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École doctorale Mathématiques et Informatique de Marseille - E.D. no 184

présentée et soutenue publiquement par

Roland Karl Walter ROEDER

le 21 Mai, 2004

Titre:
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Résumé

E. M. Andreev a publié en 1970 une classification des polyèdres hyperboliques
compacts de dimension trois dont les angles dièdres sont non-obtus [3]. Etant
donné une description combinatoire d’un polyèdre C, le Théorème d’Andreev dit
que les angles dièdres possibles sont exactement décrits par cinq classes d’inégalités
linéaires. Le Théorème d’Andreev démontre également que le polyèdre résultant
est alors unique à isométrie hyperbolique près.

D’une part, le Théorème de Andreev est évidemment un énoncé intéressant
de la géométrie de l’espace hyperbolique en dimension 3; d’autre part c’est un
outil essentiel dans la preuve du Théorème d’Hyperbolization de Thurston pour
les variétés Haken de dimension 3. Il est d’ailleurs remarquable à quel point la
démonstration d’Andreev rappelle (en plus simple) la démonstration de Thurston.

La démonstration d’Andreev contient une erreur importante. Nous corrigeons
ici cette erreur et nous fournissons aussi une nouvelle preuve lisible des autres
parties de la preuve, car le papier d’Andreev a la réputation d’être “illisible”.
Nous fournissons aussi une classification des tétraèdres hyperboliques; c’est un cas
particulier qui n’est pas couvert par le Théorème d’Andreev, et effectivement le
résultat est assez différent, car dans ce cas l’ensemble des angles dièdres possibles
n’est pas convexe, même dans le cas où ces angles sont non-obtus.

Discipline: Géométrie

MOTS CLES: géométry hyperbolique, polyèdre hyperbolique, groups Kleiniens.

Andreev’s Classification of Hyperbolic Polyhedra

Abstract

In 1970, E. M. Andreev published a classification of all three dimensional com-
pact hyperbolic polyhedra having non-obtuse dihedral angles [3]. Given a combi-
natorial description of a polyhedron, C, Andreev’s Theorem provides five classes
of linear inequalities, depending on C, for the dihedral angles, which are necessary
and sufficient conditions for the existence of a hyperbolic polyhedron realizing C
with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting
polyhedron is unique, up to hyperbolic isometry.

Andreev’s Theorem is both an interesting statement about the geometry of
hyperbolic 3 dimensional space, as well as a fundamental tool used in the proof
for Thurston’s Hyperbolization Theorem for 3 dimensional Haken manifolds. It
is also remarkable to what level the proof of Andreev’s Theorem resembles (in a
simpler way) the proof of Thurston.
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We correct a fundamental error in Andreev’s proof of existence and also provide
a readable new proof of the other parts of the proof of Andreev’s Theorem, because
Andreev’s paper has the reputation of being “unreadable”. We also provide a
classification of hyperbolic tetrahedra which is a special case that is not covered
by Andreev’s Theorem, and effectively a different manner of result, because in this
case the set of possible dihedral angles is non-convex, even in the case where these
angles are non-obtuse.

Disciplin: Mathématiques

KEY WORDS: hyperbolic geometry, hyperbolic polyhedra, Klienian groups.

Laboratoire d’Analyse, Topologie, Probabilités
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Centre de Mathématiques et Informatique
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1 Statement of Andreev’s Theorem

Andreev’s Theorem provides a complete characterization of compact hyperbolic
polyhedra having non-obtuse dihedral angles. This classification is essential for
proving Thurston’s Hyperbolization theorem for Haken 3-manifolds and is also a
particularly beautiful and interesting result in its own right. Complete and detailed
proofs of Thurston’s Hyperbolization for Haken 3-manifolds are available written
in English by Jean-Pierre Otal [7] and in French by Michel Boileau [4].

In this paper, we prove Andreev’s Theorem based on the main ideas from his
original proof [3]. However, there is an error in Andreev’s proof of existence. We
explain this error in Section 6 and provide a correction. Although the other parts
of the proof are proven in much the same way as Andreev proved them, we have
re-proven them and re-written them to verify them as well as to make the overall
proof of Andreev’s Theorem clearer. Andreev’s original proof has a reputation for
being difficult to follow. We also include a classification of hyperbolic tetrahedra in
the last section because their classification is not provided by Andreev’s Theorem.

The reader may also wish to consider the three other similar results of Rivin
and Hodgeson [8, 5], Thurston [9], and Marden and Rodin [6]. In [8], the authors
prove a more general statement than Andreev’s Theorem and in [5] Hodgeson
deduces Andreev’s Theorem as a consequence of their previous work. The proof in
[8] is similar to the one presented here, except that the conditions classifying the
polyhedra are written in terms of measurements in the De Sitter space, the space
dual to the hyperboloid model of hyperbolic space. Although a beautiful result,
the main drawback of this proof is that the last sections of the paper, which are
necessary for their proof that such polyhedra exist, are particularly hard to follow.

The works of Marden and Rodin [6] and Thurston [9] consider configurations of
circles with assigned overlap angles on the sphere and on surfaces of genus g with
g > 0. Such a configuration of overlapping circles in the sphere corresponds directly
to a configuration of hyperbolic planes in the conformal ball model of hyperbolic
space. Thus, there is a direct connection between circle patters and hyperbolic
polyhedra. The proof of Thurston [9] provides a classification of configurations
of circles on surfaces of genus g > 0. The proof of Marden and Rodin [6] is an
adaptation for the sphere of Thurston’s circle packing approach and results in a
theorem similar to Andreev’s Theorem, but which is phrased entirely in terms
of configurations of circles. Although Thurston’s proof allows for arbitrary non-
obtuse overlap angles between adjacent circles, the proof of Marden and Rodin
limits certain angle sums, so that the patterns of overlapping circles derived cannot
correspond to compact, hyperbolic polyhedra, the items classified by Andreev’s
Theorem.

We begin by defining hyperbolic 3-space and hyperbolic polyhedra. Then we
will discuss the combinatorial properties of hyperbolic polyhedra and state An-
dreev’s theorem.
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The hyperboloid model of hyperbolic space

There are many models of hyperbolic n-dimensional space Hn, each of which is
isometrically isomorphic to the others. We define the hyperboloid model of hy-
perbolic n-dimensional space as the component of the subset of R

n+1 given by the
equation:

−x2
0 + (x2

1 + x2
2 + · · · + x2

n) = −1

having x0 > 0, with the Riemannian metric induced by the indefinite metric

−dx2
0 + dx2

1 + dx2
2 + · · ·+ dx2

n.

We will denote the hyperboloid model of Hn by Hn
H .

Calculations in R
n with the indefinite metric −x2

0 + (x2
1 + x2

2 + · · · + x2
n) will

often be necessary, so we denote this space by En,1. The majority of calculations
in the hyperboloid model are actually done in En,1.

Hyperbolic k-dimensional subspaces of Hn
H are defined to be the intersections

V ∩ Hn
H , where V is a (k + 1)-dimensional vector subspace of En,1 that intersects

Hn
H . Notice that a k-dimensional subspace of Hn

H is canonically isomorphic to Hk
H .

Hyperbolic one and two dimensional subspaces will be referred to as hyperbolic
lines and planes.

Hyperbolic space H
n
H can clearly be compactified by adding the set of rays to the

lightcone C, which themselves clearly form a topological space ∂Hn
H homeomorphic

to the sphere Sn−1. We will refer to points in ∂Hn
H as points at infinity and refer

to the compactification as Hn
H .

Throughout this paper we will be primarily interested in three dimensional
hyperbolic space because will study 3-dimensional hyperbolic polyhedra.

One can check that the hyper-plane orthogonal to a vector v ∈ E3,1 intersects
H3

H if and only if 〈v,v〉 > 0. Let v ∈ E3,1 be a vector with 〈v,v〉 > 0, and define

Pv = {w ∈ H
3
H |〈w,v〉 = 0}

to by the hyperbolic plane orthogonal to v; and the corresponding closed half
space:

H+
v = {w ∈ H

3
H |〈w,v〉 ≥ 0}.

Notice that given two planes Pv and Pw in H3
H with 〈v,v〉 = 1 and 〈w,w〉 = 1,

they:

• intersect in a line if and only if 〈v,w〉2 < 1, in which case their dihedral
angle is arccos(−〈v,w〉).

• intersect in a single point at infinity if and only if 〈v,w〉2 = 1, in this case
their dihedral angle is 0.
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A hyperbolic polyhedron is an intersection

P =
n

⋂

i=0

H+
vi

having non-empty interior.
Although the hyperboloid model of hyperbolic space is very natural, it is not

easy to visualize, since the ambient space is four dimensional. At least three other
models of hyperbolic space are in common use: the Klein model, the conformal ball
model, and the upper half-space model. Each of these models has its own merits
and its own weaknesses. A given theorem or calculation may be difficult in one
model, while obvious in a different model. Within this paper, we will only use the
hyperboloid model, the conformal ball model, and the upper half-space model.

The conformal ball model of hyperbolic space

Let Bn by the n-dimensional ball given by x2
1 + · · ·+ x2

n < 1 in the plane x0 = 0 of
En,1. Let π : Hn

H → Bn be the linear projection from Hn
H to Bn through the point

(−1, 0, · · · , 0). This is shown for the case n = 2 in the diagram below.

−e0

p

π(p)

We define the conformal ball model to be the space Bn with the pull back
metric induced by π−1 from the hyperboloid model. We denote the conformal ball
model by H

n
C . One can check that resulting metric is:

4(dx2
1 + · · ·+ dx2

n)

(1 − (x2
1 + · · ·+ x2

n))2

and hence differs from the Euclidean metric on B by a conformal factor.
Within H3

C , hyperbolic planes correspond to Euclidean hemispheres and Eu-
clidean planes in B3 that meet ∂B3 perpendicularly and hyperbolic lines corre-
spond to Euclidean semi-circles and Euclidean lines that intersect ∂B3 perpendic-
ularly. Given an oriented hyperbolic plane P , the half-space defined by P consists
of all of the points in B3 on the side of W consistent with the orientation of W .
Points at infinity in H3

C correspond to points in the unit sphere ∂B3.
See below for an image of a hyperbolic polyhedron depicted in the conformal

ball model. The sphere at infinity is shown for reference.
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This hyperbolic polyhedron was displayed in the excellent computer program Ge-
omview [2].

The upper half-space model of hyperbolic space

The model of hyperbolic space most commonly used and, perhaps the most intu-
itively immediate is the half-space model. However, this model is more difficult
to relate to Hn

H than the previous models. Consider the differentiable mapping
i : Dn → R

n given by:

x 7→ 2
x + en

‖x + en‖2
− en

where en = (0, · · · , 0, 1) and ‖.‖ denotes the Euclidean norm in Rn. One can easily
check that i is a diffeomorphism from Bn to the set H = {x ∈ Rn|xn > 0}. The
half space model consists of the set H with the pullback metric induced by i−1

from H3
C . We will denote the upper half-space model by Hn

U . One can check that
metric on Hn

U is given by:

dx2
1 + · · ·+ dx2

n

x2
n

.

Hence the metric from this model differs from the Euclidean metric by a conformal
factor as well.

Within H3
U , hyperbolic planes are Euclidean hemispheres and Euclidean planes

that intersect the plane x3 = 0 perpendicularly. Hyperbolic lines consist of Eu-
clidean semi-circles and Euclidean lines that intersect the plane x3 = 0 perpendic-
ularly. Given an oriented hyperbolic plane P in H3

U , the corresponding half-space
is defined in the analogous way. Points at infinity in H

3
U correspond to points in
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the plane x3 = 0 and one additional point which we will label ∞ corresponding to
the one point compactification of this plane.

We will use the upper half-space model extensively because the positions of
planes in H

3 are uniquely defined by the positions of Euclidean lines and Euclidean
circles in the plane x3 = 0. The dihedral angle between a pair of intersecting planes
corresponds exactly to the Euclidean angle between the pair of intersecting lines
and circles in the plane x3 = 0.

Throughout this paper we will often just refer to hyperbolic 3-space, H3, and
only refer to a specific model of hyperbolic space when it is necessary.

Combinatorial properties of hyperbolic polyhedra
and Andreev’s Theorem

Some elementary combinatorial facts about hyperbolic polyhedra are essential be-
fore we can state Andreev’s Theorem. Notice that a compact hyperbolic poly-
hedron P is topologically a 3-dimensional ball, and its boundary a 2-sphere S2.
The face structure of P gives S2 the structure of a cell complex C whose faces
correspond to the faces of P , and so forth.

Considering only hyperbolic polyhedra with non-obtuse dihedral angles simpli-
fies the combinatorics of any such C:

Proposition 1.1 (a) A finite vertex of a non-obtuse hyperbolic polyhedron P is
the intersection of exactly 3 faces.
(b) For such a P , we can compute the angles of the faces in terms of the dihedral
angles; these angles are also ≤ π/2.

Proof. Let v be a finite vertex where n faces of P meet. After an appropriate
isometry, we can assume that v is the origin in the hyperbolic ball model, so that
the faces at v are subsets of Euclidean planes through the origin. A small sphere
centered at the origin will intersect P in a spherical n-gon Q whose angles are
the dihedral angles between faces. Call these angles α1, ..., αn. The Gauss-Bonnet
formula gives α1 + · · · + αn = π(n − 2) + Area(Q). The restriction to αi ≤ π/2
for all i gives nπ/2 ≥ π(n − 2) + Area(Q). Hence, nπ/2 < 2π. We conclude that
n = 3.

The edge lengths of Q are precisely the angles in the faces at the origin. Sup-
posing that Q has angles (αi, αj , αk) and edge lengths (βi, βj, βk) with the edge
βl opposite of angle αl for each l, The Law of Cosines in spherical geometry gives
that:

cos(βi) =
cos(αi) + cos(αj) cos(αk)

sin(αj) sin(αk)
. (1)

Hence, the face angles are calculable from the dihedral angles. They are non-
obtuse, since the right hand side of the equation is positive for αi, αj , αk non-obtuse.
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(The reader should notice that this equation will be used heavily throughout this
paper.) �

The fundamental axioms of incidence place the following, obvious, further re-
strictions on the complex C:

• Every edge of C belongs to exactly two faces.

• A non-empty intersection of two faces is either an edge or a vertex.

• Every face contains not fewer than three edges.

We will call any trivalent cell complex C on S2 that satisfies the three conditions
above an abstract polyhedron. Notice that since C must be a trivalent cell complex
on S2, its dual, C∗, has only triangular faces. The three other conditions above
give that the dual complex C∗ is a simplicial complex on S2. (Andreev refers to
this dual complex as the scheme of the polyhedron.) The restriction to classifying
hyperbolic polyhedra with non-obtuse dihedral angles provides a simplification
that is necessary in the proof of Andreev’s Theorem.

We call a simple closed curve Γ formed of k edges of C∗ a k-circuit and if all of
the endpoints of the edges of C intersected by Γ are distinct, we call such a circuit
a prismatic k-circuit.

Theorem 1.2 Andreev’s Theorem

Let C be an abstract polyhedron with more than 4 faces and suppose that non-
obtuse angles αi are given corresponding to each edge ei of C. There is a unique
compact hyperbolic polyhedron P , up to isometries of H3, whose faces realize C
with dihedral angle αi at each edge ei if and only if:

1. For each edge ei, 0 < αi ≤ π/2.

2. Whenever 3 distinct edges ei, ej, ek meet at a vertex, αi + αj + αk > π.

3. Whenever Γ is a prismatic 3-circuit intersecting edges ei, ej, ek, αi+αj+αk <
π.

4. Whenever Γ is a prismatic 4-circuit intersecting edges ei, ej, ek, el, then αi +
αj + αk + αl < 2π.

5. Whenever there is a four sided face bounded by edges e1, e2, e3, e4, enumerated
successively, with edges e12, e23, e34, e41 entering the four vertices (edge eij

connects to the ends of ei and ej), then:

α1 + α3 + α12 + α23 + α34 + α41 < 3π

α2 + α4 + α12 + α23 + α34 + α41 < 3π
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For a given C let E be the number of edges of C. The subset of (0, π/2]E

satisfying these linear inequalities will be called the Andreev Polytope, AC . Since
AC is determined by linear inequalities, it is convex.

It is worth noting that conditions (4) and (5) are only relevant when each of
the angles listed in the inequality is π/2, since all angles are restricted to being
non-obtuse.

Proposition 1.3 If C is not the triangular prism, condition (5) of Andreev’s The-
orem is a consequence of conditions (3) and (4).

Proof: Given a quadrilateral face, if the four edges leading from it form a prismatic
4-circuit, Γ1, as depicted on the left hand side of the figure below, clearly condition
(5) is a result of condition (4). Otherwise, at least one pair of the edges leading
from it meet at a vertex. If only one pair meets at a point, we have the diagram
below in the middle. In this case the curve Γ2 is a prismatic 3-circuit, so that
α3,4 + α4,1 + β < π, so that condition (5) is satisfied because both α3,4 and α4,1

cannot be π/2.

Γ1 e0Γ2

α1,2 α2,3

α4,1 α3,4 α4,1 α3,4

β

Otherwise, if two pairs of the edges leaving the quadrilateral face meet at vertices,
we have the diagram on the right hand side. The only way to complete this diagram
is with the edge labeled e0, resulting in the triangular prism. �

Hence, we need only check condition (5) for the triangular prism, which cor-
responds to the only five faced C. The only C having fewer than five faces is the
tetrahedron, which is dealt with as a special case in a special section at the end.

Given some C, it may be a difficult problem to determine whether AC = ∅
and correspondingly, whether there are any hyperbolic polyhedra realizing C with
non-obtuse dihedral angles. In fact, for the abstract polyhedron in the following
figure, conditions (2) and (3) give respectively that α1 + · · · + α12 > 3π and
α1+· · ·+α12 < 3π. So, for this C, we have AC = ∅. However, for more complicated
C, it can be significantly harder to determine whether AC = ∅.
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α12

α1

α9
α5

α3

α10

α11

α8α7

α6

α2

α4

Luckily, there are special cases:

Corollary 1.4 If there are no prismatic 3-circuits in C, there exists a unique
hyperbolic polyhedron realizing C with dihedral angles 2π/5.

Proof. Since there are no prismatic 3-circuits in C condition (3) of the theorem
is vacuous and clearly αi = 2π/5 satisfy conditions (1), (2), (4), and (5). �

The following two corollaries are essential for Thurston’s hyperbolization The-
orem:

Corollary 1.5 If there are no prismatic 3-circuits and no prismatic 4-circuits in
C, there exists a unique hyperbolic polyhedron realizing C with dihedral angles π/2.

Proof. Conditions (1) and (2) are clearly satisfied setting all of the dihedral
angles to π/2. Since there are no prismatic 3 or 4-circuits, conditions (3) and (4)
are irrelevant. Condition (5) is also irrelevant since it needs only be checked for
the triangular prism, which has a prismatic 3-circuit. �

Corollary 1.6 If C is any (trivalent) abstract polyhedron we can construct a ab-
stract polyhedron C ′ by subdividing the faces of C that can be realized by a polyhe-
dron with all right angles.

Proof.

Here, and many places later in this paper it will be easier to work in the dual
complex C∗, since it is a simplicial complex. We will show how to add edges to
C∗ to eliminate every prismatic 3 or 4 circuit by increasing the number of edges
in each such circuit. The first step is to do a barycentric subdivision on C∗. After
this has been done, there can be no prismatic three circuits and no prismatic four
circuits, other than those surrounding a four valent vertex of C∗. (The barycentric
subdivision process creates many of these!) The figure below shows how pre-
existing prismatic 3 and 4-circuits are eliminated by the barycentric subdivision.
The grey regions denote places where other simplicies could be.
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By the steps that we have already done, the types of remaining prismatic 3 or 4-
circuits are prismatic 4-circuits surrounding a single 4-valent vertex that are created
by the barycentric subdivision, as in the left hand side of the diagram below. As
a result of the barycentric subdivision, none of the four triangles surrounding the
outside of the prismatic 4-circuit can share a side. The right hand side of this
diagram shows how to add more edges (the dashed ones) in a way that eliminates
these prismatic 4-circuits without introducing any new ones.

After doing this last step we have introduced new edges to C∗ to eliminate every
prismatic 3-circuit and every prismatic 4-circuit. The resulting complex, C ′∗, can
therefore be realized with all right angles by Corollary (1.5). �

2 Setup of the Proof.

The proof of Andreev’s Theorem uses a relatively common type of reasoning: you
manufacture two manifolds of the same dimension: one, X, consisting of the ge-
ometric objects that you want to construct, and the other, Y , a subset of Rn

consisting of various angles, lengths, etc. The space X should be viewed as un-
known and the space Y as known.

You then consider the mapping f : X → Y which takes your geometric object,
in X, and reads off its appropriate measurements, in Y . Of course, you need to
show that the image is actually in Y , namely, that the constraints that you put on
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the coordinates of Y (typically something like the triangle inequality for the edges
of a triangle) are indeed satisfied for each geometric object of X.

This map f will always be obviously continuous, and it is not too hard to show
that it is proper and injective, hence a homeomorphism onto its image, which is a
union of connected components of Y . This reduces the problem to showing that
X is nonempty and that Y is connected, which are usually the hardest parts!

Given an abstract polyhedron C, define PC to be the set of compact hyperbolic
polyhedra realizing C up to hyperbolic isometry. Let N , E, and V be the number
of faces, edges, and vertices in C.

Proposition 2.1 The space PC is a manifold of dimension 3N−6 (perhaps empty).

Proof.

Let H be the space of closed half spaces of H3; clearly H is a 3-dimensional
manifold. The set of compact polyhedra with N faces, ON , is an open subset of
the 3N -dimensional manifold HN , and those whose combinatorial structure is a
given abstract polyhedron forms some union of components of ON . Clearly the
automorphisms of H

3 act freely on the subset of HN where all the subspaces are
distinct, as soon as N ≥ 3, hence they act freely on ON . So ON/Aut(H3) is a
manifold, and PC is an open subset of this manifold. This manifold has dimension
3N − 6, since ON has dimension 3N and Aut(H3) has dimension 6. �

In fact, we will restrict to the subset P0
C of polyhedra with dihedral angles

in (0, π/2]. Notice that P0
C is not, a-priori, a manifold or even a manifold with

boundary. All that we will need for the proof of Andreev’s Theorem is that PC is
a manifold and that the subspace P0

C is a metric space.
Using the fact that the edge graph of C is trivalent, one can check that E, the

number of edges of C, is the same as the dimension of PC . Since exactly three
edges enter each vertex and each edge enters exactly two vertices, 2V = 3E. The
Euler characteristic gives N −E +V = N −E +2/3E = 2 implying E = 3(N −2),
the dimension of PC .

Given any P ∈ PC let α(P ) = (α1, α2, α3, ...) be the E-tuple consisting of the
dihedral angles of P at each edge (according to some fixed numbering of the edges
of C). This map α is obviously continuous with respect to the topology on PC ,
which it inherits from its manifold structure.

So, we have α : PC → RE and we will use the general idea of proof presented
in the beginning of this section. The goal is to show that α restricted to P0

C is a
homeomorphism onto AC . This will prove Andreev’s Theorem. Notice that AC is
a convex subset of RE, so AC is connected. Of course we have to first check that
α(P0

C) ⊂ AC .

3 The inequalities are satisfied.

This section begins the proof of Andreev’s Theorem.
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Proposition 3.1 Given P ∈ P0
C, the dihedral angles α(P ) satisfy conditions (1-

5).

We will need the following two lemmas about the basic properties of hyperbolic
geometry.

Lemma 3.2 Suppose that three planes Pv1
, Pv2

, Pv3
intersect pairwise in H

3 with
non-obtuse dihedral angles α, β, and γ. Then, Pv1

, Pv2
, Pv3

intersect at a vertex
in H3 if and only if α + β + γ ≥ π. The planes intersect in H3 if and only if the
inequality is strict.

Proof.

The planes intersect in a point of H3 if and only if the subspace spanned by
v1,v2,v3 is positive semi-definite, so that the orthogonal is a negative semi-definite
line of E1,3. If the inner product on this line is negative, the line defines a point of
intersection with the hyperboloid model. Otherwise, the inner product on the line
is zero, this line corresponds to a point in ∂H3, since the line is then in the cone
to which the hyperboloid is asymptotic. The symmetric matrix defining the inner
product is





1 〈v1,v2〉 〈v1,v3〉
〈v1,v2〉 1 〈v2,v3〉
〈v1,v3〉 〈v2,v3〉 1



 =





1 − cos α − cos β
− cos α 1 − cos γ
− cos β − cos γ 1





where α, β, and γ are the dihedral angles between the pairs of faces (Pv1
, Pv2

),
(Pv1

, Pv3
), and (Pv2

, Pv3
), respectively.

Since the principle minor is positive definite for 0 < α ≤ π/2, it is enough to
find out when the determinant

1 − 2 cos α cos β cos γ − cos2 α − cos2 β − cos2 γ

is non-negative.
A bit of trigonometric trickery (we used complex exponentials) shows that the

expression above can be rewritten

−4 cos

(

α + β + γ

2

)

cos

(

α − β + γ

2

)

cos

(

α + β − γ

2

)

cos

(−α + β + γ

2

)

(2)

Let δ = α + β + γ. When δ < π, (2) is strictly negative, when δ = π, (2) is
clearly zero, and when δ > π (2) is strictly positive. Hence the inner product on
the space spanned by v1,v2,v3 is positive semidefinite if and only if δ ≥ π. It is
positive definite if and only if δ > π.

Then it is easy to see that the three planes Pv1
, Pv2

, Pv3
⊂ H3 intersect at a

point in H3 if and only if they intersect pairwise in H
3 and the sum of the dihedral

angles δ ≥ π. It is also clear that they intersect at a finite point if and only if the
inequality is strict. �
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Lemma 3.3 Let P1, P2, P3 ⊂ H3 be planes carrying faces of a polyhedron P that
has all dihedral angles ≤ π/2.
(a) If P1, P2, P3 intersect at a point in H3, then the point p = P1 ∩ P2 ∩ P3 is a
vertex of P .
(b) If P1, P2, P3 intersect at a point in ∂H3, then P is not compact, and the point
of intersection is in the closure of P .

Proof. (a) Consider what we see in the plane P1. Let H+
i be the half space

bounded by Pi which contains the interior of P , and let Q = P1 ∩ H+
2 ∩ H+

3 . If
p /∈ P , then let U be the component of Q − P that contains p in its closure. This
is a non-convex polygon; let p, p1, ..., pk be its vertices. The exterior angles of U at
p1, ..., pk are the angles of the face of P carried by P1, hence ≤ π/2 by part (b) of
Proposition 1.1. See the following figure:

p1 p2 pkpk−1

P

U

p

Suppose that α1, ...αk are the angles of P at p1, ..., pk, and let α be the angle
at p. Then the Gauss-Bonnet formula tells us that:

(π − α) + α1 − ((π − α2) + · · · + (π − αk−1)) + αk − Area(U) = 2π,

which can be rearranged to read

(α1 + αk − π) − α −
k−1
∑

j=2

(π − αj) = Area(U).

This is clearly a contradiction. All of the terms on the left are non-positive, and
Area(U) > 0.

If p is at infinity (i.e. α = 0), this expression is still a contradiction, proving
part (b). �

Proof of Proposition 3.1.

For condition (1), notice that if two adjacent faces intersect at dihedral angle 0,
they intersect at a point at infinity. If this were the case, P would be non-compact.
In addition, the dihedral angle between adjacent faces is ≤ π/2 by hypothesis.
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For condition (2), let x be a vertex of P . Since P is compact, x ∈ H3 and
by Lemma 3.2 part (a), the sum of the dihedral angles between the three planes
intersecting at x must be > π.

For condition (3), note first that by Lemma 3.2 if three faces forming a 3-

circuit have dihedral angles summing to a number ≥ π, then they meet in H
3
. If

they meet at a point in H3, by Lemma 3.3 part (a) this point is a vertex of p,
so these three faces do not form a prismatic 3-circuit. Alternatively, if the three
planes meet in ∂H3 by Lemma 3.3 part (b) the P is non-compact, contrary to
assumption. Hence, any three faces forming a prismatic 3-circuit in P must have
dihedral angles summing to < π.

For condition (4), let Hv1
, Hv2

, Hv3
, Hv4

be a prismatic 4-circuit; obviously it
satisfies condition (4) unless all of the dihedral angles are π/2, so we suppose that
they are. We will assume the normalization 〈vi,vi〉 = 1 for each i. The Gram
matrix

Q =









〈v1,v1〉 〈v1,v2〉 〈v1,v3〉 〈v1,v4〉
〈v2,v1〉 〈v2,v2〉 〈v2,v3〉 〈v2,v4〉
〈v3,v1〉 〈v3,v2〉 〈v3,v3〉 〈v3,v4〉
〈v4,v1〉 〈v4,v2〉 〈v4,v3〉 〈v4,v4〉









=









1 0 〈v1,v3〉 0
0 1 0 〈v2,v4〉

〈v3,v1〉 0 1 0
0 〈v4,v2〉 0 1









has determinant 0 if the v’s are linearly dependent, and otherwise represents the
inner product of E3,1 and hence has negative determinant. In both cases we have

detQ = (1 − 〈v1,v3〉2)(1 − 〈v2,v4〉2) ≤ 0.

So 〈v1,v3〉2 ≤ 1 and 〈v2,v4〉2 ≥ 1 or vice versa (perhaps one or both are equali-
ties). This means that one of the opposite pairs of faces of the 4-circuit intersect,
perhaps at a point at infinity. We can suppose that this pair is Hv1

and Hv3
.

If Hv1
and Hv3

intersect in H3, they do so with positive dihedral angle. Since
Hv2

intersects each Hv1
and Hv3

with dihedral angle π/2 the three faces pairwise
intersect and have dihedral angle sum > π. By Lemmas 3.2 and 3.3 these three
faces intersect at a point in H3 which is a vertex of P . In this case, the 4-circuit
Hv1

, Hv2
, Hv3

, Hv4
is not prismatic.

Otherwise, Hv1
and Hv3

intersect at a point at infinity. In this case, since Hv2

intersects each Hv1
and Hv3

with dihedral angle π/2 the three faces intersect at
this point at infinity by Lemma 3.2 and then by Lemma 3.3 P is not compact,
contrary to assumption.

Hence, if Hv1
, Hv2

, Hv3
, Hv4

forms a prismatic 4-circuit, the sum of the dihedral
angles cannot be 2π.

For condition (5), suppose that the quadrilateral is formed by edges e1, e2, e3, e4.
Violation of one of the inequalities would give that the dihedral angles at each of
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the edges eij leading to the quadrilateral is π/2 and that the dihedral angles at
two of the opposite edges of the quadrilateral are π/2. See the diagram below:

γ

β

π/2

π/2

π/2 π/2
π/2

π/2

Consider a vertex of the quadrilateral formed by edges ei, ej, and eij . Violation
of the inequality gives that αij = π/2 and either αi = π/2 or αj = π/2. Using
Equation (1), we see that the face angle in the quadrilateral at this vertex must
be π/2. So, we have that each of the face angles of the quadrilateral is π/2, which
is a contradiction to the Gauss-Bonnet Theorem. Hence both of the inequalities
in condition (5) must be satisfied.

This was the last step in proving Proposition 3.1. �

4 The mapping α is injective.

Proposition 4.1 The mapping α : PC → RE is injective.

This proposition depends on a famous lemma, due to Cauchy, who also used it
to prove a rigidity result: a convex Euclidean polyhedron with given faces is rigid.

The reader is highly encouraged to draw the diagrams corresponding to the
combinatorial configurations described in this section. It clarifies matters greatly.
Proof of Proposition 4.1 The proof of this proposition consists of the following
two propositions.

Proposition 4.2 Let P, P ′ be two convex hyperbolic polyhedra, and f : P → P ′ a
homeomorphism which maps vertices to vertices and edges to edges. Suppose that
the dihedral angles which correspond under f are equal. Label each edge e of C
with −, 0, + if the edge e in P ′ is smaller, equal, or greater in length than e is in P
Then: for any face F of C not marked entirely with 0’s, the edges labeled + cannot
all be in the same component of ∂P with all of the edges labeled − removed.

The reader should notice that the exact same lemma is obtained switching +
with − by switching P with P ′. Hence, from this proposition, any face of C which
is not labeled with all 0s must have both edges labeled + and edges labeled − and
these labels cannot “have all +’s and 0’s on one side and all −’s and 0′s on the
other”.
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Proof. Let us define the dist-angle of two half-planes in H2 to be the distance
between the two boundary lines if these do not intersect, and the negative of the
angle between them if they do. The dist-angle is a number in (−π,∞).

Now suppose that we have a polygon Q ⊂ H
2, perhaps non-compact, but with

connected boundary. That is, if Q is non-compact, it has exactly two non-compact
sides. Let s, s′, s′′ be three distinct sides of Q, with s′ and s′′ either consecutive,
or non-compact. We will consider deformations of Q in which all sides are kept a
constant length except s, and all angles are kept constant except that between s′

and s′′ (if it exists.)

Lemma 4.3 If Q is deformed as above, the dist-angle between sides s′ and s′′ is
a monotone increasing function of the length of s.

Proof. Embed Q in the band model B of the hyperbolic plane so that the side
s is on the axis. Let ∂′(Q) be the part of ∂Q which contains s′, and ∂′′(Q) the
part which contains s′′. Then horizontal translation of ∂′′(Q), keeping ∂′(Q) fixed
realized the deformations above. The following two figures now prove the lemma.

s

P

s′

P
s′

s′′ s′′

s

�

Continuing the proof of the Proposition 4.2. Suppose for contradiction that at
least some side s of P is labeled +, and that the sides labeled + are all in one
component of ∂P with the sides labeled − removed. It is then possible to choose
sides s′ and s′′, distinct from each-other and from s, such that the component
of ∂P − (s′ ∪ s′′) containing s contains only sides labeled + or 0 and the other
component of ∂P − (s′ ∪ s′′) (possibly empty) contains no edges labeled +. We do
not care how s and s′ are labeled.

Looking at the polygon P+ bounded by s′∪s′′ and the component of ∂P −(s′∪
s′′) containing s, the above lemma guarantees that the dist-angle between sides s′

and s′′ in P ′ is strictly greater than in P . But looking at the polygon bounding s′

and s′′ and the other component of ∂P − (s′∪s′′), either s and s′ meet at a vertex,
so the distangle remains the same or, if there are other sides between s and s′ in
this component all of which are labeled 0 or −. So the lemma guarantees that the
dist-angle between sides s′ and s′′ in P ′ is at most equal to that in P . This is a
contradiction. �
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Now suppose that P1, P2 ∈ P0
C are two polyhedra such that α(P1) = α(P2). We

can label each edge e of C by −, 0, or + depending on whether the length of e in
P1 is less than, equal to, or greater than the length of e in P2.

Now the injectivity of the mapping α follows from Cauchy’s result.

Proposition 4.4 Cauchy’s Lemma If we mark all the edges of C with +, 0,−
so as to satisfy the conditions of the above proposition, then all edges are marked
0.

Proof.

If there are any edges labeled + and −, we will derive a contradiction from the
hypothesis of how these edges of C must be distributed, by defining a line field
on S

2 having index sum of the singular points ≤ 0, contradicting the well-known
Poincaré-Hopf Theorem. So, assume that there are some edges labeled + and −.

We will call each face whose edges are not all labeled 0 essential. We first define
the line field in a neighborhood of the edges of essential faces as follows. The line
field will be transverse to the edges labeled +, and tangent to the edges labeled −.
For edges labeled 0, it will be tangent to all of these except if along the boundary
of an essential face we see three consecutive edges labeled +, 0, +, then we put a
singularity of the line field on this edge labeled 0, as in the figure. We will call such
edges “singular 0-edges”. The singular edges will be essential to help to cancel out
any possible index from singularities with positive index.

0

−0

+ +

Singular 0-edges

+

++

+

0

The first thing to check is that this line field can be extended to each face whose
edges are not all labeled 0 (called essential faces), with at most a singularity of
negative index in the interior. (See the following figure.) Let F be an essential
face. Choose some point p “in the middle” of F . Consider the edges labeled + and
the singular 0-edges, with all other edges removed. We will draw smooth curves
from points on each component to p. If the component contains any singular 0-
edges, draw the curves from these points, otherwise draw a single curve from a
random point in the interior of one of the + edges. These curves can be made to
not intersect. On should check that Proposition 4 guarantees that there will be at
least n ≥ 2 paths from ∂F to p in total. These paths divide F into “sectors” with
each sector containing exactly two components labeled +. Connect smooth curves
between these two components, completely filling out the sector. The line field on
F will be the collection of lines tangent to each of these curves. One can check
that there is either no singular point, corresponding to n = 2, or that the index of
the singular point is −(n − 2)/2, for n ≥ 2
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0

0

0

++

−
+

−

+
+

+
−

−

−

+

Two different examples of essential faces

Now consider the connected components consisting of inessential faces. The
line field is already defined on the boundary of these components and tangent to
it, so the line field can be extended to the interior. The total index inside the
component is equal to its Euler characteristic. This will be 0 or negative if the
component is not homeomorphic to the disc, but in the case of the disc, we will be
forced to put a singularity of index +1 in the interior.

We have created a line field everywhere on S
2 with finitely many singularities

consisting of:

• At most one singularity of negative index inside of each essential face.

• Possible singularities at each vertex of C.

• A singularity in each singular 0-edge.

• Some finite number of singularities in each connected component of non-
essential faces with index sum at most 1.

There are exactly four types of line field locally at each vertex of C, depending
on the number of + edges which enter the vertex. The reader should check that
if there are 3 or 0 + edges at a vertex, the vertex will have singularity with index
−1/2. Otherwise, the line field can be extended continuously in a neighborhood
of the vertex.

++

+ 0

++

0

0+

0

0 0

The four types of singular vertices

By construction, the singularities on singular 0-edges have index −1/2 or −1,
depending on whether they are singular on each side.

So we see that the only singularities of positive index must be on the interior
of the connected components of non-essential faces. Since each such component D
has total index sum ≤ 1 it will be sufficient to find enough singularities on ∂D of
negative index to cancel out at least +1.
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Such a component D must have non-empty boundary, since we assume that
there are some edges that are not labeled 0. Its boundary has at least three
vertices that have edges leading from from them, out of D. (Two or fewer would
be geometrically impossible, since C corresponds to a convex polyhedron.) If at
least two such edges are labeled 0 or −, then these vertices have index ≤ −1/2,
and cancel the +1 from the interior of D. Otherwise there is either exactly one
such edge labeled 0 or −, and hence at least two consecutive edges labeled +,
or all the edges leaving ∂D are labeled +. In the first case, the edge labeled −
or 0 contributes a singularity of index ≤ −1/2 and the edge of ∂D between two
consecutive edges labeled + contributes a singularity of −1/2 also. (Since it is a
“singular 0-edge”.) In the second case, with all of the edges labeled +, each edge
of ∂D is a “singular 0-edge”, hence contributes a singularity of index −1/2. Since
there must be at least three of these edges, the indices of these singularities cancels
out the index +1 from the interior of D.

Hence, if there are any edges not labeled 0, one can create a linefield on S2

having singularities with index sum ≤ 0, whereas the Poincaré-Hopf Theorem
states that this index sum must equal exactly 2. �

The construction of such a linefield with non-positive index sum fails if all
of the edges are labeled zero since we essentially used that each component of
inessential faces had boundary. If all of the edges were labeled 0, there would be
one inessential component, consisting of the whole sphere.

So, we see that if α(P1) = α(P2) then each pair of corresponding edges has the
same length. But then P1 and P2 are congruent, since the faces are congruent.
Notice that we have not used in this section any restriction on the dihedral angles,
so in fact we have shown that α : PC → R

E is injective, proving Proposition 4.1.
�

5 The mapping α is proper.

Proposition 5.1 The mapping α : P0
C → AC is proper.

Proof: Let Pi be a sequence in P0
C , such that α(Pi) = ai converges in AC . Then,

by sequential compactness, we must show that a subsequence of the Pi converges
in P0

C . We will first prove the following two lemmas:

Lemma 5.2 Let F be a face of a hyperbolic polyhedron P with non-obtuse dihedral
angles. If a face angle of F equals π/2 at the vertex v, then the dihedral angle of
the edge opposite the face angle is π/2 and the dihedral angle of one of the two
edges in F that enters v is π/2.

Proof: This will follow from Equation (1) in Lemma 1.1 which one can use to
calculate face angles from the dihedral angles at a vertex. In Equation (1), if
βi = π/2 we have:
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0 =
cos(αi) + cos(αj) cos(αk)

sin(αj) sin(αk)
,

where αi is the dihedral angle opposite of the face angle βi and αj, αk are the dihe-
dral angles of the other two edges entering v. Both cos(αi) ≥ 0 and cos(αj) cos(αk) ≥
0 for non-obtuse αi, αj, and αk, so that cos(αi) = 0 and cos(αj) cos(αk) = 0. Hence
αi = π/2 and either αj = π/2 or αk = π/2. �

Lemma 5.3 If Pi is a sequence in P0
C such that α(Pi) = ai converges in AC then

each edge length of the Pi remain bounded in [ǫ, κ] for some positive numbers ǫ and
κ.

Proof:

To establish the upper bound κ, we must show that no subsequence of the
Pi can have diameters tending to infinity. So, re-indexing, if necessary, suppose
that the diameters of the Pi tend to infinity; let pi, qi be two vertices realizing the
diameter, and denote by r1,i, ...rk,i the projections of the other vertices onto the
line through pi, qi. (In fact, k = 2N − 6 if N is the number of faces.) As i tends
to infinity, the largest gap in the pi, r1,i, ...rk,i, qi must also tend to infinity. Using
the ball model for H3, put the center of this gap at the origin, and the line pi, qi

on some fixed line, say the vertical axis. Then all of the vertices will be in some
neighborhoods N of the north pole and S of the south pole, and connecting groups
of vertices there will be some edges e1,i, ..., el,i which intersect the equatorial plane
H almost orthogonally, and close to the origin.

Pi ∩ H H

S

N

Thus the intersection Pi ∩H will be almost a Euclidean polygon and its angles
will be almost the dihedral angles α(e1,i), ...α(el,i); in particular, for i sufficiently
large they will be at most only slightly larger than π/2. This implies that li, the
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number of such edges, is 3 or 4 for i sufficiently large, as a Euclidean polygon with
at least 5 faces has at least one angle ≥ 3π/5.

If the faces f1,i, ..., fl,i intersecting H are a prismatic circuit, and l = 3, the sum
α(e1,i) + α(e2,i) + α(e3,i) tends to π, hence ai cannot converge to a point in AC

by condition (3). Similarly, if li = 4, the corresponding sum tends to 2π violating
condition (4).

Thus, the circuit e1, ..., el is not prismatic. If l = 3, this means that near one
of the poles there is exactly one vertex and that the sum of the dihedral angles at
that vertex tends to π, violating condition (2).

So we are left with the possibility that l = 4, and that f1, f2, f3, f4 does not form
a prismatic 4-circuit. Therefore, a pair of opposite faces, say f1 and f3 intersect.
Since the sum of the dihedral angles along this four circuit limits to 2π, and each
dihedral angle is non-obtuse, each dihedral angle in this four circuit limits to π/2.
If either f1, f2, f3 don’t meet at a vertex, or f1, f3, f4 don’t meet at a vertex, then
this triple of faces will form a prismatic 3-circuit with dihedral angle sum limiting
to ≥ π because the dihedral angles at two of the edges of the circuit limit to π/2.
So, we assume that f1, f2, f3 meet at a vertex r and f1, f3, f4 meet at another vertex
s, both in a neighborhood of a point at infinity, say the north pole. This situation
is shown in the diagram below. At the vertex r, the dihedral angles between f1

and f2 and between f2 and f3 will converge to π/2, as mentioned before. In this
situation, one can use Equation (1) to check that the face angle in the face f2

will converge to the dihedral angle between faces f1 and f3. This is because the
right hand side of the equation limits to cos(α13), where α13 is the dihedral angle
between faces f1 and f3. Then, as r diverges to infinity, the face angle in f2 must
limit to 0, and hence the dihedral angle between f1 and f3 must as well, contrary
to condition (1).

S

f1

H

f4f2

f3

xi
1 xi

2

In conclusion, if the diameters of the Pi diverge the sequence ai must diverge
as well. This is contrary to the assumption that ai converges.
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Now, we establish the bound ǫ. We suppose that for some subsequence of the
Pi some of the edges shrink to zero length. Re-indexing if necessary, we suppose
that this happens for the Pi.

First, we check that none of the faces of the Pi can degenerate to either a point
or a line segment. Any face, F , that degenerates to a point of a line segment would
become almost Euclidean. By Lemma 1.1, the face angles are all non-obtuse; this
restricts F to either a triangle or a quadrilateral, the only Euclidean polygons
having non-obtuse angles. If F is a triangle, the three edges leading to F form a
prismatic 3-circuit because we assume that C is not the simplex. If F degenerates
to a point, the three faces adjacent to F would meet at a finite vertex, in the limit.
Therefore, by Lemma 3.2, the sum of the dihedral angles at the edges leading to F
would limit to a value > π, contrary to condition (3). Otherwise, if F is a triangle
and F degenerates to a line segment, in the limit, two of the face angles become
π/2. Then, by Lemma 5.2, the dihedral angles at the edges opposite of these face
angles become π/2. However, these edges are part of the prismatic 3-circuit of
edges leading to F , resulting in an angle sum ≥ π, contrary to condition (3).

In the case that F is a quadrilateral, each of the face angles would have to limit
to π/2. By Lemma 5.2, the dihedral angles at each of the edges leading from F
to the rest of P would limit to π/2, as well as at least one edge of F leading to
each vertex of F . Therefore, the dihedral angles at each of the edges leading from
F to the rest of Pi and at at least one opposite pair of edges of F limit to π/2, in
violation of condition (5).

Since none of the faces of the Pi can degenerate to a point or a line segment,
neither can the Pi. Suppose that the Pi degenerate to a polygon, G. Because the
dihedral angles are non-obtuse, only two of the faces of the Pi can limit to the
polygon G. Therefore the rest of the faces of the Pi must limit to points or line
segments, contrary to our reasoning above.

We now suppose that some of the edges of the Pi shrink to length 0 in such
a way that the Pi do not shrink to a point, a line segment, or a polygon. Let
v1, · · · , vk be a subset of the vertices that converge to some point p with k > 1.
Then, since the Pi do not shrink to a point, a line segment, or a polygon, there are
at least three vertices η, κ and γ that don’t converge to p and that don’t converge
to each-other. Perform the appropriate isometry taking p to the origin in the ball
model. Place a small sphere S centered at the origin, so that η, κ and γ never enter
S. For large enough i, the intersection Pi ∩ S approximates a spherical polygon
whose angles approximate the dihedral angles between the faces of Pi that enter S.
These spherical polygons cannot degenerate to a point or a line segment because
the polyhedra Pi do not degenerate to a line segment or a polygon. By reasoning
similar to that of Proposition 1.1, one can check that this polygon must have only
three sides and angle sum > π. The edges of this triangle form a prismatic 3-circuit
in C∗, since for each i, Pi has more than one vertex inside the sphere (k > 1) and
at least the three vertices η, κ and γ outside of the sphere. So, the Pi would have
a prismatic three circuit whose angle sum limits to a value > π. However, this
contradicts condition (3) of our supposition that ai converges in AC .
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So none of the edges of Pi can limit to zero length hence we have some lower
bound ǫ for which each edge of each Pi has length greater than ǫ. �

We now finish the proof of Proposition 5.1. By the above lemma, the vector of
edge lengths remains confined in [ǫ, κ]E . We normalize the Pi so that the center of
mass of each is at the origin in the conformal ball model, v1 is on the x-axis, and
v2 is in the xy-plane. Since the edge lengths are confined to [ǫ, κ]E , the vertices of
each Pi are confined to a closed ball of finite (hyperbolic) radius. Therefore, we
can choose a subsequence of the Pi so that these vertices converge. Because the
edge lengths are bounded from below, each of the vertices converges to a distinct
point in H3. Therefore, this subsequence of the Pi converge in P ′

C �

There are two Propositions that will be needed in the next section that use
sequences of polyhedra as we used above. Both of them suppose that Andreev’s
Theorem is satisfied for a specific abstract polyhedron C and they consider two
ways of making polyhedra with infinite vertices as limits of sequences of compact
polyhedra realizing C. The proofs of both propositions are so similar to the proof
above that we include them here.

Proposition 5.4 Given a abstract polyhedron C having no prismatic 3-circuits
for which Andreev’s Theorem is satisfied. For any edge e0 of C, let C0 be the
complex obtained by contracting e0 to a point. Then, there exists a non-compact
polyhedron P0 realizing C0 with the edge e0 contracted to a single vertex at infinity
and the rest of the vertices at finite points in H3.

Proof: Let v1 and v2 be the vertices at the ends of e0, let e1, e2, e3, e4 the edges
emanating from the ends of e0, and f1, f2, f3, f4 be the four faces meeting at any
of these edges. See the diagram below.

e0

v1 v2

e1
e4

e3

f1

f2

f4

e2

f3

The angles: α(e0) = ǫ, α(e1) = α(e2) = α(e3) = α(e4) = π/2, and α(e) = 2π/5
for all other edges e, are in AC since C has no prismatic 3-circuits. Therefore,
because we assume that Andreev’s Theorem holds for C, there is a polyhedron
Pǫ ∈ P0

C realizing these angles. Choose a sequence ǫn > 0 converging to 0. We will
show that the sequence of polyhedra Pǫn has a subsequence converging to a non-
compact polyhedron P0 realizing C0, and hence has the entire edge e0 shrunken
down to a single point at infinity.

Using reasoning very similar to that in Proposition 5.1, one can show that for
each edge e that is not one of the e0, e1, e2, e3, e4, the edge length must remain
bounded away from 0 and ∞. So, one can choose an appropriate subsequence of
the Pǫn so that each of these edge lengths converges to a non-zero edge length.
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Since the dihedral angle at edge e0 decreases to 0, in the limit, the two faces
adjacent along e0 intersect at a single point at infinity. The vertices v1 and v2 are
in this intersection, therefore they limit to the same point at infinity. In particular,
the edges e1, e2, e3, e4 connecting v1 and v2 to the rest of the polyhedron limit to
infinite length.

So, we have a subsequence of the Pǫn for which each edge e1, e2, e3, e4 limits to
infinite length, edge e0 shrinks to a single point at infinity, and all of the other
edges limit to finite lengths. As in Proposition 5.1, each of the face angles must
converge. So each of these faces converges to a given non-empty (possibly infinite)
hyperbolic polygon, and, as in Proposition 5.1, these polygons must fit together
to form a polyhedron P0. P0 realizes C0 since it realizes the same cell complex on
the sphere as the Pǫn, except with the edge e0 shrunk to a point at infinity. �

Proposition 5.5 Suppose that Andreev’s Theorem is true for C and let ai ∈ AC

be a sequence that converges to a ∈ ∂AC , satisfying conditions (1,3-5). If condi-
tion (2) is satisfied for vertices v1, · · · , vk of C, but not for vk+1, · · · , vn for which
the dihedral angle sum is exactly π, then there exists a non-compact polyhedron
P0 realizing C with dihedral angles a. Furthermore, P0 has vertices v1, · · · , vk at
distinct finite points and the vk+1, · · · , vn at distinct points at infinity.

Proof: Because we assume that Andreev’s theorem is true for the abstract
polyhedron C, there exist unique hyperbolic polyhedra Pi realizing C with dihedral
angles given by ai. In the proof of Lemma 5.3, we did not use condition (2) to
establish the lower bound on the lengths of edges of the Pi, so the same proof
applies here.

Using the the same methods as from Lemma 5.3 one can situate the Pi in the
conformal ball model in such a way that all of the vertices are in neighborhoods
N of the north pole and S of the south pole. We will assume, without any loss
in generality, that S contains more of the vertices than N does. With exactly the
same reasoning as in Lemma 5.3, we can use that the ai satisfy conditions (1,3-5)
to eliminate any case in which there is more than one vertex in N .

Now, consider each Pi in the conformal ball model normalized so that each is
situated with the center of mass at the origin, v1 on the x-axis, and v2 in the x-y-
plane. (Notice that we do not eliminate the case k = 0.) In this way we represent
each isometry class of Pi with a fixed polyhedron.

Then, for each Pi the locations of the vertices are defined and each vertex is
bounded away from the others in H3. We will denote the locations of the vertices of
Pi by vi

1, · · · , vi
n. By compactness of the unit ball, we can choose a subsequence of

the Pi so that each vertex converges in H3. Because the vi
1, · · · , vi

n are bounded away
from each-other, the limit points v1, · · · , vn are distinct. Let P0 be the polyhedron
spanned by v1, · · · , vn. By Lemma 3.2, the vertices v1, · · · , vk must be vertices at
infinity because the three edges meeting at them have dihedral angle sum π and
the vertices vk, · · · , vn are finite vertices because the three edges meeting at them
have dihedral angle sum > π. �
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6 AC 6= ∅ implies PC 6= ∅
At this point, we know the following result:

Proposition 6.1 If P0
C 6= ∅, then α : P0

C → AC is a homeomorphism.

Proof: Indeed, since α : PC → RE is continuous and injective, invariance of
domain gives that it is a homeomorphism onto its image. Therefore α restricted
to P0

C is a homeomorphism onto its image. We now use the fact that a local
homeomorphism (between metric spaces) that is proper is a finite sheeted covering
map. Therefore α is an injective covering map to the connected set AC . Hence, if
P0

C 6= ∅, α : P0
C → AC is a homeomorphism onto AC . �

But what is left is absolutely not obvious, and is the hardest part of the whole
proof: proving that if AC 6= ∅, then P0

C 6= ∅. We have no tools to approach it and
must use bare hands. We follow the proof of Andreev, although the proof of his
key lemma was wrong. We provide our own correction.

First recall that in Corollary 1.4, we saw that if C has no prismatic 3-circuits,
AC 6= ∅. We first prove that P0

C 6= ∅ for these these simple polyhedra, and hence
by Proposition 6.1 that Andreev’s Theorem is true for simple polyhedra. We then
show that for any C having prismatic 3-circuits, if AC 6= ∅, then P0

C 6= ∅ by making
a polyhedron realizing C from (possibly many) simple polyhedra. By Proposition
6.1, this final step will finish the proof of Andreev’s theorem.

Proof of Andreev’s Theorem for Simple Polyhedra

Proposition 6.2 If C is simple and has N > 5 faces, P0
C 6= ∅. In words: every

simple polyhedron is realizable.

Proof. The proof comprises three lemmas. We will first state the lemmas and
prove this proposition using them. Then we will prove the lemmas.

Lemma 6.3 Let PrN and DN be the abstract polyhedron corresponding to the N
faced prism and the N faced “split prism”, as illustrated below. If N > 4, PPrN

is
nonempty and if N > 7, PDN

is nonempty.

Prism with 10 faces Splitprism with 11 faces
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The reader should recall that a Whitehead move on an edge e of an abstract
polyhedron is given the local change described the following diagram. The White-
head move in the dual complex is dashed.

Whitehead move on edge e

e1 e2

e3e4

e′e

e1 e2

e3e4

f f ′Wh(e)

Lemma 6.4 Let the abstract polyhedron C ′ be obtained from the simple abstract
polyhedron C by a Whitehead move Whe. Then if P0

C is non-empty, so is P0
C′ .

Lemma 6.5 Whitehead Sequence

Let C be a simple abstract polyhedron on S2 which is not a prism. If C has
N > 7 faces, one can simplify C by a finite sequence of Whitehead moves to DN

with all of the intermediate abstract polyhedra Ci simple.

Proof of Proposition 6.2, assuming these three lemmas:
Given simple C with N > 5 faces; if C is the prism, the statement is proven

by Lemma 6.3. One can check that if C has 7 or fewer faces (and is not the
tetrahedron) it is a prism. So, if C is not the prism, we have N > 7. Then,
according to Lemma 6.5, one finds a reduction by (say n) Whitehead moves to
DN , with each intermediate abstract polyhedron simple. Applying Lemma 6.4 n
times, one sees that P0

C is non-empty if and only if P0
DN

is non-empty. However
P0

DN
is non-empty by Lemma 6.3. �

The hard technical part of this is the proof of Lemma 6.5. Andreev’s original
proof [3] provides an algorithm giving the Whitehead moves needed for this lemma
but the algorithm just doesn’t work. It was implemented as a computer program
by the author and failed on the first test case, C being the dodecahedron. On
one of the final steps, it produced an abstract polyhedron which had a prismatic
3-circuit. This error was then traced back to a false statement in Andreev’s proof
of the lemma. We will explain the details of this error in the proof of Lemma 6.5.

We proceed to prove the lemmas:
Proof of Lemma 6.3

We construct the N faced prism by explicit construction. First, construct a
regular polygon with N − 2 sides in the disc model for H2. (N − 2 ≥ 3, since
N ≥ 5.) We can do this with the angles arbitrarily small. Now view H2 as the
equatorial plane of H3; and consider the hyperbolic planes perpendicular to the
equatorial plane containing the sides of the polygon. In Euclidean geometry these
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are hemispheres with centers on the boundary of the equatorial disc. The dihedral
angles of these planes are the angles of the polygon.

Now consider two hyperbolic planes close to the equatorial plane, one slightly
above and one slightly beneath, both perpendicular to the z-axis. These will
intersect the previous planes at angles slightly smaller than π/2. The region defined
by these N planes makes a hyperbolic polyhedron realizing the cell structure of
the prism.

Now for DN with N > 7 faces: we will get this by cutting DN into two prisms
and using Prop. 6.1, to realize these prisms with appropriate angles so that they fit
together to give DN . Consider the prism having N − 1 faces with dihedral angles
as labeled below.

π/2

π/2

π/2

π/2

π/2

π/2

π/2

π/2

π/2

π/4

π/3

π/3

π/3

π/3

π/3

π/3

π/3
π/3

These angles satisfy Andreev’s conditions (1 - 5), and since for the N − 1 > 6
prism we have that P0

PrN−1
nonempty, this prism exists. When two are glued

together, the edges labeled π/2 on the outside disappear as edges, and the edges
labeled on the outside by π/4 glue together becoming an edge with dihedral angle
π/2. Hence, we have constructed a polyhedron realizing with DN (assuming N >
7.) (Note: one can apply this construction when N = 7, but the result is in fact
Pr7. D7 is combinatorially equivalent to Pr7.)
Proof of Lemma 6.4

We are given C and C ′ simple with C ′ obtained by a Whitehead move on
the edge e0 and we are given that PC 6= ∅. Since PC 6= ∅, we conclude that
Andreev’s Theorem is satisfied for the abstract polyhedron C, by Proposition 6.1.
Let C0 be the complex obtained from C by shrinking the edge e0 down to a point.
By Proposition 5.4, there exists a non-compact polyhedron P 0 realizing C0 since
Andreev’s Theorem holds for C.

Having established the existence of P0 it is easy to prove the lemma. Let us
use the upper half-space model of H3, and normalize so that e0 has collapsed to
the origin of C ⊂ ∂H3. The faces incident to e0 are carried by 4 planes H1, ..., H4

each intersecting the adjacent ones at right angles, and all meeting at the origin.
Their configuration will look like the center of the following figure. (Recall that
planes in the upper half-space model of H3 are hemispheres which intersect ∂H3

in their boundary circles. The dihedral angle between a pair of planes is the angle
between the corresponding pair of circles in ∂H3.)
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The pattern of circles in the center of the figure can by modified forming the
figures on the left and the right with each of the four circles intersecting the
adjacent two circles orthogonally. If we leave the other faces of P 0 fixed we can
make a small enough modification that the edges e1, e2, e3, e4 still have positive
length and the vertices at the far ends of these edges remain finite. Since each
of the dihedral angles corresponding to edges other than e0, e1, e2, e3, and e4 were
chosen to be 2π/5, this small modification will not increase any of these angles
past π/2.

Therefore, these modified patterns of intersecting circles correspond to polyhe-
dra are elements of P0

C and P0
C′ . Therefore since P0

C 6= ∅, we have also P0
C′ 6= ∅. �

Proof of Lemma 6.5 We assume that C is a simple abstract polyhedron having
N > 7 faces which is not PrN . We will construct a sequence of Whitehead moves
which change C to DN with each intermediate complex having no prismatic 3-
circuits.

Find a vertex v∞ of C∗ which is connected to the greatest number of other
vertices, k. We will call its link, a cycle of k vertices and k edges the outer-polygon.
Most of the work is to show that we can do Whitehead moves to increase k to
N − 3 without introducing any prismatic 3-circuits during the process. Once this
is completed, it will be easy to change the resulting complex to D∗

N by additional
Whitehead moves.

Let’s set up some notation. We will draw the dual complex C∗ in the plane
with the vertex v∞ at infinity and the outer polygon, P , surrounding the remaining
vertices, and triangles. We will call the vertices inside of P interior vertices. We
will call all of the edges inside of P which don’t have an endpoint on P interior
edges. The graph of interior vertices and edges is connected, since C∗ is simple. An
interior vertex which is connected to only one other interior vertex will be called
an endpoint. See below:

EndpointF 1
w

w

F 1
v

v

F 2
v
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Throughout this proof we will draw P in black and we draw interior edges
and vertices of C∗ in black, as well. The connections between P and the interior
vertices will be in grey. Connections between P and v∞ will be black, if shown at
all.

The link of an interior vertex v will intersect P in a number of components
F 1

v , · · · , F n
v . (Possibly n = 0.) See the above figure. We will say that v is connected

to P in these components. Notice that since C∗ is simple, an endpoint is always
connected to P in exactly one such component.

Sub-lemma 6.6 If a Whitehead move on C∗
1 results in the complex C∗

2 (replacing
e by e′), and if δ is a simple closed path in C∗

1 , which separates one endpoint of
e′ from the other, then any newly-created 3-circuit will contain some vertex of δ
which shares edges with both endpoints of e′.

Proof: A newly created prismatic 3-circuit γ would consist of the new edge e′ as
well as two additional edges e1 and e2 connecting from a single vertex V to the two
endpoints of e′. By the Jordan Curve Theorem, the path e1e2 connecting the two
endpoints of e′ must intersect δ since δ separates these endpoints. The edges e1

and e2 would have to have been edges in C1 since e′0 is the only new edge in C2.
Since each of these paths is made from edges in C1, the vertex V must be a vertex
on δ. �

We will now use this sub-lemma to prove three additional sub-lemmas which
specify certain operations by Whitehead moves that can be done without intro-
ducing prismatic 3-circuits.

Sub-lemma 6.7 Suppose that in the dual of some simple polyhedron, there exists
a vertex A which is connected to P in exactly one component consisting of exactly
two consecutive vertices Q and R. The Whitehead move Wh(QR) results in a
complex outer-polygon has been increased in length by one, which is also the dual
of a simple polyhedron.

Proof:

Wh(QR)
R R

interior stuff

v∞ v∞

other interior stuff
A ED

Q Q

AD E

C1 C2

Clearly this Whitehead move increases the length of P by one. We apply
Sub-Lemma 6.6 to see that this move introduces no prismatic 3-circuits. We let
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δ = P , the outer polygon, which clearly separates the interior vertex A from v∞
in C1. Any new prismatic 3-circuit would consist of a point on P connected to
both A and v∞. However, by hypothesis, there were only the two points Q and
R on P connected to A. These two points result in the new triangles AQv∞ and
ARv∞ therefore they don’t result in prismatic 3-circuits. We conclude that this
Whitehead move introduces no prismatic 3-circuits. �

In the above sub-lemma, the condition that A is connected to exactly two
consecutive vertices of P prevents A from being an endpoint. If A were an endpoint,
let B be the unique interior vertex that A is connected to. In this case the three
circuit BQR would surround A and hence would be a prismatic 3-circuit in C1.
Therefore any endpoint must be connected to P in a single component having
three or more vertices.

Sub-lemma 6.8 Given an interior vertex A which is connected to P in a com-
ponent consisting of M consecutive vertices Q1, · · · , QM of P (and possibly other
components).

1. If A is not an endpoint and M > 2, the sequence of Whitehead moves
Wh(AQM), · · · , Wh(AQ3) result in a complex in which A is connected to
this component of P in only Q1 and Q2. These moves leave P unchanged,
and introduce no prismatic 3-circuits.

2. If A is an endpoint and M > 3, the sequence of Whitehead moves
Wh(AQM), · · · , Wh(AQ4) result in a complex in which A is connected to this
component of P in only Q1, Q2, and Q3. These moves leave P unchanged
and introduce no prismatic 3-circuits.

Proof: If A is not an endpoint we have the following setup:

Q1Q2Q3 QM−1 QM

D EA

Q1Q2Q3 QM−1QM

WH(AQM)

D EA

Part of C1 Part of C2

Clearly the move Wh(AQM ) decreases M by one. We check that if M > 2,
this move introduces no prismatic 3-circuits. We let δ be that path v∞QM−2AQM

which separates QM−1 and E in C1. By Sub-lemma 6.6, any new prismatic 3-
circuit would contain a vertex on δ that connects to both E and QM−1. Clearly
v∞ is not connected to the interior vertex E. Also, a connection of QM−2 to E
would correspond to a pre-existing prismatic 3-circuit EQM−2A in C1, contrary
to the assumption that C1 was simple. So the only two vertices on δ that are
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connected to both E and QM−1 are A and QM , but these connections form the
two triangles AQM−1E and QM−1QME in C2. Hence there are no new prismatic
3-circuits. Since we can always reduce M by one, when M > 2, we can reduce M
to 2.

If A is an endpoint we have the following setup:

EA

QM−1

QM

Q1

Q3
Q2

QM−2

Wh(AQM )
EA

Q1

Q3

QM−1

QM

Q2

QM−2

Part of C1 Part of C2

So the move Wh(AQM) decreases M by one. We check that as long as M > 3,
this move introduces no prismatic 3-circuits. Let δ be the curve v∞QMAQM−2

which separates QM−1 from E in C1 which are the ends of the new edge in C2. By
Sub-lemma 6.6, any new prismatic 3-circuit would contain of a vertex on δ that
is connected to both QM−1 from E. Clearly v∞ is not connected to E since E is
interior. Also, since M > 3, QM−2 is not connected to E. So the only vertices
on δ that are connected to E are QM and A. However these connections form
the triangles AQM−1E and QM−1QME, hence they do not correspond to prismatic
3-circuits.

So, as long as M > 3 we can reduce M by one without introducing prismatic
3-circuits. Hence, we can reduce M to 3. Recall that an endpoint of a simple
complex cannot be connected to fewer than three points of P , so this is the best
that we can hope to do. �

Note: In both parts (1) and (2), each of these Whitehead moves Wh(AQM)
transfers the connection between A and QM to a connection between the neigh-
boring interior vertex E and QM . This will be essential later in the proof (Case
2.) where we will need to increase the number of vertices in a component where E
is connected to P by decreasing the number of vertices in a component where A
is connected to P .

Sub-lemma 6.9 If an interior vertex A is connected to P in two points X and
Y , one can do Whitehead moves to eliminate any components of connections of A
to P that do not contain X or Y without introducing any new prismatic 3-circuits.

Example: Here A is connected to P in four components containing six points.
We can eliminate connections of A to all of the components except for the single-
point components X and Y . Note: It is essential later in the proof of Lemma 6.5
that the hypotheses of this Sub-lemma do not require that X and Y be in the same
component. (However, we often use this Sub-lemma in the simpler case where X
and Y are in the same component.)
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A A

X X

Y Y

Proof: Notice that since A is an interior vertex connected to more than one
component on P , it is not an endpoint. In particular, there will be unique interior
vertices D and E forming triangles ADW and AEV as in the figure below.

Let O be a component that doesn’t contain X or Y which we wish to eliminate.
If O contains more than two vertices, we can reduce it to two vertices V and W by
Sub-lemma 6.8, part (1). Having done so, we can do Whitehead moves Wh(AW )
and Wh(AV ) to eliminate these final connections. This is slightly delicate, and
requires in an essential way that A is connected to P in at least two other vertices.

First, one does Wh(AW ) resulting in the elimination of edge AW and the
creation of the new edge DV as in the diagram below. We will use Sub-lemma
6.6 to check that this move introduces no new prismatic 3-circuits. Let δ be the
loop v∞Y AW which separates D from V in C1. See the dashed curve in the figure
below. Any new prismatic 3-circuit would contain a point on δ that is connected
to both D and V . Clearly v∞ is not connected to D since D is interior. Also, Y
is not connected to W , since Y and W are in different components of connection
between A and P , by hypothesis. So, only A and W are connected to D and to
V , but they form the triangles ADV and WV D in C2, hence do not correspond
to prismatic 3-circuits. Therefore, Wh(AW ) results in no prismatic 3-circuits.

X

A

D

E

X

W
V

Y
v∞

v∞

v∞

v∞
v∞

v∞ v∞

v∞

Wh(AW )

D

Y A

E

W
V

δ

Part of C1 Part of C2

Second, one does Wh(AV ), as depicted below. Let δ1 be the curve v∞Y AV
and δ2 be the curve v∞XAV in C1. See the two dashed curves in the figure below.
Both of these curves separate D and E in C1. So, applying sub-lemma 6.6 twice,
we conclude that any newly created prismatic 3-circuit would contain a point that
is both on δ1 and on δ2 and that connects to both D and E. The only points on
both δ1 and δ2 are v∞, A, and V . Since D and E are interior, v∞ cannot connect
to either of them. The connections from A and from V to D and E result in the
triangles ADE and V DE, hence do not result in prismatic 3-circuits. Therefore,
we conclude that Wh(AV ) results in no prismatic 3-circuits. �



∼ Andreev’s Classification of Hyperbolic Polyhedra ∼ 38

E

A

D

E

X

W
V

Y
v∞

v∞

v∞

v∞
v∞

v∞ v∞

v∞

Wh(AV )δ1

X

Y A

D

W
V

Part of C1 Part of C2

δ2

In his paper [3], on pages 433 and 434, Andreev describes a nearly identi-
cal process to Sub-lemma 6.9 for decreasing the number of components in which
an interior point A is connected to P . However, he merely assumes that A is
connected to P in at lease one component in addition to the components being
eliminated. He does not require, as we have, that A is connected to P in at least
two points outside of the components being eliminated. Andreev asserts: “It is
readily seen that all of the polyhedra obtained in this way are simple...” However
this assertion is incorrect. Consider the case below where A is connected to P in
two components, the two points M and N . Doing the Whitehead move Wh(AN)
eliminates the connection of A to P at N but also creates the prismatic 3-circuit
DEM surrounding A, which is shown as the dashed curve in the right hand side
of the figure.

M

N

EAD
Wh(AN)

N

M

EAD

Having assumed this assertion, the remainder of Andreev’s proof is relatively
easy. Unfortunately, the situation pictured above is not uncommon (as we will see
in Case 3 below)! Using Sub-lemma 6.9 we will have to work a little bit harder.

We will now use these three sub-lemmas to show that if the length of P is
less than N − 3 (so that there are at least 3 interior vertices), then we can do
Whitehead moves to increase the length of P by one, without introducing any
prismatic 3-circuits.

Case 1: An interior point which isn’t an endpoint connects to P in a component
with two or more vertices, and possibly in other components, as well.

Apply Sub-lemma 6.8 decreasing this component to two vertices. We can then
apply Sub-lemma 6.9, eliminating any other components since this component
contains two vertices. Finally, apply Sub-lemma 6.7 to increase the length of the
outer polygon by 1.

Case 2: An interior vertex that is an endpoint is connected to more than three
vertices of P .
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We assume that each of the interior points that are not endpoints are connected
to P in components consisting of single points, otherwise we are in Case 1.

Let A be the endpoint which is connected to more than three vertices of P .
By Sub-lemma 6.8, part (2), we can do a Whitehead move to transfer one of
these connections to the interior vertex E that is next to A. Now, one of the
components in which E is connected to P has exactly two vertices. The point E
is not an endpoint since k < N − 3 implies that there are at least three interior
vertices. Once this is done, we can apply Case 1.

Case 3: Each interior point which is an endpoint is connected to exactly 3
points of P and each interior point which is not an endpoint is connected to P in
components consisting of single points.

First, notice that if the interior vertices and edges form a line, this restriction
on how interior points are connected to P results in the following complex, which
is the prism:

This case is ruled out by our assumption that C is not the prism. However,
there are plenty of complexes satisfying the hypotheses of this case which have
interior vertices and edges forming a graph more complicated than a line:

For such complexes we need a very special sequence of Whitehead moves to
increase the length of P .

Pick an interior vertex which is an endpoint and label it I1. Denote by P1,
P2, and P3 the three vertices of P to which I1 connects. I1 will be connected to
a linear sequence of interior vertices I2, I3, · · · Im, m ≥ 2, with Im the first interior
vertex in the sequence that is connected to more than two other interior vertices.
Vertex Im must exist since we are assuming that the interior vertices don’t form a
line, a configuration that we ruled out above. By hypothesis, I2, · · · , Im can only
connect to P in components which each consist of a vertex, hence each must be
connected to P1 and to P3. Similarly, there is an interior vertex (call it X) which
connects both to Im and to P1 and another vertex Y which connects to Im and P3.
Vertex Im may connect to other vertices of P and other interior vertices, as shown
on the left side of the following diagram, which depicts the general situation in a
neighborhood of an endpoint, in Case 3.
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P1

P2

P3

X

Y

Interior vertices

Im I1Im−2 I3 I2Im−1

Now we describe a sequence of Whitehead moves that can be used to connect
Im to P in only P1 and P2, which will allow us to use Sub-lemma 6.7 to increase
the length of P by one.

First, using Sub-lemma 6.9, one can eliminate all possible connections of Im to
P in places other than P1 and P3. Next, one does the move Wh(ImP3) so that
Im connects to P in only one vertex, P1. We check that this Whitehead move
does not create any prismatic 3-circuits. Let δ be the curve v∞P1ImP3 separating
Im−1 from Y . By Sub-lemma 6.6, any newly created prismatic 3-circuit would
contain a point on δ connected to both Im−1 and Y . Since Y and Im−1 are interior,
v∞ does not connect to them. Also, P1 is not connected to Y as this would
correspond to a pre-existing prismatic 3-circuit P1ImY , contrary to assumption.
So, the only vertices of δ that are connected to both Im−1 and Y are Im and P3,
which result in the triangles ImIm−1Y and P3Y Im−1, hence do not correspond to
newly created prismatic 3-circuits. We conclude that Wh(ImP3) introduces no
prismatic 3-circuits.

P1

P2

P3

I1I2I3Im

X

Y

Interior vertices
Im−2

Im−1

Next, one must do the moves Wh(Im−1P1),...,Wh(I1P1), in that order. We
check that each of these moves creates no prismatic 3-circuits (see the figure below).
Fix 1 ≤ l ≤ m− 1, and let δ be the loop v∞P1I1P3. Wh(I1P1) creates a new edge
Il−1Im if l > 1, or P2Im if l = 1, the vertices of which are separated by δ. Since
Im is interior, v∞ does not connect to Im. Also, Im is no longer connected to P3.
Therefore the only points of δ that are both connected to Im and Il−1 are Il and P1.
The connections form the new triangles P1ImIl−1 and IlIl−1Im, hence no prismatic
3-circuits (when l = 1, the above is true with P2 in place of Il−1). So the move
Wh(IlP1) introduces no prismatic 3-circuits. Hence we can do each of the moves
listed above.
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P1

IlIm−1
I1

Interior vertices

Y

X

Im
P2

Wh(IkP1)

P1

IlIm−1
I1

Interior vertices

Y

X

Im
P2

P3

Il−1

Il−1

Il+1

P3

Il+1

When we finish this sequence of Whitehead moves, we obtain the diagram
shown below, with Im connected to P exactly at P1 and P2, so that one can apply
Sub-lemma 6.7 to increase the length of P by the move Wh(P1P2), also shown
below.

P1

P2

P3

X

Y

Interior vertices

Im−1
I1I2I3I4

Im

P1

P3

X

Y

Interior vertices

Im−1
I1I2I3I4

Im
P2

This concludes Case 3.
Since C∗ must belong to one of these cases, we have seen that if the length of

P is less than N − 3 we can do Whitehead moves to increase its length to N − 3
without creating prismatic 3-circuits. Hence we can reduce to the case of two
interior vertices, as shown in the diagram below on the left. Since N > 7 such a
diagram exists, without prismatic 3-circuits.
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vv

ww

Each of these interior vertices v and w will be endpoints and hence each con-
nected to P in a single component, Fv and Fw, with each of these components
containing three or more vertices. One can reduce to the desired complex D∗

N by
choosing one of the interior vertices, say v and

This completes the proof of Lemma 6.5, and hence of Proposition 6.2. applying
Sub-lemma 6.8, part (2), to reduce Fv until it contains only three vertices. See the
right side of the above diagram. �

Proof of Andreev’s Theorem for general polyhedra

So, we have seen that Andreev’s Theorem is true for every simple (3-aprismatic)
abstract polyhedron C. Now we consider the case of C having prismatic 3-circuits.
(Of these, at this point we only know that the triangular prism exists.) Recall
that there are some such C for which AC = ∅, so we can only hope to prove that
P0

C 6= ∅ when AC 6= ∅. The following lemma may help one check whether AC 6= ∅.

Lemma 6.10 If AC 6= ∅, then there are points in AC arbitrarily close to
(π/3, π/3, · · · , π/3).

Proof: Let a ∈ AC and let at = a(1 − t) + (π/3, π/3, · · · , π/3)t. For each t ∈
[0, 1), at ∈ AC . We check conditions (1-5): Each component is clearly in (0, π/2],
so condition (1) is satisfied. Given edges ei, ej , ek meeting at a vertex we have
(ai + aj + ak)(1 − t) + πt > π(1 − t) + πt = π for t < 1, since (ai + aj + ak) > π.
So, condition (2) is satisfied. Similarly, given a prismatic 3-circuit intersecting
edges ei, ej, ek we have (ai + aj + ak)(1 − t) + πt < π(1 − t) + πt = π for t < 1, so
condition (3) is satisfied. Conditions (4) and (5) are satisfied since each component
of at is < π/2 for t > 0 and since a satisfies these conditions for t = 0. �

We will distinguish two types of prismatic 3-circuits. If a prismatic three circuit
in C∗ separates one point from the rest of C∗, we will call it a truncated triangle,
otherwise we will call it an essential 3-circuit. The name truncated triangle comes
from the fact that such a 3-circuit in C∗ corresponds geometrically to the truncation
of a vertex, forming a triangular face. We will first prove the following sub-case:

Proposition 6.11 Let C be an abstract polyhedron in which every prismatic 3-
circuit in C∗ is a truncated triangle. If AC is non-empty, then P0

C is non-empty.
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We will need the following three elementary lemmas in the proof:

Lemma 6.12 Given three planes in H3 that intersect pairwise, but which do not
intersect at a point in H3, there is a fourth plane that intersects each of these
planes at right angles.

Proof: Suppose that the three planes are given by Pv1
, Pv2

, and Pv3
. The line

Pv1
∩Pv2

∩Pv3
in E3,1 is outside of the light-cone, so the hyper-plane (Pv1

∩Pv2
∩

Pv3
)⊥ intersects H3 and hence defines a plane orthogonal to Pv1

, Pv2
, and Pv3

. �

Lemma 6.13 Given two circles C1 and C2 in the Euclidean plane that intersect
with a non-obtuse exterior angle. Decreasing either or both radii of C1 and C2

while keeping their centers fixed decreases the angle of intersection between C1 and
C2.

Proof: See the diagram below:

A B

D′

C1C2

D

C ′
2 C ′

1

We wish to show that the exterior angle α between lines tangent to C1 and C2 at
D is larger than the exterior angle α′ tangent to C ′

1 and C ′
2 at D′. Let β be the

angle at vertex D of triangle ADB and β ′ be the angle at vertex D′ of triangle
AD′B. Elementary geometry shows that α = π − β and α′ = π − β ′. So, we must
only check that decreasing the radius of either C1 or C2 or both, as in the diagram
above, results in β ′ > β. Notice that if the initial exterior angle α ≤ π/2 gives
that β ≥ π which gives that the region inside of both circles C1 and C2 and above
line segment AB is exactly inside of triangle ADB. The vertex D′ must be strictly
inside of this region and hence inside of the triangle ADB. However, this gives
that β ′ > β. �

Lemma 6.14 Given a non-compact hyperbolic polyhedron P with dihedral angles
in (0, π/2] and with trivalent vertices. Suppose that the vertices v1, ..., vn are at
distinct points at infinity and the rest of the vertices are at finite points in H

3. Then
there exists a polyhedron P ′ with v1, ..., vn truncated by triangular faces orthogonal
to their adjacent faces and the remaining vertices at finite points in H3. Each of
the dihedral angles of P ′ will be in (0, π/2].
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Proof: Suppose that P is in the upper half-space model of H3 so that it is com-
pletely determined by the pattern of circles where the planes carrying its faces
intersect the plane at z = 0. (As in the proof of Lemma 6.4.) One can do this with
one of the planes corresponding to a large circle, K1, with the the centers of the
circles, K2, · · · , KN , which correspond to the other faces, entirely within K1. Such
a configuration is drawn on the left hand side of the figure below. The infinite
vertices of P will correspond to three circles intersecting in a single point because
we have specified that each infinite vertex is at a distinct point and trivalent. Con-
sider the effect of decreasing the radius of each of the circles K2, · · · , KN by a small
number ǫ while keeping the centers of each of the circles and the radius of K1 fixed.
Because the circles intersect with non-obtuse dihedral angles, Lemma 6.13 gives
that the result is a small decrease of the dihedral angles between each intersecting
pair of planes. Clearly one can choose ǫ small enough to achieve an arbitrarily
small decrease in the dihedral angles between pairs of intersecting planes.

By Lemma 3.2, the sum of the dihedral angles at each of the finite vertices of
P is > π, whereas the sum of the dihedral angles at each of the infinite vertices
= π. We can choose ǫ small enough that each of the dihedral angles is decreased
by a amount small enough that the sum of the dihedral angles between triples of
faces that correspond to finite vertices of P remains > π and so that the dihedral
angles between each pair of intersecting circles remains > 0. The sum of dihedral
angles between triples of faces that intersect at infinite vertices in P becomes < π.
Therefore, by Lemma 3.2, the triples of faces that intersected at finite vertices in
P intersect at finite vertices in the resulting pattern of circles and the triples of
faces that intersected at infinite vertices in P do not intersect at a vertex, finite or
infinite, but still intersect pairwise. By lemma 6.12, for each triple of planes that
previously intersected at an infinite vertex there exists a plane that is perpendicular
to each of them. The circles corresponding to these perpendicular planes are drawn
in dashed lines in the pattern of circles on the right hand side of the figure above.
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This resulting pattern of circles corresponds to the polyhedron P ′ which has the
same combinatorics as P , except that each of the infinite vertices of P is replaced
by a triangular plane perpendicular its three adjacent faces. By construction we
have that the dihedral angles of P ′ are in (0, π/2]. �

Proof of Proposition 6.11.

The abstract polyhedron C cannot correspond to the tetrahedron since the
triangular faces of the tetrahedron do not correspond to prismatic circuits. If C
corresponds to the triangular prism, P0

C is non empty by Lemma 6.3. So, we can
restrict to the case where C has more than 5 faces. In this case, one can replace
all (or all but one) of the truncated triangles by single vertices, as shown in the
diagram below, to reduce C to either Pr5 or a simple abstract polyhedron. In either
case we call the resulting abstract polyhedron C0. (It can happen that replacing
all of the truncated triangles of C by single vertices results in the tetrahedron, this
is exactly the case where one must instead replace all but one of the truncated
triangles by vertices which results in C0 = Pr5, the once truncated tetrahedron.)

C0C

Using that AC 6= ∅ and Lemma 6.10, choose a point β ∈ AC so that each
component of β is within δ of π/3, with δ < π/18. It will be convenient to number
the edges of C and C0 in the following way: If there is a prismatic 3-circuit in C0

(i.e. C0 = Pr5), we number these edges 1, 2, and 3 in C and C0. (Otherwise, we
just pick three edges of C0 which do not meet at a vertex.) Next, we number the
remaining edges common to C and C0 by 4, 5, · · · , k. Finally, we number the edges
of C that were removed to form C0 by k + 1, · · · , n so that the edges surrounded
by prismatic three circuits of C with smaller angle sum (given by β) come before
those surrounded by prismatic three circuits with larger angle sum.

The point γ = (β1, β2, β3, β4+2δ, β5+2δ, ..., βk+2δ) satisfies γ ∈ AC0 . We check
conditions (1-5). Each of the dihedral angles specified by γ is in (0, π/2) because
0 < βi + 2δ < π/3 + 3δ < π/3 + π/6 = π/2. Therefore, condition (1) is satisfied,
as well as conditions (4) and (5) because the angles are acute. Two of the edges
labeled 4 and higher will enter any vertex of C0 so the sum of the three dihedral
angles at each vertex is at least 4δ greater than the sum of the three dihedral
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angles given by β, which is > π − 3δ. Therefore condition (2) is satisfied. If there
is a prismatic 3-circuit in C0, it crosses the first three edges of C0 and is also a
prismatic 3-circuit in C. By our definition of γ, γ1 + γ2 + γ3 = β1 + β2 + β3 < π,
if this is a prismatic 3-circuit, so condition (3) is satisfied.

Now define α(t) = (1 − t)γ + t(β1, ...βk). Let T0, ..., Tl−1 ∈ (0, 1) be the values
of t at which there is a vertex of C0 for which α(t) gives an angle sum of π. (For
pedantic reasons, we set T−1 = 0, Tl = 1.) In fact, this may happen for many
vertices simultaneously. We will label the vertices that have angle sum π at Ti by
vi
1, · · · , vi

m(i). Let Ci+1 be Ci with vi
1, · · · , vi

m(i) truncated for i = 0, · · · , l−1. (This

way, C l is C.)
Suppose that Ci has ni more edges than C0. We will conveniently miss-use no-

tation and set α(t) = (α1(t), · · · , αk(t), π/2, · · · , π/2), with the last ni components
being π/2.

We know that Andreev’s Theorem is true for C0 because C0 is either simple, or
the 3-prism. So, it will be sufficient to show that if Andreev’s Theorem is satisfied
for Ci then it is satisfied for Ci+1, for each i = 0, · · · , l − 1. To do this, we must
generate a polyhedron realizing Ci with the vertices vi

1, ..., v
i
m(i) at infinity and the

other vertices a finite points in H3. This will be easy with our definition of α(t)
and Proposition 5.5. We will then use Lemma 6.14 to truncate these vertices.

To use Proposition 5.5, we must check that α(t) ∈ ACi when t ∈ (Ti−1, Ti).
This follows almost directly from how α(t) is defined. To check condition (1),
notice that both βj and γj are non-zero and non-obtuse, for each j, so αj(t) must
be as well. Any vertex of Ci is either a vertex of both C and C0, such a vertex has
dihedral angle sum > π because it does for β and γ, or it is a truncated triangle of
C but not of Ci and therefore has dihedral angle sum > π by definition of Ti, or it
is a vertex of Ci on one of the truncated triangles, in which case two of the edges
entering this vertex have dihedral angles = π/2. In each of these cases, condition
(2) is satisfied.

Notice that any prismatic 3-circuit in Ci is is either a prismatic 3-circuit in
both C0 and C (the special case where C0 is the triangular prism) or is a prismatic
circuit of Ci which wasn’t a prismatic circuit of C0. In the first case, the dihedral
angle sum is < π because condition (3) is satisfied by both β and γ and in the
second case, the angle sum is < π by definition of the Ti.

For each j = 1, · · · , k we have βj, γj ∈ (0, π/2), so αj(t) ∈ (0, π/2). Since C0 is
the only abstract polyhedron that could be the 3-prism, condition (5) is satisfied
because C0 has only the edges e1, · · · , ek, each of which is assigned an acute dihedral
angle as seen above. However, αj(t) = π/2 for j > k, corresponding to the edges
of the added triangular faces. Fortunately, a prismatic 4-circuit cannot cross edges
of these triangular faces, since it would have to cross two edges from the same
triangle, which meet at a vertex. This would be contrary to the definition of a
prismatic circuit. So a 4-prismatic circuit can only cross edges numbered less than
or equal to k, each of which is assigned an acute dihedral angle, and hence has
dihedral angles sum < 2π, satisfying condition (4).
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Consider the sequence of dihedral angles αn,i = α(Ti−1 + (1− 1/n)(Ti − Ti−1)).
By our above analysis, αn,i ∈ ACi for each n, i. In fact, by definition αn,i limits
to the point α(Ti) ∈ ∂ACi , which satisfies conditions (1-5) to be in ACi , except
that the sum of the dihedral angles at each vertex vi

1, · · · , vi
m(i) is exactly π. We

assume that Andreev’s Theorem holds for Ci, so by Proposition 5.5, there exists a
non-compact polyhedron P i realizing Ci with each of the vertices vi

1, · · · , vi
m(i) at

infinity and the rest of the vertices at finite points.
Now, by Lemma 6.14, the existence of P i gives that there is a polyhedron

realizing Ci+1, therefore, by Proposition 6.1, that Andreev’s Theorem is satisfied
for the abstract polyhedron Ci+1. Repeating this process until i + 1 = l gives that
Andreev’s Theorem is true for C l, which is our original abstract polyhedron C. �

Proposition 6.15 If AC 6= ∅, then P0
C 6= ∅.

This proposition, combined with Proposition 6.1, concludes the proof of Andreev’s
Theorem.
Proof.

By Proposition 6.2 and Proposition 6.11 we know that Proposition 6.15 is true
for every simple abstract polyhedron C and for every C whose only prismatic
3-circuits are truncated triangles. So we assume that there are k > 0 essential
3-circuits. From this point on, we will work entirely within the dual complex C∗.

Label the essential 3-circuits γ1, ..., γk. The idea will be to replace C∗ with k+1
separate abstract polyhedra C∗

1 , ..., C
∗
k+1 each of which has no essential 3-circuits.

The γi separate the sphere into exactly k + 1 components. Let C∗
i be the i-th of

these components. To make C∗
i a simplicial complex on the sphere we must fill in

the holes. Each of the holes is bounded by 3 edges (some γl). Fill in such a hole
with the following figure (the dark outer edge is γl). The idea is that we are filling
in each hole with a truncated triangle:

γl

1

In Ci, we will call each vertex, edge, or face obtained by such filling in a new
vertex, new edge, or new face respectively. We will call all of the other edges old
edges. We label each such new vertex with the number l corresponding to the 3-
circuit γl that was filled in. Clearly for each l, there will be exactly 2 new vertices
labeled l which are in two different Ci, Cj. We must keep track of this pairing for
a later gluing. See the following diagram, although the general case is obviously
more complicated.
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γ1

1

C

C1

C2

1 (at infinity)

γ1
γ1

Notice that none of the Ci is a triangular prism, since we have divided up C
along essential prismatic 3-circuits.

The choice of angles a ∈ AC gives dihedral angles assigned to each old edge in
each C∗

i . Assign to each of the new edges π/2. This gives a choice of angles ai for
each C∗

i . One must now check that ai ∈ ACi
for each i. Luckily, this is easy.

Clearly condition (1) is satisfied since these angles are non-zero and none of
them obtuse.

The angles along each triangle of old edges in C∗
i already satisfy condition

(2) since a ∈ AC . For each of the new triangles added, two of the edges are
assigned π/2 and the third was already assigned a non-zero angle, according to a,
so condition (2) is satisfied for these triangles, too.

None of the new edges in C∗
i can be in a prismatic 3-circuit or a prismatic

4-circuit since such a circuit would have to involve two such new edges, which form
two sides of a triangle. Therefore, each prismatic 3 or 4-circuit has come from such
a circuit in C∗, so the choice of angles ai will satisfy (3) and (4).

Since none of the C∗
i is a triangular prism, condition (5) is a consequence of

condition (4), and hence is satisfied.
Therefore ai ∈ ACi

for each i. If for each i there exists a polyhedron Pi

realizing the data (Ci, ai), we are done. To see this, notice that each of the new
vertices corresponds to triangular face in Pi which is perpendicular to each of its
neighboring faces. Also note that for each pair of new vertices labeled l the two
faces dual to them are isomorphic. (By Proposition 1.1 the face angles are the
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same.) So one can glue all of the Pi together by gluing the pair of triangles labeled
l together for each l. Since the edges of these triangles were assigned dihedral
angles of π/2, the faces coming together from opposite sides of such a glued pair
fit together smoothly. The result is a polyhedron P realizing C and angles a. See
the following diagram.

The rest of P1 The rest of P2

The rest of P1 The rest of P21

1

1

So, we have reduced the problem to proving that if C has no essential 3-circuit
and if AC 6= ∅, then P∗

C 6= ∅. However, this is proven in Proposition 6.11. �

That concludes the proof of Andreev’s Theorem.

7 Hyperbolic tetrahedra

For the sake of completeness, we include this final section on hyperbolic tetrahedra
having non-obtuse dihedral angles. The results of this section will make it clear
why hyperbolic tetrahedra are a special case, distinct from Andreev’s Theorem and
they will also give insight into the reasons why an extension of Andreev’s Theorem
to include obtuse dihedral angles would be rather hard.

Theorem 7.1 Suppose that the cell complex ∆ on S2 gives the face structure of the
tetrahedron. Given non-obtuse dihedral angles α1, · · · , α6, determining non-obtuse
face angles β1(α1, · · · , α6), · · · , β12(α1, · · · , α6), then, there is a compact hyperbolic
polyhedron realizing ∆ with non-obtuse dihedral angles α1, · · · , α6 if and only if:

1. For each edge ei, 0 < αi ≤ π/2.

2. Whenever 3 distinct edges ei, ej, ek meet at a vertex, αi + αj + αk > π.

3. For each face the sum of the face angles satisfies βi + βj + βk < π.
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Recall from Lemma 1.1 that the face angles βi are calculable from the dihedral
angles αi and are themselves non-obtuse so that condition (3) is a condition in
terms of the dihedral angles. We will see an explicit calculation of the face angles
from the dihedral angles later in this section and use this to express the conditions
(1-3) from Theorem 7.1 entirely in terms of the dihedral angles. We will denote
the subset of R6 of dihedral angles satisfying conditions (1-3) by A∆.
Proof of Theorem 7.1: The method of proof is the same as in the proof of
Andreev’s Theorem, we consider the mapping α∆ : P0

∆ → A∆ and show that it is
an injective covering map. We then show that P0

∆ is non-empty and that A∆ is
connected so that α∆ is a homeomorphism.

The first step is to make sure that the dihedral angles of a tetrahedron satisfy
conditions (1-3). The proofs of conditions (1) and (2) are identical to those in
Section 3. Each face of a hyperbolic tetrahedron is a hyperbolic triangle of non-
zero area so the Gauss-Bonnet formula gives condition (3).

The proofs that the mapping αC is injective in Section 4 did not use anywhere
that the polyhedron is not the tetrahedron, so we conclude that α∆ is injective.

However, there is an elementary proof that αC is injective: Since the face
angles are uniquely determined by the dihedral angles and each face is a hyperbolic
triangle, one can calculate the length of each edge using the hyperbolic law of
cosines.

The only place in the proof that αC is proper from Section 5 where it was
used that C is not the tetrahedron was to show that the sequence of polyhedra Pi

did not have any faces that degenerate to a points or a line segments. However,
if they did, each of these faces would become Euclidean and would then violate
condition (3). Notice that the conditions for prismatic three and four circuits as
well as quadrilateral faces that were used in the proof in Section 5 are satisfied vac-
uously, since the tetrahedron has none of these combinatorial features. Therefore
we conclude that α∆ is proper.

Of course, as in the proof on Andreev’s Theorem, this gives that α∆ is an
injective covering map from P0

∆ to A∆ and it remains to show that P0
∆ is nonempty

and that A∆ is connected.
The easiest way to see that P0

∆ 6= ∅ is by explicit construction. Let v1 =
(0, 1, 0, 0),v2 = (0, 0, 1, 0),v3 = (0, 0, 0, 1), and v4 = 1√

3
(0, 1, 1, 1). Then the in-

tersection of the half spaces Hv1
∩ Hv2

∩ Hv3
∩ Hv4

is a hyperbolic tetrahedron
with dihedral angles α1,2 = π/2, α1,3 = π/2, α2,3 = π/2, α1,4 = α2,4 = α3,4 =
arccos(1/

√
3) < π/2. Hence, we conclude that P0

∆ 6= ∅.
To see that A∆ is connected is significantly harder than for AC with C not the

tetrahedron because the inequalities are not linear. We will have to do detailed
analysis of the equation that expresses a face’s angles in terms of the dihedral
angles.

Lemma 7.2 A∆ is path connected.

Proof: Recall that the face angle βi at a vertex (ei, ej, ek) in the face containing
ej and ek is the length of the edge of the unique spherical triangle with angles
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(αi, αj, αk) that is opposite from the angle αi. This can be calculated explicitly
using the Law of Cosines rule from spherical geometry:

cos(βi) =
cos(αi) + cos(αj) cos(αk)

sin(αj) sin(αk)

First, notice that given α ∈ A∆, decreasing any of the components of α does
not increase any of the βi. One can check that if:

F (x, y, z) =
cos(x) + cos(y) cos(z)

sin(y) sin(z)

Then we have:

∂F

∂x
= − sin(x)

sin(y) sin(z)
,

∂F

∂y
=

− sin(y) sin(z) sin(y) cos(z) − cos(y) cos(z) cos(y) sin(z)

sin2(y) sin2(z)
,

∂F

∂z
=

− sin(y) sin(z) cos(y) sin(z) − cos(y) cos(z) sin(y) cos(z)

sin2(y) sin2(z)

These have the nice property that for all (x, y, z) ∈ (0, π/2]3 we have ∂F
∂x

<
0, ∂F

∂y
< 0, and ∂F

∂z
< 0. Because arccos is a decreasing function, this gives that

β(αi, αj, αk) ≤ β(γi, γj, γk) when αi ≤ γi, αj ≤ γj , and αk ≤ γk.
Therefore, given α ∈ A∆, decreasing the angles of α cannot result in a violation

of condition (3).
Let Ai ⊂ ∂A∆ be the subset obtained by restricting the dihedral angle sum

at each of the vertices, expect vi, to equal π. Using the formula for the βj, one
can check that at each vertex with dihedral angle sum exactly π, each of the face
angles is 0. One can also check that each of the face angles at vi is non-obtuse,
since each of the dihedral angles is non-obtuse. Therefore, for any point in Ai, for
each i = 1, · · · , 4, each of the face angle sums is ≤ π/2. Since the formula for face
angles in terms of dihedral angles is continuous, there exists a neighborhood NAi

of each Ai in A∆ which is connected, since Ai is convex.
For i = 1, · · · , 4, each Ai contains (π/3, · · · , π/3) hence NA1 ∩ NA2 ∩ NA3 ∩

NA4 6= ∅. Therefore NA1 ∪NA2 ∪NA3 ∪NA4 is path connected. Denote this set
by N

Given any α ∈ A∆, we will create a path from α to a point in N . This will be
sufficient to prove that A∆ is connected.

First, consider t · α decreasing t from 1 to 0. For some first value of t, the sum
of dihedral angles at one of the vertices, say v1, will be π. Next, decrease only the
dihedral angles of edges not entering v1 in the same uniform way until the sum of
the dihedral angles at another of the vertices, say v2 equals π. Finally, decrease the
dihedral angle on the edge that does not enter v1 or v2 until one the two remaining
vertices has dihedral angle sum π, call this vertex v3.
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Since we have decreased the dihedral angles during the duration of this path,
condition (3) was satisfied throughout. Condition (1) was satisfied throughout be-
cause we decreased the dihedral angles, so none exceded π/2 and since we decreased
them by scaling, so that none reached 0.

This path must have entered N because it connected a point in A to A1. �

Therefore, since α∆ : P0
∆ → A∆ is an injective covering map with P0

∆ 6= ∅
and A∆ path connected, we conclude that α∆ is a homeomorphism. This proves
Theorem 7.1. �

Using the explicit calculation in the above proof, we can re-express Theorem
7.1 entirely in terms of the dihedral angles.

Theorem 7.3 Suppose that the cell complex ∆ on S2 gives the face structure of the
tetrahedron. There is a compact hyperbolic polyhedron realizing ∆ with non-obtuse
dihedral angles α1, · · · , α6 if and only if:

1. For each edge ei, 0 < αi ≤ π/2.

2. Whenever 3 (distinct) edges ei, ej, ek meet at a vertex, αi + αj + αk > π.

3. For each face F bounded by edges ei, ej, ek with edges ei,j , ej,k, ek,i emanating
from the vertices, we have:

arccos

(

cos(αi,j) + cos(αi) cos(αj)

sin(αi) sin(αj)

)

+

arccos

(

cos(αj,k) + cos(αj) cos(αk)

sin(αj) sin(αk)

)

+

arccos

(

cos(αk,i) + cos(αk) cos(αi)

sin(αk) sin(αi)

)

< π

The proof is evidently a direct consequence of Theorem 7.1 and the formula for
the face angles.

In terms of the dihedral angles, condition (3) is reasonably nasty. In fact, it
results in AC being non-convex! Consider the hyperbolic tetrahedron with dihedral
angles x and y assigned to two edges that meet at a vertex and dihedral angles α
assigned to the remaining edges. The following figure was computed in Maple [1]
and shows the cross section of AC when α = 1.3.
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This classification of hyperbolic tetrahedra in terms of their dihedral angles
gives us some understanding of how a generalization of Andreev’s Theorem to
include obtuse dihedral angles would be significantly more complicated than An-
dreev’s Theorem. For instance, as in the case of the tetrahedron, one could have
a triangular face truncating a finite vertex. With non-obtuse dihedral angles (for
C not the tetrahedron) this cannot happen, by Lemma 3.3. However, this lemma
used in an essential way that the dihedral angles are non-obtuse. In the general
case, as for the tetrahedron, one would have to write a condition guaranteeing that
the triangular faces do not degenerate in terms of the face angles, which depend in
a non-linear way on the dihedral angles. One can only expect that other conditions
necessary to prevent more exotic types of degeneracies.

One must also realize that in the case of arbitrary dihedral angles there is
the additional difficulty that one cannot restrict to studying polyhedra realizing
trivalent abstract polyhedra.

8 Example of the combinatorial algorithm from

Lemma 6.5

In this final section we include an example of the combinatorial algorithm described
in Lemma 6.5, which gives a sequence of Whitehead moves to reduce the dual
complex of a simple abstract polyhedron, C∗, to the dual complex D∗

N , where N
is the number of faces in C.
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The Whitehead Sequence for a complex C for which Andreev’s proof does not
work:

Straightened out

Straightened out

Case 1

Case 1

Final Whitehead moves

give D18

Case 1

Case 1Case 1

Case 1Case 3
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