(X7 y) = Ilmog |OgHNk(X, y)||

which they show exists and is a plurisubharmonic functiortien basin of(0,0). The
reader should notice th&yp does not depend on the choice of the ndfm|| that is
used to define it because any two different norms on a finiteedgional vector space
are equivalent by a finite multiplicative constant, whiclelisninated by the multiplicative
factor oleﬁ. Therefore, we can use the supremum norm.

We will show thatG; = Gyp onW(r1), to see thaG; is plurisubharmonic.

If \Nz(x y)| > INK(x,y)| for all (x,y) ask — oo, then the supremum norm coincides with
INK(x,y)| giving G1(X,y) = Gpp(x,y). This condltlon is equivalent to the condition:

I|m —Iog

k
" Z(X’y)‘ >0 (9.1)

NK(x,y)| ~
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which will now show is a consequence of a standard result floendynamics of one
complex variable.

In [35], the authors perform blow-ups at each of the four spand observe that the
Newton mapN induces rational functions of degree 2 on each of the exaegitidivisors
Er,.Er,, Er;, andE;,. Let's compute the rational functiost E;, — E;,. In the coordinate
chartm= ¥, the extension té&;, is obtained by:

_ mx(BX 4 2mx¥ — Bx— mXx)
s(m) = lim
x—0 X2(BX+2mx— 1)
m(Bx+2mx—B—m)

- >|<|Lno Bx+2mx—1 =m(B+m)

sincex= 0 onkE;,.
Since condition 9.1 is a limit, it suffices to check it in anigndrily small neighborhood

k
of the origin. In a small enough neighborhood, we can repﬁi{;ﬁ% with s(%) obtaining
1\

Ns(x,y)| . 1
o \ — lim - log|(m)| = Gs(m) 9.2)
whereGs(m) is the standard Green’s function from one variable compjeadhics associ-
ated to the polynomiad(m). This last equality is actually a delicate but well-knowsuk
that was proved by Brolin [12]. A more friendly proof is aale in [48, Section 9].

Having the last equality, it is a standard result, for exargde Milnor [43] pages 95
and 96, thaGs(m) = 0 on the filled Julia se(s) and thatGs(m) > 0 outside oK (s).

This justifies the replacement of the supremum norm f@xg by [N5(x,y)|, and hence
gives thatG1(x,y) = Gup(X,y). O

Corollary 9.4.4. Let s: E;, — E;, be the polynomial induced by the Newton map N and let
Gs: Er; — R be it's Green’s function. We have:

Gi(x,y) = Gs <¥) —log

1
X

Proof: This just comes from the algebra:

.1
Gi(xy) = Jim Slog|N§(x.y)|

Nk
= lim ik <Iog i(x,y)
k_>°°2 N:][(X7y)
= Gs(2)+Jim S 10gINK(x.y)

= Gg <§—(/) +log|x = Gs <)—)£) —log

\ ; log|N¥<x,y>\)

.

BecauseN'l‘(x, y) = % is conjugate tox — x2 nearx = 0. OJ



69

9.5 Nice properties ofA> and Aq:

In this section, we will prove some of the nice propertiesjsfandA;. We will finish the
section by showing that, —A; € LZIl.

Lemma 9.5.1. (Normalization) Suppose thaPy is a vertical line that is divided into ex-
actly two simply connected domainstW(r1) and V.C W(r2) by Ws. Then:

/)\zzlz/Aland/)\Z:O:/)\l
V U U Vv

Proof: BecauseNs(x,y) and BNk(x y) + N5(x,y) — 1 are of degree'2in y, both )\&
and\¥ are normalized to thaf, \Y = 1 and [, A§ = 1. Since the potential fokX and A%
converge uniformly on compact subset\tcandA,, we have

A = nm)\k_nm )\k_llml 1.
/ul U ke T 1

and similarly forA,. The proof thatf; A =0 = fv)\l is identical.[]

Corollary 9.5.2. Suppose thaky is vertical line, thenfp A2 =1 = [p A1.
The current3\1 andA, have nice invariance properties:

Lemma 9.5.3. (Invariance) Suppose that € Z,(X), then

/ )\1:2-/)\1 )\2:2~/)\2
N(T) v N(T) v

Proof The proof is the same fav; andA,, so will will show it for A1:
1
A :/ lim L logINK(x.y) :/Iim—lo NK+HL (x|
Jo M gIN{ ) = [ Jim 5 ogINE 2 (x.y))

_ k+l _
= /2k+"1mm2k+1'09“\‘ x,y))\—2~/yM

O

Proposition 9.5.4. (Support disjoint from W) There is a neighborhoo® of Wg in X
which is disjoint from the support @f and disjoint from the support @b.

Proof: By construction)1 has support itV (r1) andAz has support itV (rz). We will find
a neighborhood, which we also c@l| of Wy in W(r1) that is disjoint from the support of
A1. Clearly similar methods will work iV (r2) and the desired neighborhood is the union
of the two.

Recall from Corollary 9.4.4 that

Gi1(X,y) = Gs (2—:) —log )—1( ,
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whereGs is the Green’s function associated to the polynomidt,, — E;, induced byN
atry. Recall thats(m) = m(B-+ m) in the coordinatesn = % on E;,, so thatm= is a
superattracting fixed point. (This is the standard situefto a quadratic polynomial.)

It is a standard result from one-variable dynamics, for gxamsee [43] p. 96, thabs
is harmonic outside of the Julia sK&). In particular,Gs is harmonic in a neighborhood of
oo (not includinge). A related standard result th@g has the singularity

G(m) =log|m| +O(1) asm — o
We check that this singularity exactly cancels wittog | = | coming fromGy (x,y) = Gs () —
log|%|:
1
X

Gi(xy) = |Og)¥)—log +o<1)as)3_):)_>oo

= logly|+0O(1) as‘)—{‘ —

Therefore,G1(x,mx) is harmonic on a neighborhoddl of m = o, including the pointo.
Choosed > 0 so that ifjm| > 6, thenG4(x, mx) is harmonic.

Let © = {(x,y) € W(r1) such thatl| > 8}. This is the open cone of points W(ry)
with slope to the origin greater th@& Since the invariant circl& is abovem = o, Oq is
a neighborhood 0% (within W(rq).)

By construction,

0= D N~"(p)
n=0

will be invariant undemM and open. Becaus@q is disjoint from the support ok4, the
invariance properties for; from Lemma 9.5.3 give that all & must be disjoint from the
support ofA;.

Finally, since®q contains a neighborhood &p, and both\p and® are invariant under
N, © forms an open neighborhoodh. [J

Corollary 9.5.5. Given any piecewise smooth chaire Wy, we have thaf;A; = 0 and
JsA2=0.

Proposition 9.5.6.A1 — Az € £LZM(X®)

Proof: This proof will be along the lines of the proof from Propasiti9.4.2, but will be
even simpler, using the invarianceXaf andA, shown in Lemma 9.5.3.

An element oH>(X?) is a linear combination of the fundamental clagswith a finite
number of fundamental classes of exceptional diviggrsBy Corollary 9.5.2, we have
fv A= fv A2.

Any exceptional divisoE; was created during the blow-ups at some léyeind using
Proposition 5.2.1 there is sorheo thatN°c*1) mapsE, toV = P1/B(2-B)) by a ramified
covering mapping of degrde(possiblyl = 0). Then:

| |
5M—?AM—?LM—&M
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using thatfy, A1 = f, A2. HencefEZ()\z — A1) = 0 for any exceptional divisdg,.

Since an element dfi;(X?) is a linear combination of the fundamental clagswith
a finite number of fundamental classes of exceptional digi&p, we have shown that
Aa—Ai e £Z27H(X®). O

9.6 Linking with currents in X

We have infinitely many cycleg in Wo and we now havéi, — A1) € LZ_lgl(X,“) with
which we can try to link them.

Proposition 9.6.1. Suppose thay; is a curve in a vertical line bounded by a simply con-
nected domain J Then:

Ik(yi,A2 — A1) = sizgU;)

Proof of Proposition 9.6.1.

This will follow easily from Lemma 9.5.1 and the invarianceperties ofA; andA1
that were proved in Lemma 9.5.3.

Recall that siz@J;) is defined asi:%iR wherek is such thatuk maps to a vertical lin@y
that is divided by\p into only two domain&J c W(r1) andV C W(r») and wherd; is the
degree of this mapping 10 orV. The sign— if U; is mapped tdJ and+ if U; is mapped
to V. Without loss in generality, suppose thatis mapped tdJ, and hence siZ¥);) < 0.
Using Lemma 9.5.3 we have that:

1
Ao — —/ A2 A=

/Ui 2—M\1 X oy 2 M

i/ A = —I—i/)\ _ N sizquy)

ok LU 1 = ok U 1= 2k !

where we are using thg; A2 =0and ;A1 =1. O

Recall from Chapter 7 thafp always intersects the critical value parabGland from
Chapter 8 that such an intersection leads to sequences tafavdines that are divided
into arbitrarily many simply connected domains. Hencerdlere always regions; hav-
ing |sizeU;)| arbitrarily small, but non-zero. Consequently, there &nagsy; € B (W)
having|lk(yi,A2 — A1)| arbitrarily small, but non-zero:

Proposition 9.6.2. The image of the homomorphism:
k(- A2— A1) i B2 M(X°) = R

contains elements of arbitrarily small, but non-zero, dbs®value.
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9.7 Hi(Wp) is infinitely generated.

SinceH1(X™) = 0, every 1-cycle inX” is in fact a 1-boundary irX®. In particular,
Z1;(Wo) C B1(X). By Lemma 9.5.4, the support @b — Ay is disjoint fromWp, giving
thatZ; (Wo) C Bﬁz_)‘l(xlw). Hence, we can restridit(-,A2 — A1) to 1-cycles in\p:

|k(-,)\2—)\1) : Zl(\/\/o) —R

Proposition 9.7.1. For everyy € Z;(Wp), Ik(y,A2 — A1) depends only ofy] € H1(Wp). In
other words, the linking number descends tg\W):

IK(-,A2—A1) :H1(Wp) — R

Proof: Suppose that; —y» = do, with o € Cy(Wp). since the support df; — A1 is disjoint
fromWo, [;A2—A1=0. HenceJK(y1,A2 — A1) = Ik(y1,A2 —Aq). O

Corollary 9.7.2. The image of the homomorphism
Ik(-,A2— A1) i H1(Wp) — R
contains elements of arbitrarily small, but non-zero, dbs®value.
This gives us our desired result:
Corollary 9.7.3. The homology group HWp) is infinitely generated.

Recall the Mayer-Vietoris exact sequence 6.5 from Chapter 6
Ho (W(rl)) @ Hp (W(r2)> o Ha(%®) 2 Hi(Wh) — Hy (W(rl)) @ H: (W(r2)> 0

If Image(0) = 0, or even if we knew thdsizgd(o))| were bounded away from O for every

0 € Hx(X), we would be able to conclude thid{ (W(rl)) andH; (W(r2)> are infinitely
generated. However, this is not the case.

Proposition 9.7.4. There areo € Hap(X) with [Ik(d(0),A\2 — A1)| arbitrarily small, but
non-zero.

Proof: For everyk, there exists some exceptional divighavingN¥ : E — V an isomor-
phism. This is easy to see for generic parameter vaBue$. In this case, any exceptional
divisor at a(k— 1)-st inverse image op will have this property, since, for geneithere
is a single exceptional divisor above each point that we bésen up, andN : E; — Ey(y)
is always an isomorphism.

For the values oB ¢ S, which are non-generic, there may be many blow-ups done at
each(k— 1)-st inverse image op. So, we take a detailed look at the sequence of blow-
ups from section 5.1 that was used to cregfe’ from X 2. One must check that for
each exceptional divisdf'N(z) that occurs in the sequence of blow-ups\dr), there is
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an exceptional divisor in the sequence of blow-upzthtat maps isomorphically tE,i\I(Z).
Using this fact, one can always choose a sequence of exnaptiwisors starting witltep,
and working backward to find an exceptional divisoabove somék — 1)-st inverse image
of p with the property thaNk-1: E — Ep is an isomorphism. Sindd : E, — V is always
an isomorphismk is the desired exceptional divisor.

BecauseN* mapsE isomorphically toV, it mapsd([E]) to a([V]). We can use the
invariance property from Lemma 9.5.3 to check that

IK(O(ED. Ao~ A1) = Ik(@(V]) Ao~ ) = 5

[J Proposition 9.7 4.

9.8 H; (W(r1)> and Hq <W(r2)> are infinitely generated.

The following idea will allow us to show thad; (W(r1)> andHj (W(rz)) are infinitely

generated, despite the fact ti&t{d(o), A2 —A1)| can be arbitrarily small, but non-zero, for
0 € H(X™).

Recall from Proposition 4.1.1 that has a symmetry of reflection about the liBg-+
2y—1=0which exchanges the basins of attraction. Denote thisutiom by T : X — X.

Even and odd parts of Homology:

Notice thatt induces an involutiorr,. on H.(X”),H.(Wo), andH,(W(r1)) ® H.(W(r2)).
Every homology class will have 12(0) = ¢ and consequently the eigenvaluesoofire
+1.

We say that a homology classis evenif it is in the eigenspace of, corresponding
to eigenvaluet1, and we say that is oddif it is in the eigenspace df, corresponding to
eigenvalue-1.

Because the Mayer-Vietoris exact sequence commutes htuith induced maps, we
have a decomposition of the sequence 6.5 into even and otid par

(H2(W(r1)) & Ha(W(r2)))® — HE'(%™) 2 HE“(Wb) — (Hu(W(r1)) & Hi(W(r2))® — 0
(H2(W(r1)) & Ha(W(r2)))° — HU(X”) & HEYWb) — (Hy(W(r1)) & Hy(W(r2)))*? — 0
We will only need the odd part of the homology.

The involutiont exchanges the curremts andA;:

Lemma 9.8.1.1f o is some piecewise smooth chain, then:

/)\2:/ A and/)\lz/ Ao 9.3)
o} 1(0) o 1(0)
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Proof:
Recall the definition ok, andA;:
A= i—65|im 1Io INK(x,y)|
b Tt k—>002k g 2 7y7
i, 1 . .
Ao = ﬁaadmilog|Nl(x,y)+B.N2<X,y)_1|~

Since precomposition witl exchanges the linBx+y — 1 with the liney = 0, clearly
Equation 9.8.1 holdg.]

Corollary 9.8.2. For everyly] € H1(Wp) we have:
Ik(y,A2— A1) = —Ik(T(),A2— A1)

Proof:
Suppose that is a piecewise smooth 2-chain witto =y. Then we certainly have
o(t(0)) =1(y). Lemma 9.8.1 gives:

|k(y,>\2—>\1):/>\2—A1:/ A=Az
o 1(0)
_ —/ A2 =1 = —IK(T(y),A2— A1)
1(0)
0

Proposition 9.8.3.1f y € HY4Wp) is in the image of the boundary may Hgd(X,“) —
HPY(Wb), then IKy,A2 — A1) = O.

We will need the following lemma:

Lemma 9.8.4. For any exceptional divisor Bwe have

0(T:[E]) = —T.(0([Ed)) (9.4)

Proof: This proof will dependessentiallyon the explicit interpretation of the boundary
mapad from the Mayer-Vietoris sequence. In the following pargdrave closely paraphrase
Hatcher [28], p. 150:

The boundary map : Ha(X) — Hn_1(ANB) can be made explicit. A clagse Hn(X) is
represented by a cycke By appropriate subdivision, we can wrias a sunx+ Yy of chains
in A andB, respectively. While it need not be true thatndy are cycles individually, we
do havedx = —dy sincez= x+Yy is a cycle. The elemen is represented by the cycle
ox = —ay.

The details of the next two paragraphs depend heavily onr&igi3.
We use this explicitinterpretation dto check Equation 9.4. Notice thatE;] = [E; ;)]
consistent with the orientation thBt andE;,) have as Riemann surfaces. Therefore we
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Er(z)

Figure 9.3: Showing thak(t.[E;]) = —1.(9([EZ])).

have thatd(1.[E]) = 0([Ey(y] = [0U1] = —[0U2], whereU is the oriented region ok,
that is inW(r1) andU; is the oriented region df; that is inW(ry).
Similarly 9([Ez]) = [0V1] = —[0V2], whereVq andVz areE;NW(r1) andE;NW(rp).

Becausa mapsE; to By, swappingV(r1) with W(rz) we have:

T.(9([E)) = [0U2] = —0(1.[E])

O

Proof of Proposition 9.8.3:
Since elements of the forf&,] — [t1(E;)] spanH9%(X), we need only check that the images
of differences like this undet have 0 linking number:

Ik(0([E] — [1(Ez)],A2—A1) = IK(9([E]) —(1:([E2])), A2 — A1)
= Ik(0([E]) +1(0([E4])), A2 —A1) = O

The last term is 0 by Lemma 9.8.41
Proposition 9.8.5. The image of lk,A2 — A1) : Hfd(\/\/o) — R contains elements of arbi-
trarily small, but non-zero absolute value.

Proof of Proposition 9.8.5:
Recall from Proposition 9.7.2 that we can find 1-cygl¢isat havdk(y,A2 — A1) arbitrarily
small, but non-zero. Notice tht— t(y)] is obviously odd, and using Lemma 9.8.4:

IK(y—=1(y),A2—=A1) = IK(Y,A2—A1) —IK(T(y),A2—A1)
= Ik(y,A2— A1) +1K(y,A2— A1) = 2IK(y,A2 — Ay).

Hence, by choosingso thatlk(y,A2 — A1) is arbitrarily small, but non-zero, we can make
Ik(y—T(y),A2— A1) arbitrarily small, but non-zero witfy —t(y)] € H®Wp). O

Figure 9.4 illustrates the proof Proposition 9.8.5.
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Figure 9.4: Diagram illustrating the proof of Lemma 9.8.5.

Recall the last part of the exact sequence on the odd partsoblogy:

— HE0G) % HE W) 22 (g (W) ) e He (Wi(r) ) )™ — 0

wherei; andi; are the inclusiongp — W(r1)andWp — W(r») respectively.

As a consequence of Proposition 9.8.3, given ae)(Hl (VW) ®H; (W))ocj we
can defindk (t,A2— A1) = Ik(y,A2— A1) for anyy € H(Wp) whose image under. ®io. is
T. As a consequence of Proposition 9.8.5 we know that there@(eu <VW> ®H1 (W))Od
with arbitrarily small|lk(t,A2 —A1)|. This proves the the desired result:

Theorem 9.8.6.LetW(r1) andW(r») be the the closures in’Xof the basins of attraction
of the roots § = (0,0) and r, = (0,1) under the Newton Map N. Thern I(I\N(rl)) and

Hq (W(rz)) are infinitely generated.

Recall also:

Corollary 9.8.7. For parameter values B Q,, we can replacaV(r1) and W(rz) with
W(r1) and W(r») finding that H(W(r1)) and H (W(r»)) are also infinitely generated.

9.9 Linking with currents in X

Much of the work in the previous few sections was to overcongefaict thatH,(X™) is
infinitely generated in order to develop well-defined linkimumbers. In contragtl>(X;) =
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z\Pl} so it is relatively easy to find elements iz, (X; ).
However, one can also just mimic the work in the previousisestforX;. If we define
Az andA4 in a similar way as\1 andA, were defined, then:

Proposition 9.9.1. Suppose thay; is a curve in a vertical line bounded by a simply con-
nected domain J Then:

IK(Yi,Ag —A3) = sizgU;)

If W4 intersects the critical value loc@® thenWg divides vertical lines inX; to arbi-
trarily many simply connected domains, and hence to donadiasbitrarily small size. As
in X, these linking numbers descend to the homoldigi;) showing:

Proposition 9.9.2. If Wy intersects the critical value locus(€y) = v + Bxy+ BTZXZ —
%zx—y: 0, then H (W) is infinitely generated.

Since there is only one generatorkdf(X;), without going to odd and even parts, this
directly gives:

Theorem 9.9.3.1f W, intersects the critical value locus(& y) = y? + Bxy-+ %zxz — %zx—
y=0,then H <W(r3)> and H <W(r4)> are infinitely generated.

whereW(r3) andW(r4) are the closures iK; of the basins of attraction of roots = (1,0)
andrs = (1,1— B) underN.

Corollary 9.9.4. For parameter values B Q;, we can replacéV(r1) and W(rz) with
W(r1) and W(r») finding that H(W(r1)) and H (W(r»)) are also infinitely generated.

This is the last part of the “Main Theorem” from Chapter 4 tivat needed to provel]
Theorem 4.4.1.



Appendix A
The extension ofN: to CP?

Many of the methods used in [35] and some of the details fromp@r 1 of this disser-
tation rely upon extendindjlr to P2, the complex projective plane. This is easy to do in
either normalization, here we extend in Normalization 2.&t (X,Y,Z) be homogeneous
coordinates oi??. The extension must satisfy the following fBr= 1

2 2 _ 2 2 _ _
NEOGY.1) = 2Y X2 +Y2 - 2aY b,2XY +X2-2Xb a,
AXY —1 aXY -1
(2Y X2 +Y? —2aY — b, 2XY? + X2 - 2Xb—a,1(4XY - 1))

which we can write in homogeneous coordinates as:

NF (Xva Z) =
(2Y X2 4+Y2Z — 2aY 22 — bZ3,2XY? + X?Z — 2X 7% — aZ3 4XY 2— Z°)

where the subscripts indicate the first and second coostindb check that an extension
makes sense, one must see that this defines a continuous tineptwo other coordinate
charts(1,y,z) and (x,1,z) on P2. We divide by the first coordinate and by the second
coordinate respectively to find how the mapping 2.8 is defingdese coordinates:

2XY2 4+ X27 - 2X7%b—aZ? axyz-z8
T2YX2+Y2Z—2aYZ2 —bZ8 Y X2 +Y2Z —2aY 2 —bZ3

(e
2(%)- (%) () -2(%) (3)-0(3) 2(%)- (%)

Therefore, in they,z) coordinates, we have:

NF<y> 1 <2y2+z—222b—az3)

Z )~ 2y+y2z—2ayZ—bA 4yz— 2%,

Similar work can be done to exprdsg in the coordinate$x, z), wherex = é andz= %
obtaining

N <x>_ 1 2% +z—2aZ —bZ
F\z) ™ x5 x2z—2x2b—ad dxz— 73 '
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Appendix B
Proof of Theorem 5.1.1

Let SC Q be the set of parameter valuBsfor which no inverse image of the point of
indeterminacyp or the point of indeterminacy is in the critical value locu€. Recall that
we are especially interested Bic S because for these parameter values the sequence of
blow-ups described in section 5.1 is especially easy toridesc

Theorem 5.1.1 states:

Theorem. The set S is generic in the sense of Baire’s Theorem, i.e.untable and dense
in Q.

This will follow as a corollary to:

Theorem. (Baire) Let X be either a complete metric space, or a locally comptaetsdorf
space. Then, the intersection of any countable family oéelepen sets in X is dense.

See Bredon [9], Theorem 17.1 and Corollary 17.3, for exaniptea proof.
Proof of Theorem 5.1.1:

Let S, C C be the subset of parameter valuggor which none of then-th inverse
images ofp or g underN are in the critical value locus.

Lemma B.0.5. S, is a dense open set it

Proof: Let R, be the set oB for which ann-th inverse image op is in C and letT, be the
set of B for which ann-th inverse image ofj in C. We will show thatR, andT, are finite,
showing thats, = Q — (R,UT,) is a dense open set.

Lemma B.0.6. For each n, F is a finite set.
Proof: In terms of equation® € Ty if:

B2 B2 1 -B

1
—_— 2—— —V = n = — n =
Y +Bxy+ X ——x—y=0,  N{(xy)=5"5,  Nj(x)

has a solution. Here, as in other parts of this palrandN5 denote the first and second
coordinates of\". By clearing the denominators in the second and third egusticon-
dition B.1 can be expressed as the common zeros of 3 polyt®Ri,y, B), Px(x,y,B),
andPs(x,y, B) in the three variables,y, andB. We will check that there are only finitely
many solutions to these three polynomials. It is sufficierditeck that there is no common
divisor of Py(x,y,B), P2(x,y, B), andPs(x,y, B).

First, notice thaPy(x,y,B) = y? 4+ Bxy+ BTZXZ — BTZX— y = 0 is irreducible. There are
many ways to see this, we used the computer algebra systethe M8}

HenceP; has a factor in common witR, or Ps if and only if P; dividesP, or P;s. We
will show that this is impossible by examining the lowest iegterms o, andPs. If Py
dividesP, or Ps, then the lowest degree termy, of P, must divide the lowest degree term
of P, or the lowest degree term 8%.
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Let's check by induction that the lowest degree terrRaf +1 for everyn. To simplify
notation, letan(X,y, B) be the polynomial obtained by clearing the denominatons filoe
second equation in Equation B.1, specifically for thh iterate ofN. (l.e. a, is P> for this
specificn.)

By clearing denominators df; (X,y) = ﬁ, we finday(x,y,B) = x3(2—B) — 1(2x —
1) = 2x> — BX2 — 2x+ 1, soay(x, Y, B) has constant term1. Now suppose that,(x,y, B)
has constant terat1. By definition,a,1(X,Y, B) is obtained by clearing the denominators
of an(N1(X,y),N2(X,y),B) = 0. Because the denominators of b&f(x,y) and Na(x,y)
have constant terat1 and becausa(x,y, B) has constant term 1 we find thegf.1(X,y, B)
has constant termt 1.

So, P, has constant ternt1 for everyn, henceP; cannot divideP,, and we conclude
that there are no common factors betw&gmandP..

A nearly identical proof by induction shows that lowest degterm ofP; is also+1
for eachn. HenceP; does not dividd?;, and we conclude thd andPs have no common
divisors.

To see thaP, andPs have no common divisors, notice thia(x,y,B) = 0 is an equation
for many disjoint vertical lines, whil®;(x,y,B) = O stipulates that the-th image of this
locus has constant= 0. Since vertical lines are mapped to vertical lined\yyP, andP;
can have no common factors.

Hence,P1, P, and P; are algebraically independent, so they have a finite number o
common zeros, giving thdy, is a finite set[J Lemma B.0.6.

Lemma B.0.7. R, is a finite set.

Proof: Now we show thaR,, the set oB so that am-th inverse image op underN is in
C, is finite. In terms of equation®, is the set oB so that:

Bz 2 Bz n 1 n
y2 + Bxy-+ ZX —Zx—y:O, Ni(X,y) = B’ Ny (x,y) =0 (B.2)
has a solution. Le®1, Q2, andQ3 be the polynomials equations resulting from clearing the
denominators in Equation B.2.

The proof is the same as fap except that a different proof is needed to see (at
does not divid&)s. An adaptation of the proof th& does not dividd>; fails because the
lowest degree term d3; has positive degree yn We will check thatQ; does not divide
Q3 and leave the remainder of the proof to the reader.

Thex-axis,y = 0, is one of the invariant lines & and it intersects the basig(r1),
W(r3) and the separator Re = 1/2. Therefore it is disjoint from the two basiMg(rz)
andW(r4). By definition, Qz(X,y,B) is the equation for the-the inverse image of the
axis. So, for a givem, the locusQz(x,y,B) = 0 is also disjoint from the two basivg(r;)
andW(rg).

For everyB, the critical value parabol@ goes through the four roots, ro, r3, andryg,
so it intersects all four basins of attraction. By definitiGnis the zero locu€(x,y,B) =
0. Therefore, ifQq divides Qs, there is a component of the zero lodQs(x,y,B) = 0
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intersecting all four basing/(r1), W(r2), W(rz) andW(r4) for everyB. This is impossible,
s0Q; cannot divideQs.
JLemma B.0.7.

Becausdr, U Ty is finite S, = Q — (R,UTy) is an open-dense set.
J Lemma B.0.5.

Since$, is a dense open set {afor eachn andS= N;_yS,, so it follows from Baire’s
Theorem thaBis uncountable and dense in the parameter s@ace
[0 Theorem 5.1.1.



Appendix C

Blow-ups of complex surfaces at a point.

Blow-ups are explained in [24, pp. 182-189 and 473-478] artié introduction of [30],
where some nice examples are computed. In this dissertat@will only need blow-ups
of complex surfaceM at individual points.

C.1 Blowing up C? at a point

The first situation in which one considers doing blow-upisniake a rational mapping
R: C? — C? well defined at a point of indeterminacy. Suppose fats(0,0) as a point
of indeterminacy. One can try to exteRdo the blow up ofC? at (0, 0):

Cho = {(z1) eC®xP': zel} (C.1)

where we consideP! to be the space of directions @?.
The same definition, but a slightly different perspectivepbtained by considering

@(2070) C C? x P! as the hypersurface defined by the equations
znlo=2l1 1=zl
wherez = (z1,2) are Euclidean coordinates ¥ and| = [I1,12] are the corresponding

homogeneous coordinatesBh

There is a natural projectiop : C%O,O) — C2 given byp(z 1) =z The setEq) =
p~1((0,0)) is referred to as thexceptional divisor.

A standard check shows that the blow-up is independent afltbese of coordinates,
so the blow-up of a complex surfadéat a pointzis well-defined.

A rational mapR: C? — C? can be lifted to a new rational mappifRg (C%O,O) —E00 —

C? be definingR(x,1) = R(x) for x # 0. The exceptional divisdE o g) is a closed subset of

@(20 0) of real-codimension 2, so one can try to ext&oly continuity. If the indeterminacy

in R at (0,0) was reasonably tam®& extends to all 0E o) by continuity. This happens,
when the definition oRat (0, 0) depends only on the direction of approache(®). Oth-

erwise, there will be points of indeterminacy®bn E(0,0) at whichR cannot be extended,
and one can try further blow-ups at these points to resolesetimew points of indetermi-
nacy. The extension d® to E(0,0) is analytic except at any new points of indeterminacy
becausé g ) is a space of complex co-dimension 1.

C.2 Examples:

The quickest way to understand blow-ups is to do a few. Ingb@ion we work through
some of these easiest cases.
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Example 1. R(x,y) = (1, i—‘,)

The second coordinate & is indeterminate at0,0), so we blow up there. It is often
easiest to do computations in local coordinates. Suppoggare the standard coordinates
onC?. There are two coordinate charts @ﬁm) given by(x,m) — (x,xm m) and given by
(My) — (MyY, ). N

In the first chart, we hav&®(x,m) = R(x,xm) = (1, %) for x# 0. Clearly, we can
extend tox = 0 by continuity, defining?{(o, m) = (1,%1). In the second chart, we have
R(m,y) = R(ymy) = <1, m) for y # 0. Clearly, we can extend tp= 0 by continuity,
definingR(m,0) = (1L,m).

Therefor, the extensioR : C%O,O) — 2 mapsE g g isomorphically to the linex= 1.

Example 2. R(x,y) = <1+ : ;-‘,) .

This time, both coordinates &t are indeterminate &0,0). ComputingR in both local
coordinates, we find:

o R(x,m) = R(x,xm) = (14X X) for x 0, which extends by continuity to

R X
R(O,m) = (1+m,1).

e R(my) =R(myy) = <1+ mly, %’) for x £ 0, which extends by continuity to
R(M0) = (1+ 1 m).

So, this timeR: @%o o) — C? mapsE g to the curvex= 1+ 3 by isomorphism.

Example 3. R(x,y) = (2x+ Y2+ 1,2y +1).

This mappingR has no points of indeterminacy @, but we can still do a blow-up at
(0,0) to see what happens.

e R(x, m) = R(x,xm) = (2x+ (xm)24-1, 2xm+ 1) for x # 0, which extends by continu-
ity to R(0O,m) = (1,1).

. ﬁ(ry,y) = R(myy) = (2my+y?+ 1,2y + 1) for y # 0, which extends by continuity
to R(m,0) = (1,1).

BecauseR does not have a point of indeterminady0) R collapsesE g ) to the point
R((0,0)) = (1,1).
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Example 4.

Suppose that we have already blowndip at (1,1) obtaining@(zm) and the extension
Ri:C? ) — C2of R(x,y) = (2x+Y?+1,2y+1).

We can also instead think & as a map fron@flyl) to @(21.1)’ but each of the points
mapped byR to (1,1) becomes a point of indeterminacy. In this case the only swer
image |s(0 0). To resolve the indeterminacy é@,0) we can blow up again obtaining a
mapRy : C(l 1,000 — C(l 1) in the following way:

In a neighborhood of0, 0) we can use the original coordinatesy) from C? as if they
are now coordinates @%171).

o Ry(X,m) = Ry(X,xm) = (2x+ (xm)2 +1,2xm+-1, 2X+2)(::nm)2> for x 0, which extends
by continuity toR(0,m) = (1,1,1).

o Ro(my) = Ri(myy) = <2my+y +1,2y+1, 2 ) for y + 0, which extends by
continuity toRx(m,0) = (1,1, m).

where the third coordinate is expressed in both extensiotieisame chart o3 1) = PL.
Hence, because we had already blown ufiat) we now have thaR mapskE g g) to E(1 1)
by an isomorphism.

Example 5.
For this final example, suppose thRik,y) = (x*+1,y*+x*+ 1) and suppose again that we
have already blown-up &1, 1) obtainingR; : C(zm) — C? extendingR(x,y) = (X2 +1,x° +

y?+1). If we then decide to blow-up 46,0) we can obtain amaR; : C? ;) oo — C2 4
in the following way:

In a neighborhood of0, 0) we can use the original coordinatesy) from C? asif they
are now coordinates 0@%1 1)

o Ro(x,m) = Ry(x,xm) = <x2+ L3+ (xm)? 4+ 1, 5 s ( 7 ) for x # 0, which extends
by continuity toRz(0, m) = <1 1, 1+rr12>

e Ry(my) =Ri(myy) = ((my) +1,(my2+y?>+1, (()72””2> for y # 0, which ex-

tends by continuity t&;(m,0) = (1, 1, H%)

where the third coordinate is expressed in both extensiotieisame chart o3 1) = Pl

Hence, because we had already blown ufdat) we now have thaR, mapsE g o) to E1 1)

: 1
the degree 2 rational mam — e
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C.3 Effect of blow-ups on homology

When we did a blow-up at @ C?, we obtained@%oo) = {(x,1) € C2x PY|jx eI} which

may be familiar to the reader, it is the “canonical line beridiver PL. In any case, it
is easy to check thdf%o 0) has the homotopy type of the exceptional divi8dr Hence,

Ho (@%070» = 7{[Eool} while the other homology groups @%070) are trivial, the same as

those ofC2. (Here, and elsewhet®!N} will meanthe moduleZ that is generated by the
fundamental clasgN].)
This follows from the general fact:

Proposition C.3.1.1f M is a complex surface and x is any point in M, then the blqyivy
has the following homology:

o Ho(My) = Hy(M) & ZiEN}

e Hi(My) = Hi(M) fori # 2

Proof: This is simply a matter of doing a Mayer-Vietoris computatand using a knowl-

edge of the homology df(zop).

Let @: C? — M be some chart witkp(0) = x. If B¢ is the open unit ball of radiusin
C? centered at 0, ld) = @(B2) and letV =M — @(B¢). Then,U UV = M, andU NV has
the homotopy type 2.

If we blow upU at@(0), obtainingU, we have thatl UV = My andU NV still has the
homotopy type ofs®. Using thatJ has trivial homology, except in dimensions 0 and 2, the
Mayer-Vietoris exact sequence gives:

0 — Ha(V) — Ha(My) — Z — H3(V) — Hz(My) — 0 — Z{B} g Hy(V) — Ho(My) —

0—Hi(V) - Hi(My) = Z — Z&®Ho(V) — Ho(My) — O

We easily obtain thatly(My) = Ha(V) @ Z{IED = Hy(M) @ Z{UED | using thatHa (V) =
H2(M) sinceV has the homotopy type &l with a single point removed. Checking that
0: Ha(Mx) — H3(UNV) = Z is surjective, we see that (My) = H;i(M) fori # 2. O

Although we will not prove it here, it is a general fact that¢ iundamental clasi&;|
has self-intersection numberl. If further blow-ups are made, each time a pointns
blown up, the self intersection numbé&;] - [E;] decreases by 1. (See [24], for proof.)

C.4 Repeated blow-ups

The following propositions help to clarify the sequence lofzups from Section 5.1. One
might think of this sequence of blow-ups as a very difficulbgess but the blow-ups at
inverse images of the points of indetermingcgndq are relatively easy to compute. The
blow up at one of these inverse images will depend on wh&NEs non-singular, singular
but non-zero, or zero. (The case wh& = 0 never occurs in the sequence of blow-ups,
but it does occur when we blow-up one at one of the roo}s
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Proposition C.4.1. Suppose M is a complex surface that has already been blown zip a
and suppose RM; — M is a rational map. If Rw) = z and DRw) is non-singular, then R
extends to a rational maR : Mz, — M; mapping E, to E; via an isomorphism.

As in the last two examples, we considrM, — M, and every inverse image pbecomes
a point of indeterminacy dr. (In particularw is a point of indeterminacy dr.)

Proof: Suppose that = (z;,2,) and let(xy,x2) be a system of coordinates centereavat
SinceR(w) = zandDR(w) is non-singularR has a Taylor series expansion centered:at

R()=(2)+ [ 3R 2R Ce)+ (29

whereS; (X1, X2) andSy(xg, Xo) are of d~egree 2 and higherxa andx,.
We compute the extension Bfto M,y in the chart(x;, m) — (xg, mx,, m):

21+ 0y, Rixa + 0, Rimx + Sy(x1, mx)

R ( X1 ) _ | 22+ 0, RoX1 + Ox,Romx + Sp(x1,mx)
0x1 Ry X1 +0%2Rymx +S; (X1,mxq )
0x1RoX1 +0x%2Romxq +S (X1,mxq )

for x; # 0. If DRis non-singular, we can factor oxit from the numerator and denominator
of the third component. Then, the mapping fr&qnto E; is given by the third coordinate,
with x; = 0:

axl Rl + OXZ le
Ox, Ro+0x,Rom

which is a non-degenerate linear-fractional transforamtinceDRis non-singular. Hence
it is an isomorphism fronk, to E;. (To be entirely precise, one must also check the
extension in the other chafin, x2) — (mx, X2, M) to be sure that the map extendHgpat
the one point not covered in this chart. We leave this for dagler.)
O

Proposition C.4.2. Suppose M is a complex surface,®, — M is a rational map, Rw) =
z and that DRw) is singular but non-zero. Letbe the slope in & corresponding to the
kernel of DRw).

Then:

e R extends to a rational maR: I\ﬁLW — Mz mapping all of i, — my to a single point
on E. The point m becomes a point of indeterminacyrf

e If the secong derivative R is non-singular, a further blow-up atyallows for an
extension oR to B, mapping E, isomorphically to E.

Proof: Suppose that = (z;,2,) and let(xy,x2) be a system of coordinates centereavat

We will compute the blow-up in the char{g;, m) — (x1,mx, m) as we did in the proof

of Proposition C.4.1. (We assume tlig{R, or dx,Ry is non-zero, otherwise a similar
computation would have to be done in the other cf@ty) — (mx, x2, m).)



87
We can then factax; from the numerator and denominator and then, the mapping fro
Ew to E; is given by the third coordinate, with = 0, that is:

s axl R]_ + aX2 le
axl R2 + aXZ Rzm

SinceDR is singular, the numerator is a multiple, of the denominator, hend® maps
everym € Ey to A € E; except formy, the point inE,, corresponding to the kernel of
DN(w), which is a point of indeterminacy.

Blowing up atmy we compute the extension &fin a neighborhood oEm,. For this
proof, we assume that is in the image of the coordinate chéxi, m) — (X1, mx, m) that
we used to compute the extensiondg. (Otherwise, another chart will do.) We use the
chart(xg,n) — (X, Nxg + My, N) — (X1, X1(NXg + M), Nxg +me n) = (X, nxf + X1 My, NX1 +
Mg, n) in a neighborhood o, . In this extension, we find

01 Ry X1 + 0%2Ry1 (ME + XMy + Sy (X, X + X1 M)
0X1RoX1 + 0%2Ro (M + X1 M) + Sp(Xa, NXE + Xq M)

The extension t&n, is given by in the limit a; — 0. We find:

| OxRiNX +3¢S1(1,my) _ 9xRin+Sy(1,my)
x1—0 aXZRan% -i-X%Sz(l, my)  0xRon+S(1,my)

which is non-constant so long as eitl8g(1, my) # 0 or (1, my) # 0. Therefore it provides
an isomorphism fronkey, — E;. [

Proposition C.4.3. Suppose M is a complex surface and supposElR— M is a rational
map. If Rw) =z, DRw) = 0, and DR is non-singular, then R extends to a rational map
R:Mzw — Mz mapping E to E; via rational map of degreg.

Proof:
Suppose that= (z1,2,) and let(x1,x2) be a system of coordinates centered/aR has
a Taylor series expansion of the form

X1\ _(=a Si(X1,%2) T1(X1,X2)
R(3e )=(2 >+< S(x1. %) ) * < Ta(x1.%2)
whereS; (x1,x2) andSy(x1, x2) are of degree 2 iry andxz andTy(x1,X2) andTa(X1,X2) are

of degree 3 and higher iy andxo. N
We compute the extension Bfto M,y in the chart(x;, m) — (xg, mx,, m):

1+ S]_(X]_, mX1> + T(X]_, mX1>

ﬁ( X1 ) — | 22+S(X1,mx) + T2(X1, Mx)
m S;|_(X1,mX1)+T1(X17mX1)
Sp(X1,Mx ) +T2 (X1, M)
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for x; # 0. To understand the extensiondg, we must extend tg; = 0. As usual, the only
difficulty is in the third coordinate:

Si(Xe, mxq) + T (Xg, mxq)
S (X1, mxq) + To(X1,mxq))

To extend this toi; = 0 we factor ouixf from the numerator and denominator, obtain-
ing:

S1(1,m) + Ta(xa, mxy) /X2
S (1, m) + To(xa, M) /X2

Su(Lm)

this extends ton — S

non-degeneraté.]

, Which is a non-degenerate rational map of degree 2, Sice
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