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f is the approximated analytic function

Ais a closed set on which f is approximated

B is a closed set with connected complement 5 such that f is
analyticin B and A C B¢ ( B is for “boundary”)

B(f,A) is the collection of the sets B as above

R (A) —all the rational functions of type (7, n) with poles in A°




Rational Approximation

Theorem (Runge 1885)

Suppose A is compact and f is analytic on A. Given ¢ > 0, there exists
arational function R with polesin A°such that [(f—R)(z)| < ¢,z € A.

There exists a rectifiable contour I" such that
_ 1 [ £
16 =5 [ L2 zea

By uniform continuity on I' x A, for any € > 0, there exists 6 > 0 such that

O fEC ] 2w . .
’Cj7@<me, €A, (¢ ET, [(—C|<é.

Let {I'; } be a partition of I' into Jordan arcs such that |I';| < 6, and ¢; € I';.
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Limit Superior

i n(f, A) <? A):= inf — R||a.
limsup o "(f,4) <7, pn(f,4) = _ inf |If - Rlla

In what follows, it will be convenient to think of A as compact.




A Computation

Finding best uniform approximants is hard, constructing interpolants is easier.



A Computation

Finding best uniform approximants is hard, constructing interpolants is easier.

Let f be analytic and bounded in {

<1} DA, B=/{

z| > 1}

z

closed unit disk) such that f(z;) = 7, (z;) and

Let z1,...,2, € A. There exists 7, € R, ({|z| < 1}) (with poles outside of the

I(f =) (2)] < Cn®[bn(2)]

for some (', a independent of n, where

is a rational function with zeros z; and such that b, (z)| = 1on T = {|z| = 1}.
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A Computation

We also can write
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ba(2)] = T
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Letv, = = >" | 4., the normalized sum of point masses. Then
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A Computation

We also can write

n

ba() =11

i=1

y—
1 %2 '—exp{ Zlog

z— 2z

Letv, = = >" | 4., the normalized sum of point masses. Then
. 1- Z
|£(2) = rn(2)] < Cn® exp log |~ | dvn ©
and therefore
- l/n a\1l/n s 1- ZZ
I =l < (Cn*)/" exp { ~ ing, [10g| L= \dmo} .

We have a complete freedom in choosing v,.



A Computation

Take a sequences such that v, — v for some Borel measure v on A:

/ hdv, — / hdv

for any continuous function 2 on A. Then it holds that
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A Computation

Take a sequences such that v, — v for some Borel measure v on A:

/ hdv, — / hdv

for any continuous function 2 on A. Then it holds that

. ® . —(z
hfl_)S;pr_r"HlA Sexp{—zugg/log — dv(Q) ¢ -
We still have a complete freedom in choosing v. Therefore,
. —(z
lim sup pn "(f,A) < 1nf exp{ — 1nf log e dv(¢) ¢ .
n— o0




Green’s Functions

1—-Cz

z

The function log is known as the Green’s function for the unit disk

with pole at ¢.

It describes the work done in bringing a unit charge particle from the
boundary (unit circle) to the point z in the presence of an electric field
generated by a fixed unit charge at ¢.



Green’s Functions

It was not actually important that A was a subset of the unit disk. The latter could be
replaced by other domain B°.



Green’s Functions

It was not actually important that A was a subset of the unit disk. The latter could be
replaced by other domain B°.

Given a closed (non-polar) set B with connected complement B¢ and ¢ € B¢,
there exists the unique function gz (z, ), Green’s function for B, such that

e g5(z,() is positive and harmonic in B\ {C};

e gp(z,00) — log |z| is bounded near ¢ = oc;

3 (
(=,
e g5(z,() +log|z — (| is bounded near ¢ # oo;
9B (2,¢) = 0 for quasi every (up to a polar set) z € 0B°.




Green’s Potentials

The Green potential of a finite Borel measure v supported in B¢ is defined by

g5(z;v) = / NG

The Green’s energy of v is defined by

150 = [ [ 90(e Qv Q)av().




Green’s Potentials

The Green potential of a finite Borel measure v supported in B¢ is defined by

g5(z;v) = / NG

The Green’s energy of v is defined by

150 = [ [ 90(e Qv Q)av().

If A C B¢ is non-polar, then there exists the unique probability measure w4, 5
supported on A, the so-called Green equilibrium distribution on A, such that

[ Iplwa,B] = inf Ig[v], ]

where the infimum is taken over all probability measures supported on A.
The condenser capacity of A with respect to B is defined as

[ C(A,B) = 1/IB[UJA7B]. ]




Equilibrium Green'’s Potential

The measure w4, 5 describes the distribution of the unit charge that can freely
move on A when it reaches the equilibrium (minimal energy) position.

The equilibrium potential gz (z; wa, ) is characterized by the property
g98(zwa,B) = 1/C(A, B), z € A,
g9B(z;wa,B) =0, z € 0B°,

and it is harmonic in B° \ A.




A Computation Revisited

In the previous computation we have shown that

—(z
—<
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A Computation Revisited

In the previous computation we have shown that

—(z
—<

limsupp "(f, )< mf exp{— 1nf/log

n—r00

(o)}

= \Hl:f1 exp {7 erelggB(z; 1/)} .
It holds that
inf g5(zi0) < [ g5(z50)donn(z) = [ an(ziwap)iv(z) = 1/C(A,B)

Hence,

llmsuppl/"(f7 A) < exp {_C(;}

n—oo




Walsh’s Theorem

Theorem (Walsh 1934)

Let f be analytic in some neighborhood of a compactset A. Let 5(f, A)
be the collection of closed sets B such that oo € B°, A € B and f be
analytic in B°. Then

1
li L/n < i -\,
SR (0 (f;A4) < Beg}?m exp{ C(A,B)}

. J

The bound is achieved by certain lacunary series (Levin and Tikhomirov
1967).



Limit Inferior

liminf pX/™(f, A) <?,  pn(f, A) := inf — R|[a.
iminf p," (f, A) <7, pn(f; A) Regln(A)Hf [l

In what follows, it will be convenient to think of B as compact.



Gonchar’s Conjecture

In 1978 (most likely earlier), Gonchar conjectured that

g 1/n < i —L
lim inf p,; (f,A)fBeng,,A)eXp{ c(A,B)}'




Adamyan-Arov-Krein Approximants

Take for now A = {

z

> 1}. Denote by 1 be space of bounded analytic
functions in the unit disk. Set

H =H™ +Rn(A4),

which is the set of meromorphic functions with at most n poles in the unit
disk and bounded traces on the unit circle T.



Adamyan-Arov-Krein Approximants

z

Take for now A = {|z| > 1}. Denote by /7% be space of bounded analytic
functions in the unit disk. Set

H® = H® + Rn(A),

which is the set of meromorphic functions with at most n poles in the unit
disk and bounded traces on the unit circle T.

Consider the following approximation problem: given a bounded function ¢ on
the unit circle, find M,, € H;® such that

dist(¢, H') = | . ¢ — Mllr = l|¢ — M.

When n = 0, this is known as the Nehari problem (1957).

If ¢ is Dini-continuous on T, then such M, exists and is continuous up to T
(Carleson and Jacobs, 1972).



Hardy Spaces

The space of the square integrable functions on T can be defined as

= {i anz": |z| =1, i lan)? < oo} :

The Hardy spaces [/ and H> = L? © [H” can be defined as

H? = {Zanz” 2zl =1, Z lan|® < oo}
0 0
and
= =
o2 = {Zanz" 2| =1, Z'a"|2 < oo}

They can be identified with spaces of analytic functions in {|z| < 1} and

{

> 1} that have uniformly bounded 7.>-means on T, .

z



Adamyan-Arov-Krein Approximants

Let ¢ be a bounded function on T. The Hankel operator I'y with symbol ¢ is
given by

Iy:H®> —» H2, h—P_(he),
where P_ : > — H? is the orthogonal projection. When ¢ is continuous, I,
is compact. Moreover,

(Toh)(2) = / B 4o 121> 1.

2mi z— S



Adamyan-Arov-Krein Approximants

Let ¢ be a bounded function on T. The Hankel operator I';, with symbol ¢ is
given by

Iy:H®> —» H2, h—P_(he),
where P_ : > — H? is the orthogonal projection. When ¢ is continuous, I,

is compact. Moreover,

(Toh)(z) = ﬁé%da 2| > 1.

Theorem (Adamyan-Arov-Krein 1971)

Let ¢ be a continuous function on T. Then it holds that
diSt(¢7 Hso) = Sn (F¢)7

where s, (I';) is the n-th singular number of I';.




Rates of Rational and Meromorphic Approximation

Let [ be analyticin B® D A = {|z| > 1} and M,, be the best meromorphic
approximant of f in H,,”. Write

A[n = hn + Tn,

where h,, € H* and r,, € Ry,(A), 7n(00) = f(00).
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Rates of Rational and Meromorphic Approximation

Let [ be analyticin B® D A = {|z| > 1} and M,, be the best meromorphic
approximant of f in H,,”. Write

Mn = hn + Tn,

where h, € H* and r,, € R,,(A), r»(c0) = f(c0). Then it holds that
N _ 1 [ =Mu)(s)
f(2) = ralz) = 2771/'[ P ds, |z| > 1.
Therefore, we get for any § > 0 that

If = Malls _ 5a(T5)
276 o2rd

If = rallgz2146y <

Subsequently, it is enough to show that

2
. . 1/n _
lim inf s,y (Ff)Sexp{ 70(14’3)}.




Parfénov’s Estimate

Assume that f is analytic in the closure of B, where 0B is a smooth Jordan
curve in the unit disk. Then

(U@ 1 [ URQ, |,
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Parfénov’s Estimate

Assume that f is analytic in the closure of B, where 0B is a smooth Jordan
curve in the unit disk. Then

(U@ 1 [ URQ, |,
O = 5 [ Lac= o [ P04 a5

Therefore, I'y = Eg o P o M o E;, where
e T, is the embedding of /7° into L?(0B)
e My is the multiplication by f in L?(93)
e Pis the projection from L?(9B) into Smirnov class S*(B°)
e [ is the embedding of S*(B°) into [1*



Parfénov’s Estimate

Assume that f is analytic in the closure of B, where 0B is a smooth Jordan
curve in the unit disk. Then

i) = g [0 = o [ T ge 50

Therefore, I'y = Eg o P o M o E;, where

e T, is the embedding of /7° into L?(0B)
e My is the multiplication by f in L?(93)
e Pis the projection from L?(9B) into Smirnov class S*(B°)
e [ is the embedding of S*(B°) into [1*

It is known that P, M ; are bounded operators and

lim sp/™(E,) = lim s2/™ () = exp {—1/C(B, A)}

m— 00

by (Zakharyuta-Skiba 1976) and (Fisher-Micchelli, 1980). The claim now
follows from Horn-Weyl inequalities.



Parfénov’s and Prokhorov’s Theorems

Theorem (Prokhorov 1993)

Let A, B be arbitrary disjoint closed sets. Let f be holomorphic in 5.
Then

2
. . 1/n .
lim inf o™ (f, A) Sexp{ 70(14’3)}.

Moreover,

lim sup p&/ ™ (f, A) = exp } = liminfp}/”(f, A) =0.
n—o0

The case where A is a continuum was proved by Parfénov in 1986.

Prokhorov’s proof relies on the generalization of the AAK theory to multiply
connected domains (Prokhorov 1991).



Multi-Valued Functions

When is true that

2
li 1/n — 3 ?
Jim pp(f, A) Beggwexp{ C(A7B)}




Stahl’s Class

We say that a function f belongs to Stahl’s class S if f is holomorphic
and multi-valued outside of a compact polar set Fs.

That is, for any point zo ¢ E; and any path ~ starting at zo and avoiding £,
f admits analytic continuation along ~. Moreover, there are paths with the
same endpoints that lead to distinct continuations.

All algebraic functions (solutions of p,, (2) f" +pn_1(2)f" '+ +po(2) =0,
where pi.(z) are polynomials) are in this class as well as functions of the form

L I
E || (z — 21,:) 01,

=il =il

where 37", ; is an integer but some «; ; are not. Logarithmic functions are
in this class. All the above functions could be multiplied by factors like
e/=72+) or any other single-valued function holomorphic off a polar set.



Minimal Capacity Contours

Theorem (Stahl 1985)

Given a branch of f € S analytic on a continuum A C EY, there exists
a compact set B € 5(f, A) such that

C(A,B) < C(A,B), B € B(f,A).

B “essentially” consists of analytic arcs.

Minimal (logarithmic) capacity contour for VVI—z72+21-04



Theorem of Gonchar-Rakhmanov

Theorem (Gonchar-Rakhmanov 1989)

Given f € S and a continuum A C Ef, there exists a sequence of
rational interpolants R,, such that

. 1/n T o 1/n __ o 2
Jim pp"(f, A) = Tim || f = Rl —eXp{ 70(14’8)}-

Moreover, the poles of these interpolants asymptotically distribute as
ws, 4 (interpolation points asymptotically distribute as w4 g).




Multipoint Padé Approximants (proof of GR Theorem)

Let {zn,1,...,2n,2n} C Abeamultiset of not necessarily distinct nor finite
points and

Va(z)= [ (2= 2.
|zn,i |<oo
The n-th diagonal multipoint Padé approximant is a rational function P,, /@),
of type (n, n) such that

(@uf = P)(&) _ 5 (,n1y

Vn(z) as z — o0

and is analytic on A. The above equation is in fact defines a linear system
with one more unknown than equations. Hence, the rational function 7, /Q.,
exists and happens to be unique.



Multipoint Padé Approximants (proof of GR Theorem)

Since B is a essentially a system of analytic arcs, it follows from the formula
defining P, /@, Cauchy theorem and integral formula that

k at _ _
[ tQuotr - 1055 =0
fork € {0,. .., n — 1}, and
(an_P /Qn f+_ )() dt
Va(2) = 2ni z—t Vo(t)

Stahl and then Gonchar-Rakhmanov had developed machinery how to use
the above orthogonality relations and the minimality of B to get n-th root
asymptotic behavior of error in the complex plane.

This gave the upper estimate for the limit superior.



Multipoint Padé Approximants (proof of GR Theorem)

If the limit inferior was smaller, there would exist rational functions
Pn /(['n, S Ru,(/l) SuCh that

B [f(2) = pn(2)/an(2)| < i |£(2) — Pa(2)/@n(2)]
for some Jordan curve v whose exterior domain, say 1), lies in B and
contains A.

Since P, /Qn interpolates f at {zn 1, ..., 2zn,2n,0}, f — P /Qn has 2n + 1
zeros in . By Rouche’s theorem,

pn P

dn Q n

must have 2n + 1 zeros in D (including one at infinity), but it is impossible as

its numerator has degree at most 2n — 1.



Behavior in A°¢
In memory of Herbert Stahl (1942-2013).

What do the poles of best rational approximants do?

In what follows A is unbounded set whose boundary is a Jordan curve.



Distribution of Poles

We say that a sequence of rational approximants R,, € R, (A) is n-th root
optimal if

g o 1/n o 2
A [1f = Bnll4 _exp{ C(A,B)}'

Theorem (Baratchart-Stahl-Ya.)

There exists a class of functions 7 (A) analytic on A such that for every
f € F(A)if R,, are n-th root optimal rational approximants to f on 4,
then

v(Ry) = WB, A,
where v(R,,) is the normalized counting measure of poles of R,,.

Moreover, the functions R,, converge in capacity to f in B¢ \ A.

The same is true for n-th root optimal meromorphic approximants.




Approximated Functions

Recall that A is the closure of the unbounded component of the complement
of a Jordan curve. Let D be the bounded component. The class 7 (A) consists
of functions holomorphic on A with the following two properties:

o they can be continued into D along any path originating on 0D which
stays in D while avoiding a closed polar subset of D (that may depend
on the function);

e they are not single-valued, but the number of distinct function elements
lying above a point of D is uniformly bounded (the bound may depend
on the function).



