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Classical Special Functions

Throughout 18-20th centuries special functions appeared in many physical
problems:

• Airy function (1838) was introduced during study of intensity of light

• Bessel functions appeared in the work of Jakob Bernoulli on the
oscillations of heavy chains (1738), of Euler on the vibration of circular
membrane (1764), and of Lagrange on elliptic motion (1769)

• parabolic cylinder functions appear while solving Helmholtz equation
(eigenvalues of the Laplacian)

• hypergeometric functions appear while solving one-dimensional
quantum scattering through and over barriers

• confluent hypergeometric functions appear while solving wave
equation

All of these functions are solutions of second order linear differential
equations.



Bessel Function

Bessel functions can be defined by

Jν(z) =
(z

2

)ν ∞∑
k=0

(−1)k(z/2)2k

k!Γ(ν + k + 1)

and solve

z2y′′ + zy′ + (z2 − ν2)y = 0.

It holds that

J−1/2(z) =

(
2

πz

)1/2

cos z and J1/2(z) =

(
2

πz

)1/2

sin z.



Jacobi Polynomials

Jacobi polynomials P (α,β)
n (z), themselves hypergeometric functions, can be

defined either via orthogonality∫ 1

−1

xkP (α,β)
n (x)(1 + x)β(1− x)αdx = 0,

k = 0, n− 1, α, β > −1, or via differential equation

(1− x2)y′′ + [β − α− (β + α+ 2)x]y′ + n(n+ α+ β + 1)y = 0.

P
(− 1

2
,− 1

2
)

n (x)“ = ” cos(n arccosx) and P
( 1
2
, 1
2

)
n (x)“ = ”

sin((n+ 1) arccosx)

sin(arccosx)
.

Theorem (Stieltjes)

The zeros of P (2q−1,2p−1)
n (x) are the unique minimizer on [−1, 1] of

the weighted logarithmic energy

n∑
i=1

(
p log

1

1− xi
+ q log

1

1 + xi

)
+
∑
i<j

log
1

|xi − xj |



Bessel Functions and Jacobi Polynomials

Theorem (Mehler-Heine Formula)

lim
n→∞

n−αP (α,β)
n

(
1− z2

2n2

)
=

(
2

z

)α
Jα(z).
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Airy Functions

Airy functions Ai(z),Bi(z) solve differential equation

y′′ − zy = 0

and are related to Bessel functions via ζ = (2/3)z3/2,

Ai(−z) =

√
z

3

(
J−1/3(ζ) + J1/3(ζ)

)
, Bi(−z) =

√
z

3

(
J−1/3(ζ)− J1/3(ζ)

)
.
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Airy Functions

Functions Ai(z),Bi(z) admit integral representations

Ai(z) =
1

2πi

∫
L1−L2

e−V (s;z)ds

and

Bi(z) =
1

2π

(∫
L0−L1

+

∫
L0−L2

)
e−V (s;z)ds,

where Lk = {xeπi(−1+2k/3) : x ∈ (0,∞)} oriented towards the origin and

V (s; z) = −s
3

3
+ zs.

π/3 Re z

Im z
L2

L1

L0



Hermite Polynomials

Hermite polynomials Hn(z) can be defined either via orthogonality∫ ∞
−∞

xkHn(x)e−x
2

dx = 0,

k = 0, n− 1 or via differential equation

y′′ − 2zy′ + 2ny = 0.

Theorem (Plancherel-Rotach)

For x =
√

2n+ 1− t/an, it holds that

e−x
2/2Hn(x) = cn

(
Ai(t) +O(n−2/3)

)
,

where an = 21/2 31/3 n1/6 and cn = π−3/431/32n/2+1/4(n!)1/2n−1/12.



Painlevé Equations

At the beginning of the 20th century, it was shown by Painlevé and Gambier
that among the second order differential equations of the form

y′′ = F (z, y, y′),

where F is rational in y, y′ and analytic in z, there are exactly 50 canonical
equations whose solutions do not possess movable branch points. Among
these, 44 can either be reduced to linear equations, equations solved in terms
of elliptic functions, or to the remaining 6 equations.



Painlevé Equations

PI y
′′ = 6y2 + z,

PII y
′′ = 2y3 + zy + α,

PIII y
′′ =

1

y
(y′)2 − y′

z
+
αy2 + β

z
+ γy3 +

δ

y
,

PIV y′′ =
1

2y
(y′)2 +

3

2
y3 + 4zy2 + 2(z2 − α)y +

β

y
,

PV y′′ =

(
1

2y
+

1

y − 1

)
(y′)2 − y′

z
+

(y − 1)2

z2

(
αy +

β

y

)
+ γ

y

z
+ δ

y(y + 1)

y − 1
,

PVI y
′′ =

1

2

(
1

y
+

1

y − 1
+

1

y − z

)
(y′)2 −

(
1

z
+

1

z − 1
+

1

y − z

)
y′

+
y(y − 1)(y − z)
z2(z − 1)2

(
α+ β

z

y2
+ γ

z − 1

(y − 1)2
+ δ

z(z − 1)

(y − z)2

)
.



Longest Increasing Subsequence

Let π ∈ SN be a permutation of 1, 2, . . . , N . π(m1), π(m2), . . . , π(mn) is said
to be an increasing subsequence if

1 ≤ m1 < m2 < · · · < mn ≤ N and π(m1) < π(m2) < · · · < π(mn).

Theorem (Baik-Deift-Johansson)

Equip SN with uniform distribution. Denote by `N (π) the length of
the longest increasing subsequence of π ∈ SN . Then

lim
N→∞

Prob

(
`N (π)− 2

√
N

N1/6
≤ s
)

= F2(s),

where F2(s) is the Tracy-Widom distribution given by

F2(s) = exp

{
−
∫ ∞
s

(x− s)y2(x)dx

}
and y(x) is the Hastings-McLeod solution of PII: α = 0 and

y(x) ∼ Ai(x), x→∞, y(x) ∼
√
−x/2, x→ −∞.



Special Solutions

For certain values of the parameters, equations PII − PVI have rational and
algebraic solutions as well as special solutions which are expressed via
classical special functions.

PII − PVI also have Bäcklund transformations that map solutions of a given
Painlevé equation to solutions of the same Painlevé equation, but with
different values of the parameters.



Airy Solutions of PII

When α = 1/2, PII has a solution

q1(z;λ) = − d

dz
log
(
C1Ai

(
−2−1/3z

)
+ C2Bi

(
−2−1/3z

))
,

where λ = C2/C1 ∈ C. Using Bäcklund transformations one then constructs

qn+1(z;λ) = −qn(z;λ)− 2n

2q2
n(z;λ) + 2q′n(z;λ) + z

solutions of PII for α = (n+ 1)− 1/2, n ≥ 1, as well as

qn+1(z;λ) = −q−n+1(z;λ)

solutions of PII for α = n− 1/2, n ≤ 0.



Airy Solutions of PII
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Zeros (blue) and poles (red) of q3(z; 0).
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Rational Solutions of PII

When α = n ≥ 1, PII has a solution

un(z) = − d

dz
log

(
Qn−1(z)

Qn(z)

)
,

whereQn(z) are Vorob’ev-Yablonski polynomials defined via

Qn+1(z)Qn(z) = zQ2
n(z)− 4

[
Q′′n(z)Qn(z)−Q′n(z)2] ,

withQ0(z) = 1 andQ1(z) = z.



Rational Solutions of PII

Zeros ofQn(n2/3z) for n = 2, 6, 12, 24.

Figure from M. Bertola and Th. Bothner, Zeros of large degree Vorob’ev-Yablonski polynomials via a Hankel

determinant identity.



Rational Solutions of PIII

When α = 4(m+ n), β = 4(m− n), γ = −δ = 4, PIII has a solution

un(z;m) =
sn(z;m− 1)sn−1(z;m)

sn(z;m)sn−1(z;m− 1)
,

where Umemura polynomials sn(z;m) are defined via

sn+1(z;m) =
(4z + 2m+ 1)s2

n(z)− sn(z)s′n(z)− z(sn(z)s′′n(z)− s′n(z)2)

2sn−1(z;m)

with s−1(z;m) = s0(z;m) ≡ 1.



Rational Solutions of PIII

Poles (red) and zeros (blue) of un(nz; 0) for n = 5, 10, 20.

Figure from Th. Bothner, P. Miller, and Y. Sheng, Rational solutions of the Painlevé-III equation.



Algebraic Solutions of PIII

When α = 1, β = 2n, γ = 0, and δ = −1, PIII has a solution

un(z) =

(
2

3

)1/2
Rn−1(ζ)Rn+1(ζ)

R2
n(ζ)

, z =

(
2

3

)3/2

ζ3,

where Ohyama polynomials Rn(ζ) are defined via

2ζRn+1(ζ)Rn−1(ζ) = −Rn(ζ)R′′n(ζ)+R′n(ζ)2− 1

ζ
Rn(ζ)R′n(ζ)+2(ζ2−n)R2

n(ζ)

with R0(ζ) = 1 and R1(ζ) = ζ2.



Algebraic Solutions of PIII

Here U2n(ζ) = ζ−3nR2n(ζ) and ζ−3n−1R2n+1(ζ).

Figure from P. Clarkson, The third Painlevé equation and associated special polynomials.



Hankel Determinantal Representations

Hankel determinantal representation of special solutions of PIV involving
parabolic cylinder functions has been obtained by A. Barhoumi.

Hankel determinantal representation of Ohyama polynomials (PIII) has been
very recently obtained by J. Harrow (not yet published).

Hankel determinantal representation of Vorob’ev-Yablonski polynomials
(PII) has been obtained by Bertola and Bothner.

It was shown by Okamoto and Flaschka-Newell that for the Airy solutions of
PII it holds that

qn(z;λ) :=
d

dz
log

(
τn−1(z;λ)

τn(z;λ)

)
,

where λ = C1/C2, τ0(z;λ) = 1 and for n ≥ 1

τn(z;λ) = det

[
dj+k

dzj+k

(
C1Ai

(
−2−1/3z

)
+ C2Bi

(
−2−1/3z

))]n−1

j,k=0

.



Random Matrices

In the 1950’s Wigner proposed to model the local statistical behavior of the
resonance levels off heavy nuclei by the local statistical behavior of the
eigenvalues of a large random matrix.

LetHN be the space of N ×N Hermitian matricesM = [Mij ]. Place a
probability distribution

ce−F (M)dM = ce−F (M)
∏

dMii

∏
i<j

dMR
ijMI

ij

onHN , whereMij =MR
ij + iMI

ij and c is a normalizing constant.

Physically, since probabilities should not depend on the observer, it is
required

F (M) = F (UMU∗)

for any unitary matrix U (it holds that d(UMU∗) = dM).



Gaussian Unitary Ensemble

Gaussian Unitary Ensemble is given by

F (M) =
1

2
trM2

(
Fβ(M) =

β

4
trM2

)
.

(G Orthogonal E is β = 1 and G Simplectic E is β = 4)

If f is a function such that f(M) = f(UMU∗), then

f(M) = f(λ) = f(λ1, λ2, . . . , λN ),

where λi are the eigenvalues of M . In this case “unitary” variables in dM
can be integrated out and∫

f(M)e−
1
2

trM2

dM “ = ”

∫
RN

f(λ)e−
1
2

∑
i λ

2
i
∏
i<j

(λi − λj)2dNλ.



Gaussian Unitary Ensemble

The eigenvalues spread out on the whole real line. Therefore, it is more
convenient to study the distribution of the scaled eigenvalues xi = λi/

√
N :

1

ZN

∫
RN

e−
N
2

∑
i x

2
i
∏
i<j

(xi − xj)2dNx,

where ZN is the normalizing constant also known as a partition function.

Scaled eigenvalues converge to Wigner’s semi-circle law: 1
2π

√
4− x2dx.

N = 1000



Gaussian Unitary Ensemble

Theorem (Tracy-Widom)

Let xmax(N) be the largest eigenvalue of anN×N scaled GUE matrix.
Then

lim
N→∞

Prob
(

(xmax(N)− 2)N2/3 ≤ s
)

= F2(s),

where F2(s) is the Tracy-Widom distribution

F2(s) = exp

{
−
∫ ∞
s

(x− s)y2(x)dx

}
and y(x) is the Hastings-McLeod solution of PII.
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Quartic Perturbation

Consider the partition function of the quartic perturbation of GUE:

ZN (t) =

∫
HN

e−
1
2

trM2− t
N

trM4

dM.

Then it holds that

ZN (−t)
ZN (0)

=
∞∑
n=0

1

n!

(
t

N

)N 〈(
trM4)n〉 ,

where
〈f〉 = Z−1

N (0)

∫
f(M)e−

1
2

trM2

dM.



Wick’s Calculus

〈
trM4〉 =

〈
N∑

i,j,k,l=1

MijMjkMklMli

〉
.

Wick’s Theorem

It holds that

〈MijMjkMklMli〉 = 〈MijMjk〉 〈MklMli〉+

〈MijMkl〉 〈MjkMli〉+ 〈MijMli〉 〈MjkMkl〉 .

It also holds that
〈MijMkl〉 = δilδjk.

Hence, 〈
trM4〉 =

N∑
i,j,k,l=1

(δik + δilδjkδij + δjl) = N3 +N +N3.



Feynman’s Diagrams

The terms in Wick’s theorem can be represented by Feynman’s diagrams
with one 4-valent vertex:MijMkl gives rise to i→ l and k → j

i j

kl

i j

kl

〈MijMjk〉 〈MklMli〉+ 〈MijMkl〉 〈MjkMli〉+ 〈MijMli〉 〈MjkMkl〉

The first and last diagrams are planar with 3 faces and the second one is
toroidal with 1 face.

In general,
(
trM4

)n will correspond to a diagram with n 4-valent vertices.



Quartic Perturbation

“Theorem” (Bessis-Itzykson-Zuber)

Given the partition function

ZN (t) =

∫
HN

e−
1
2

trM2− t
N

trM4

dM,

it holds that

log

(
ZN (−t)
ZN (0)

)
∼
∑
g

eg(t)N
2−2g,

where eg(t) is analytic around the origin:

eg(t) =

∞∑
n=1

tn

n!
κg(n),

and κg(n) is the number of 4-valent connected graphs with n vertices
on a Riemann surface of genus g.



Hermitian Unitary Ensembles

Consider a more general Hermitian ensemble given by the distribution

1

ZN (t)

∫
RN

e−N
∑
i V (xi;t)

∏
i<j

(xi − xj)2dNx,

where

V (x; t) =
1

2
x2 +

2ν∑
i=1

tix
i, t2ν > 0,

and t = (t1, t2, . . . , t2ν).



Graph Enumeration

Theorem (Ercolani-McLaughlin)

Let t be such that |t| ≤ T and t2ν > γ
∑2n−1
i=1 ti, T, γ > 0. Then

log

(
ZN (t)

ZN (0)

)
∼
∞∑
g=0

eg(t)N
2−2g,

where each eg(t) is analytic in t around 0. Moreover,

eg(−t) =
∑
nj≥1

tn1
1 tn2

2 · · · tn2ν
2ν

n1!n2! · · · n2ν !
κg(n1, n2, . . . , n2ν),

where κg(n1, n2, . . . , n2ν) is the number of connected graphs with nj
j-valent vertices on a Riemann surface of genus g.



Complex Cubic Ensemble

Consider the partition function for the complex cubic ensemble:

ZN (u;α) =

∫
ΓN

e
−N

∑
i

(
z2i
2
−uz3i

)∏
i<j

(zi − zj)2dNz,

where Γ = αΓ0 + (1− α)Γ1, α ∈ C.
4 PAVEL BLEHER AND ALFREDO DEAÑO

�0

�1

�2

Im z

Re z

Figure 1. The sectors S0, S1, S2 and the contours �0, �1, �2.

converges for any k = 0, 1, . . . and any u � 0. Clearly, it is also possible to take combinations of
two such contours. In Fig. 1 we consider contours consisting of two rays joining the sectors S0, S1,
and S2, namely

�0 = R⇡ [ R⇡/5, �1 = R⇡ [ R�⇡/5, �2 = R�⇡/5 [ R⇡/5, (1.14)

with orientation from (�1) to (1 e⇡i/5) on �0, from (�1) to (1 e�⇡i/5) on �1, and from (1e�⇡i/5)

to (1 e⇡i/5) on �2.
More generally, following [22], see also [19] and [3], it is convenient to introduce a linear combi-

nation of the contours �0 and �1. To that end, let us fix some ↵ 2 C and define

� = ↵�0 + (1 � ↵)�1, (1.15)

in the sense that for any f(z) such that the integral of f(z) along � is well defined, we have
Z

�
f(z)dz = ↵

Z

�0

f(z)dz + (1 � ↵)

Z

�1

f(z)dz. (1.16)

Observe that ↵ = 1 corresponds to integration on �0 only, and ↵ = 0 corresponds to integration
on �1. The choice ↵ = 1/2 would lead to integration on �2, since by Cauchy’s theorem,

Z

�0

f(z)dz +

Z

�1

f(z)dz +

Z

�2

f(z)dz = 0,

for an analytic function f(z).
With this choice of � = �(↵), the integral ZN (u) = ZN (u;↵) in (1.10) is convergent for any

u � 0. By the Cauchy theorem, we have some flexibility in the choice of the contours �0, �1 within
the sectors S0, S1, S2.

In our previous paper [7] we considered the large N asymptotic behavior of the free energy

FN (u) =
1

N2
ln

ZN (u)

ZN (0)
, (1.17)

where ZN (u) is the partition function for the cubic model (1.10) in the interval 0  u < uc, where
uc is the following critical value:

uc =
31/4

18
. (1.18)



Counting 3-Valent Graphs

Theorem (Bleher-Deaño)

Fix α ∈ C. For 0 ≤ u < 31/4/18, FN (u;α) admits an asymptotic
expansion

log
ZN (u;α)

ZN (0;α)
∼
∞∑
g=0

F (2g)(u)N2−2g.

The functions F (2g)(u) do not depend on α and admit an analytic con-
tinuation into |u| < 31/4/18. If

F (2g)(u) =

∞∑
j=1

f
(2g)
2j

u2j

(2j)!
,

then f
(2g)
2j counts the number of 3-valent connected graphs with 2j

vertices on a Riemann surface of genus g.



Complex Cubic Ensemble

After a substitution

zj = (3u)−1/3sj +
1

6u
, t =

1

4(3u)4/3
,

we get that

ZN (u;α) = (4t)N
2/4e−2t3/2N/3ZN (t),

where

ZN (t) =

∫
ΓNα

e−N
∑
i V (si;t)

∏
i<j

(si − sj)2dNs

Γα = L0 − (1− α)L1 − αL2 and V (s; t) = −s3/3 + ts.

π/3 Re z

Im z
L2

L1

L0



Hankel Determinants

Let us now also reparametrize Γα as Γ(λ), λ ∈ C, where

Γ(λ) =
λ

π
L0 +

(
− λ

2π
+

1

2πi

)
L1 +

(
− λ

2π
− 1

2πi

)
L2

for |λ| <∞ and Γ(∞) = 1
π
L0 − 1

2π
L1 − 1

2π
L2. Let

Dn(t;N,λ) = det

[∫
Γ(λ)

si+je−NV (s;t)ds

]n
i,j=0

.

Then

ZN (t) = N !DN−1(t;N,λ).



Connection to PII

Recall that we were interested in special solutions of PII given by

qn(z;λ) :=
d

dz
log

(
τn−1(z;λ)

τn(z;λ)

)
where, as before, λ = C1/C2 and

τn+1(z;λ) = det

[
dj+k

dzj+k

(
C1Ai

(
−2−1/3z

)
+ C2Bi

(
−2−1/3z

))]n
j,k=0

.

Recall also that

Ai(z) + λBi(z) =

(
1

2πi

∫
L1−L2

+
λ

2π

∫
L0−L1

+
λ

2π

∫
L0−L2

)
e−V (s;z)ds.

Thus, it holds that

τn+1(z;λ) =
NN(N+1)/3

2(N−1)N/3
Dn(−t;N,λ) z =

(√
2N
)2/3

t,



Orthogonal Polynomials

Let Pn(s) = Pn(s; t,N, λ) be a polynomial of degree at most n such that

∫
Γ(λ)

skPn(s)e−NV (s;t)ds = 0, k = 0, n− 1.

If Dn−1(t;N,λ) 6= 0, then degPn = n. If Dn(t;N,λ)Dn−1(t;N,λ) 6= 0, then

sPn(s) = Pn+1(s) + βn(t;N,λ)Pn(s) + γ2
n(t;N,λ)Pn−1(s).



Connection

Theorem (Barhoumi-Bleher-Deaño-Ya.)

qn(z;λ) = −(N/2)1/3βn−1

(
−
(√

2N
)−2/3

z;N,λ

)
.

In particular, poles of qn(z;λ) correspond to values of t for which

Dn(t;N,λ) = 0 or Dn−1(t;N,λ) = 0.

That is, values of t for which

degPn = n− 1 or degPn+1 = n.

Moreover,

pn(z;λ) = −2(N/2)2/3γ2
n−1

(
−
(√

2N
)−2/3

z;N,λ

)
gives an associated special solution of PXXXIV.



Heuristics

Heuristics

If the attracting set of zeros of Pn consists of a single Jordan arc, all the
zeros of Pn remain bounded; otherwise Pn will have a zero exhibiting
a spurious behavior.



Phase Space

C
0−1

(a)

− 3
√

1/2 Ω(0)

(b)

3 · 2−2/3e−2πi/3

3 · 2−2/3e2πi/3

O(0)

(c)

(a) C is the critical graph of the quadratic differential −
(
1 + 1

s

)3
ds2.

(b) ∆ :=
{
x : 2x3 ∈ C

}
.

(c) O(0) = t(Ω(0)), x3 − tx− 1 = 0.



Phase Space

O0,−i

O0,0

O0,i

O1,−

O1,−i

O1,0

O1,i

Theorem (Barhoumi-Bleher-Deaño-Ya.)

• for t ∈ O0 the attracting set is a single analytic Jordan arc;

• for t ∈ O1,− the attracting set consists of three analytic Jordan
arcs with a common endpoint;

• for t ∈ O1 \O1,− attracting set consists of two analytic Jordan
arcs with no endpoints in common.



Phase Space
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Poles (red) and zeros (blue) of q3(−(3
√

2)2/3z;∞) and the curves ∂O1 (black).



Scaling Limit in the One-cut Region

Theorem (Barhoumi-Bleher-Deaño-Ya.)

When λ = 0 (pure Airy solution),

(2/n)1/3qn
(
−(
√

2n)2/3t; 0
)

= −x0(t) +O
(
n−1)

and
(2/n)2/3pn

(
−(
√

2n)2/3t; 0
)

= 1/x0(t) +O
(
n−2)

where x0(O(0)) = Ω(0), x3 − tx− 1 = 0.



Scaling Limit in the Two-cut Region

Theorem (Barhoumi-Bleher-Deaño-Ya.)

When λ = 0 (pure Airy solution),

γ2
n(t;n, 0) = S(t)θn,1(∞; t)θn,2(∞; t) +O

(
n−1)

where S(t) is an explicit functions of the endpoints of the attracting set
of zeros of the orthogonal polynomials and θn,i(z; t) are the pull-backs
from one of the sheets of a two-sheeted Riemann surface associated to
the attracting set, one having a floating pole and one having a floating
zero depending on n, t.


