What do Painlevé equations have in common with

graph enumeration on Riemann surfaces?

Maxim L. Yattselev

INDIANAPOLIS SCHOOL OF SCIENCE

Department of Mathematical Sciences

Colloquium
University of Missouri
October 17th, 2024



Classical Special Functions

Throughout 18-20th centuries special functions appeared in many physical
problems:

e Airy function (1838) was introduced during study of intensity of light

o Bessel functions appeared in the work of Jakob Bernoulli on the
oscillations of heavy chains (1738), of Euler on the vibration of circular
membrane (1764), and of Lagrange on elliptic motion (1769)

e parabolic cylinder functions appear while solving Helmholtz equation
(eigenvalues of the Laplacian)

e hypergeometric functions appear while solving one-dimensional
quantum scattering through and over barriers

o confluent hypergeometric functions appear while solving wave
equation

All of these functions are solutions of second order linear differential
equations.



Bessel Function

Bessel functions can be defined by

MO 2=2ey

k=0

and solve

[ 2y 2y + (22 =)y =0. ]

It holds that

9\ /2 9\ /2
J_12(2) = (E) cosz and Jy/a(z) = (E) sin z.



Jacobi Polynomials
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Jacobi polynomials P, ( ), themselves hypergeometric functions, can be

defined either via orthogonality
1
/ " PP (2)(1 + 2)? (1 — z)%dx = 0,
=il

k=0,n—1,«a,3 > —1, or via differential equation

A-—z)y ' +[B—a—(B+a+2)zly +nn+a+B+1)y=0.
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sin(arccos )

Theorem (Stieltjes)

The zeros of P>~ "**~Y) () are the unique minimizer on [—1, 1] of
the weighted logarithmic energy
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Bessel Functions and Jacobi Polynomials

Theorem (Mehler-Heine Formula)
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Pl(;,,:,’o)(w) (red), Pl(;o’l’o)(:r) (yellow), and Jy(z) (blue) on [.9, 1].



Airy Functions

Airy functions Ai(z), Bi(z) solve differential equation

[ yl/izy:o ]

and are related to Bessel functions via ¢ = (2/3)z%/2,

Ai(—2) = \/; (Jajs(©) + J1ja(0),  Bi(=2) = \/; (J1/a(0) = J15(0)) -
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Airy Functions

Functions Ai(z), Bi(z) admit integral representations

Ai(z)

and

! / e~ V(52 gs
Bn—iig

" omi

Bi(z) = S (/ +/ ) e~ V(=2 g,
2 Em=1n Ep=ip

mi(—142k/3) . ,

where Ly = {ze :x € (0,00)} oriented towards the origin and
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Hermite Polynomials

Hermite polynomials /,,(z) can be defined either via orthogonality

/ kan(m)e_xzdx =0,

—o0

k = 0,n — 1 or via differential equation

y" — 22y’ + 2ny = 0.

Theorem (Plancherel-Rotach)

For z = v/2n + 1 — t/an, it holds that
e P H(z) = cn (Ai(t) n O(n*/?’)) :

where a,, = 21/23Y3 2% and ¢,, = 7r73/431/32”/2“/4(n!)1/2n71/12.




Painlevé Equations

At the beginning of the 20th century, it was shown by Painlevé and Gambier
that among the second order differential equations of the form

[ y' =F(z9,9), ]

where F is rational in y, ¥ and analytic in z, there are exactly 50 canonical

equations whose solutions do not possess movable branch points. Among
these, 44 can either be reduced to linear equations, equations solved in terms
of elliptic functions, or to the remaining 6 equations.



Painlevé Equations
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Longest Increasing Subsequence

Let 7 € Sy be a permutation of 1,2, ..., N. m(m1), 7(mz), ..., m(my,) is said
to be an increasing subsequence if

1<mi<ma<---<m, <N and 7w(m1) < w(mz) <--- < w(my).

Theorem (Baik-Deift-Johansson)

Equip Sn with uniform distribution. Denote by ¢ () the length of
the longest increasing subsequence of = € Sx. Then

lim Prob <M < ) = F3(s),

N —o0 N 1/6
where F5(s) is the Tracy-Widom distribution given by
Ra(s) = e { - [" - se)ts)
and y(z) is the Hastings-McLeod solution of P1i: o = 0 and

y(z) ~ Ai(z), = — o0, y(z)~+V—2/2, T— —00.




Special Solutions

For certain values of the parameters, equations P11 — Py have rational and
algebraic solutions as well as special solutions which are expressed via
classical special functions.

P11 — Pvr also have Backlund transformations that map solutions of a given
Painlevé equation to solutions of the same Painlevé equation, but with
different values of the parameters.



Airy Solutions of

When o = 1/2, Py has a solution

qi1(z;A) = —% log (ClAi (—271/37;) + C2Bi (—271/32)) ,

where A = (', /C; € C. Using Bicklund transformations one then constructs

2n
22 (2 ) + 2q,(z; \) + 2

@nt1(2;A) = —aqn(z; A) —

solutions of Pr; for« = (n+ 1) — 1/2,n > 1, as well as
Gnt1(23A) = —q-nt1(2;A)

solutions of Py fora =n —1/2,n < 0.



Airy Solutions of

Zeros (blue) and poles (red) of gs(z; c0).



Rational Solutions of

When o = n > 1, Py has a solution

where O,,(z) are Vorob’ev-Yablonski polynomials defined via

Qnt1(2)Qn(2) = 2Q5(2) — 4[Q(2) Qn(2) — Q0 ()], ]

with Qo(z) = 1 and Qi (2) = 2.



Rational Solutions of
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Zeros of Q,,(n?/3z) forn = 2,6, 12, 24.

Figure from M. Bertola and Th. Bothner, Zeros of large degree Vorob’ev-Yablonski polynomials via a Hankel

determinant identity.



Rational Solutions of

When a = 4(m +n), 8 =4(m —n), v = —§ = 4, P11 has a solution

Sn(z;m — 1)sn—1(z;m)

un(zim) = sn(z;m)sn—1(z;m — 1)’

where Umemura polynomials s, (z;m) are defined via

(42 + 2m + 1)s7.(2) = 5n(2)8n(2) = 2(5n(2)50(2) — 50(2)*)
28n—1(2;m)

Snt+1(z;m) =

with s_1(z;m) = so(z;m) = 1.



Rational Solutions of
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Poles (red) and zeros (blue) of w.,(nz;0) for n = 5, 10, 20.

Figure from Th. Bothner, P. Miller, and Y. Sheng, Rational solutions of the Painlevé-III equation.



Algebraic Solutions of

Whena =1, 8 =2n,v =0,and § = —1, P11 has a solution

where Ohyama polynomials 17,,({) are defined via
2R (0)Rar() = ~Rul OO +RA(0)* = ZRaO RO+ —m) RA(C)

with Ro(¢) = 1and R (¢) = ¢°.



Algebraic Solutions of
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Here Uz, () = ¢~ Ran(¢) and ¢~*" " Ran 1 ().

Figure from P. Clarkson, The third Painlevé equation and associated special polynomials.



Hankel Determinantal Representations

Hankel determinantal representation of special solutions of Prv involving
parabolic cylinder functions has been obtained by A. Barhoumi.

Hankel determinantal representation of Ohyama polynomials (Prrr) has been
very recently obtained by J. Harrow (not yet published).

Hankel determinantal representation of Vorob’ev-Yablonski polynomials
(P11) has been obtained by Bertola and Bothner.

It was shown by Okamoto and Flaschka-Newell that for the Airy solutions of
Prr it holds that

an(z;A) = %log (%) :

where A = C1/C3, 70(z;\) = 1and forn > 1

o = [ (s () ()

J k=0




Random Matrices

In the 1950’s Wigner proposed to model the local statistical behavior of the
resonance levels off heavy nuclei by the local statistical behavior of the
eigenvalues of a large random matrix.

Let 7 be the space of NV x N Hermitian matrices M = [M,;]. Place a
probability distribution

ce M gaf = e~ FM) HdM“ Hsz};lej

i<j

on Hy, where M;; = M/} +iM]; and c s a normalizing constant.

Physically, since probabilities should not depend on the observer, it is
required

F(M) = FUMU™)

for any unitary matrix ¢/ (it holds that d(U/MU™) = dM).



Gaussian Unitary Ensemble

Gaussian Unitary Ensemble is given by

F(M) = %trMQ (Fﬁ(M) = gtr/w) .

(G Orthogonal E is # = 1 and G Simplectic Eis § = 4)

If f is a function such that f(M) = f(UMU"), then
f(M) = f(A) = f(>‘17)\27“~7)‘N)7

where )\; are the eigenvalues of M. In this case “unitary” variables in d M
can be integrated out and

[t Cans o [ et T8 [T - a)%ava

i<j



Gaussian Unitary Ensemble

The eigenvalues spread out on the whole real line. Therefore, it is more
convenient to study the distribution of the scaled eigenvalues z; = \;/v//V:

1 N 2 2 N
_ 2 i i — . d ,
T /]sze H(x Z;5) T

i<Jj

where Zy is the normalizing constant also known as a partition function.

Scaled eigenvalues converge to Wigner’s semi-circle law: -- /4 — z2dz.
27

-20 -15 -10 -05 0.0 0.5 1.0 15 2.0

N = 1000



Gaussian Unitary Ensemble

Theorem (Tracy-Widom)

Let Zmax (V) be the largest eigenvalue of an NV x N scaled GUE matrix.
Then
lim Prob ((xmax(N) —2)N?/3 < s) = Fs(s),
N —oco

where I (s) is the Tracy-Widom distribution

Fa(s) = exp {— /:o(a: _ s)gf(x)dx}

and y(z) is the Hastings-McLeod solution of Pr;.

https:/ /en.wikipedia.org/wiki/ Tracy-Widom_ distribution




Quartic Perturbation

Consider the partition function of the quartic perturbation of GUE:

ZN(t):/ e B MImfu Mgy
HN

Then it holds that

where

(f) = Z3'(0) /'f(M>e-%“M2dM.



Wick’s Calculus

<tr./\/14> = < E MiijkMklMli>v

,4,k,1=1
Wick’s Theorem

It holds that

(Mg Mg Mg M) = (M M) (M M) +
(MgMpr) (MM + (Mg Mgy (Mg M)

It also holds that
(MijMpr) = 610jk.
Hence,
N
<trM4> = Z (0ik + 03105k 0i5 + 051) = N3 + N + N3.

i,k l=1



Feynman'’s Diagrams

The terms in Wick’s theorem can be represented by Feynman’s diagrams
with one 4-valent vertex: M;; My, givesrisetoi — land k — j

[
=1
[
=

(Mg My (M Mus) + (Mig M) (MjeMag) + (Mg M) (M M)

The first and last diagrams are planar with 3 faces and the second one is
toroidal with 1 face.

In general, (tr /\/l"1)n will correspond to a diagram with 7 4-valent vertices.



Quartic Perturbation

“Theorem” (Bessis-Itzykson-Zuber)

Given the partition function

2 t 4
ZN(t):/ e—%trM —%trM dM,
HN

it holds that

ZN (—t) 22
I ~ E N9
og ( ZN(O) ) - €g (t) )
where ¢, () is analytic around the origin:

and r4(n) is the number of 4-valent connected graphs with n vertices
on a Riemann surface of genus g.




Hermitian Unitary Ensembles

Consider a more general Hermitian ensemble given by the distribution

1 —NY,; V(@sit) 2 N
i i i — . d ,
290 /RN e H(w i) T

i<j

where

2v
1 )
V(z;t) = §$2 + E tix', ta, >0,
=1

and t = (t17t27.4.7t271).



Graph Enumeration

Theorem (Ercolani-McLaughlin)

Let t be such that || < 7' and to, > v >.-", " t;, T,y > 0. Then

=1

o (Z205) ~ et

g=0

where each ¢, (t) is analytic in t around o. Moreover,

t’;l t;l2 . t;2u
eg(—t) = E B "'fig(nl,ng,...7n21,),
Mn1:M2: =+ N2y
n;>1
where r4(n1,n2,...,n2,) is the number of connected graphs with 7
j-valent vertices on a Riemann surface of genus g.




Complex Cubic Ensemble

Consider the partition function for the complex cubic ensemble:

z? 7“2"
Zn(u;a) = / eiNZi(7 f) H(zl — z;)%d" 2,
TN

<]

where I' = al'g + (1 — a)T'1, a € C.

Im 2z




Counting -Valent Graphs

Theorem (Bleher-Deario)

Fix o« € C. For0 < u < 31/4/18, Fn (u; &) admits an asymptotic
expansion

19 (29) N2—29
log Z ZF .

The functions F'®*?) (1) do not depend on «@ and admit an analytic con-
tinuation into |u| < 3'/*/18. If

(29) (29) u??
FE(u) = ;f Tk

then ffzg ) counts the number of 3-valent connected graphs with 2j
vertices on a Riemann surface of genus g.




Complex Cubic Ensemble

After a substitution

we get that
Zn(u;0) = (41,‘)]\]2/46_%3/21\”321\1(15)7
where

Zn(t) = / e~ V2 Visist) H(Sz _ Sj)QdNS
rN

o i<j

Fo=Lo—(1—a)li —aLsand V(s;t) = —s°/3 + ts.

Imz
Ly
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Hankel Determinants

Let us now also reparametrize I', as I'(\), A € C, where

A A 1 A 1
LY = Lo+ (*% + %) L+ (*% - ?) L.

for |\| < coand I'(c0) = £ Lo — 5=L1 — 5= Lo. Let

D, (t; N, X) = det / s o= NV(sit) go
r(x)

1,5=0

Then

[ ZN(t):N!DN71(t;N7)\). ]




Connection to

Recall that we were interested in special solutions of P11 given by

an (2 A) = d%log (%(ZA?))

where, as before, A = € /C5 and
7 3 ([_griYE 3 (o= "
Tnt1(z; A) = det {W (ClAl (—2 z) + C9Bi <—2 z))]] - .

Recall also that

Ai(z) + ABi(z) = ( ! / + A + A ) e~ V(=2 g,
Ba=itz

2ni 2 Lo—1L1 2 Lo—L2
Thus, it holds that
NN{N+1)/3 2/3




Orthogonal Polynomials

Let P,.(s) = P.(s;t, N, \) be a polynomial of degree at most . such that

/ " P (s)e NV ds =0, k=0,n— 1.
r(x)

If Dy,—1(t; N, \) # 0, then deg P, = n. If D,,(t; N,A\)Dyp—1(¢; N, X) # 0, then

5P () = Pry1(s) + Bn(t; N, N Pu(s) + v (£ N, ) Pa_1(s).




Connection

Theorem (Barhoumi-Bleher-Deato-Ya.)

gn(2A) = —(N/2)/3B0_, (— (\/§N)72/3 %N, A) .

In particular, poles of ¢, (z; \) correspond to values of ¢ for which

D,(t; N,A\) =0 or Dn_1(t; N,\) =0.
That is, values of ¢ for which
degP, =n—1 or degP,+1 =n.
Moreover,

Pn(z;A) = —2(N/2)**43_, (— (\/iN) RN, /\)

gives an associated special solution of Pxxxrv.




Heuristics

If the attracting set of zeros of P, consists of a single Jordan arc, all the

zeros of P, remain bounded; otherwise 7, will have a zero exhibiting

a spurious behavior.




Phase Space

3.9-2/3,27i/3

3.9-2/3,—27i/3

(@) (b) (c)

(a) C is the critical graph of the quadratic differential — (1 + 1)” ds”.
(b) A:={z: 22° €C}.

(C) O(()) = 2‘(Qm>), ,'173 —tx—1=0.



Phase Space

Theorem (Barhoumi-Bleher-Deano-Ya.)

e fort € Oy the attracting set is a single analytic Jordan arc;

e fort € O, the attracting set consists of three analytic Jordan
arcs with a common endpoint;

e fort € O; \ Oy, attracting set consists of two analytic Jordan
arcs with no endpoints in common.




Phase Space
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Poles (red) and zeros (blue) of g3(—(31/2)*/°2; 00) and the curves 90, (black).



Scaling Limit in the One-cut Region

Theorem (Barhoumi-Bleher-Deato-Ya.)

When A\ = 0 (pure Airy solution),
2/n)3q, (—(\/571)2/315; 0) =—xzo(t) + O (n7")

and

(2/n)**pn (—(\/in)”%; o) = 1/z0(t) + O (n72)

where ZL'()(O(O)) = Q(O), 7;3 —tr—1=0.




Scaling Limit in the Two-cut Region

Theorem (Barhoumi-Bleher-Deato-Ya.)

When A = 0 (pure Airy solution),
vi(t; n,0) = S(¢)0n,1(00;t)0n,2(c0;t) + O (n_l)

where S(t) is an explicit functions of the endpoints of the attracting set
of zeros of the orthogonal polynomials and 6, ;(z; t) are the pull-backs
from one of the sheets of a two-sheeted Riemann surface associated to
the attracting set, one having a floating pole and one having a floating
zero depending on 7, t.




