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Notation

• f is the approximated analytic function

• A is a closed set on which f is approximated

• B is a closed set with connected complement Bc such that f is
analytic in Bc and A ⊂ Bc ( B is for “boundary”)

• B(f,A) is the collection of the sets B as above

• Rn(A) – all the rational functions of type (n, n) with poles in Ac



Rational Approximation

Theorem (Runge 1885)

SupposeA is compact and f is analytic on A. Given ε > 0, there exists
a rational functionRwith poles inAc such that |(f−R)(z)| < ε, z ∈ A.

There exists a rectifiable contour Γ such that

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z dζ, z ∈ A.

By uniform continuity on Γ×A, for any ε > 0, there exists δ > 0 such that∣∣∣∣ f(ζ)

ζ − z −
f(ζ∗)

ζ∗ − z

∣∣∣∣ < 2π

|Γ| ε, z ∈ A, ζ, ζ∗ ∈ Γ, |ζ − ζ∗| < δ.

Let {Γi} be a partition of Γ into Jordan arcs such that |Γi| < δ, and ζi ∈ Γi.∣∣∣∣∣f(z)− 1

2πi

∑
i

f(ζi)

ζi − z

∫
Γi

dζ

∣∣∣∣∣ ≤ 1

2π

∑
i

∫
Γi

∣∣∣∣ f(ζ)

ζ − z −
f(ζi)

ζi − z

∣∣∣∣ |dζ| < ε.



Limit Superior

lim sup
n→∞

ρ1/n
n (f,A) ≤?, ρn(f,A) := inf

R∈Rn(A)
‖f −R‖A.

In what follows, it will be convenient to think of A as compact.
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A Computation

Finding best uniform approximants is hard, constructing interpolants is easier.

Let f be analytic and bounded in {|z| < 1} ⊃ A, B = {|z| ≥ 1}.

Let z1, . . . , zn ∈ A. There exists rn ∈ Rn({|z| ≤ 1}) (with poles outside of the
closed unit disk) such that f(zi) = rn(zi) and

|(f − rn)(z)| ≤ Cna|bn(z)|

for some C, a independent of n, where

bn(z) =

n∏
i=1

z − zi
1− ziz

is a rational function with zeros zi and such that |bn(z)| ≡ 1 on T = {|z| = 1}.
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A Computation

We also can write

|bn(z)| =
n∏
i=1

∣∣∣∣ z − zi1− ziz

∣∣∣∣ = exp

{
−

n∑
i=1

log

∣∣∣∣1− zizz − zi

∣∣∣∣
}
.

Let νn = 1
n

∑n
i=1 δzi the normalized sum of point masses. Then

|f(z)− rn(z)| ≤ Cna exp

{
−n
∫

log

∣∣∣∣1− ζzz − ζ

∣∣∣∣ dνn(ζ)

}

and therefore

‖f − rn‖1/nA ≤ (Cna)1/n exp

{
− inf
z∈A

∫
log

∣∣∣∣1− ζzz − ζ

∣∣∣∣ dνn(ζ)

}
.

We have a complete freedom in choosing νn.



A Computation

We also can write

|bn(z)| =
n∏
i=1

∣∣∣∣ z − zi1− ziz

∣∣∣∣ = exp

{
−

n∑
i=1

log

∣∣∣∣1− zizz − zi

∣∣∣∣
}
.

Let νn = 1
n

∑n
i=1 δzi the normalized sum of point masses. Then

|f(z)− rn(z)| ≤ Cna exp

{
−n
∫

log

∣∣∣∣1− ζzz − ζ

∣∣∣∣ dνn(ζ)

}

and therefore

‖f − rn‖1/nA ≤ (Cna)1/n exp

{
− inf
z∈A

∫
log

∣∣∣∣1− ζzz − ζ

∣∣∣∣ dνn(ζ)

}
.

We have a complete freedom in choosing νn.



A Computation

We also can write

|bn(z)| =
n∏
i=1

∣∣∣∣ z − zi1− ziz

∣∣∣∣ = exp

{
−

n∑
i=1

log

∣∣∣∣1− zizz − zi

∣∣∣∣
}
.

Let νn = 1
n

∑n
i=1 δzi the normalized sum of point masses. Then

|f(z)− rn(z)| ≤ Cna exp

{
−n
∫

log

∣∣∣∣1− ζzz − ζ

∣∣∣∣ dνn(ζ)

}

and therefore

‖f − rn‖1/nA ≤ (Cna)1/n exp

{
− inf
z∈A

∫
log

∣∣∣∣1− ζzz − ζ

∣∣∣∣ dνn(ζ)

}
.

We have a complete freedom in choosing νn.



A Computation

We also can write

|bn(z)| =
n∏
i=1

∣∣∣∣ z − zi1− ziz

∣∣∣∣ = exp

{
−

n∑
i=1

log

∣∣∣∣1− zizz − zi

∣∣∣∣
}
.

Let νn = 1
n

∑n
i=1 δzi the normalized sum of point masses. Then

|f(z)− rn(z)| ≤ Cna exp

{
−n
∫

log

∣∣∣∣1− ζzz − ζ

∣∣∣∣ dνn(ζ)

}

and therefore

‖f − rn‖1/nA ≤ (Cna)1/n exp

{
− inf
z∈A

∫
log

∣∣∣∣1− ζzz − ζ

∣∣∣∣ dνn(ζ)

}
.

We have a complete freedom in choosing νn.



A Computation

Take a sequences such that νn
∗→ ν for some Borel measure ν on A:∫
hdνn →

∫
hdν

for any continuous function h on A. Then it holds that
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Green’s Functions

The function log

∣∣∣∣1− ζzz − ζ

∣∣∣∣ is known as the Green’s function for the unit disk

with pole at ζ.

It describes the work done in bringing a unit charge particle from the
boundary (unit circle) to the point z in the presence of an electric field
generated by a fixed unit charge at ζ.



Green’s Functions

It was not actually important that A was a subset of the unit disk. The latter could be
replaced by other domain Bc.

Given a closed (non-polar) set B with connected complement Bc and ζ ∈ Bc,
there exists the unique function gB(z, ζ), Green’s function for Bc, such that

• gB(z, ζ) is positive and harmonic in Bc \ {ζ};

• gB(z,∞)− log |z| is bounded near ζ =∞;

• gB(z, ζ) + log |z − ζ| is bounded near ζ 6=∞;

• gB(z, ζ) = 0 for quasi every (up to a polar set) z ∈ ∂Bc.
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Green’s Potentials

The Green potential of a finite Borel measure ν supported in Bc is defined by

gB(z; ν) :=

∫
gB(z, ζ)dν(ζ).

The Green’s energy of ν is defined by

IB [ν] :=

∫ ∫
gB(z, ζ)dν(ζ)dν(z).

If A ⊂ Bc is non-polar, then there exists the unique probability measure ωA,B
supported on A, the so-called Green equilibrium distribution on A, such that

IB [ωA,B ] = inf IB [ν],

where the infimum is taken over all probability measures supported on A.
The condenser capacity of A with respect to B is defined as

C(A,B) := 1/IB [ωA,B ].
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Equilibrium Green’s Potential

The measure ωA,B describes the distribution of the unit charge that can freely
move on A when it reaches the equilibrium (minimal energy) position.

The equilibrium potential gB(z;ωA,B) is characterized by the property

gB(z;ωA,B) = 1/C(A,B), z ∈ A,

gB(z;ωA,B) = 0, z ∈ ∂Bc,

and it is harmonic in Bc \A.



A Computation Revisited
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Walsh’s Theorem

Theorem (Walsh 1934)

Let f be analytic in some neighborhood of a compact setA. LetB(f,A)

be the collection of closed sets B such that∞ ∈ B◦, A ⊂ Bc and f be
analytic in Bc. Then

lim sup
n→∞

ρ1/n
n (f,A) ≤ inf

B∈B(f,A)
exp

{
− 1

C(A,B)

}
.

The bound is achieved by certain lacunary series (Levin and Tikhomirov
1967).
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Limit Inferior

lim inf
n→∞

ρ1/n
n (f,A) ≤?, ρn(f,A) := inf

R∈Rn(A)
‖f −R‖A.

In what follows, it will be convenient to think of B as compact.

¥0

M⇔ao%33N•→aa



Gonchar’s Conjecture

In 1978 (most likely earlier), Gonchar conjectured that

lim inf
n→∞

ρ1/n
n (f,A) ≤ inf

B∈B(f,A)
exp

{
− 2

C(A,B)

}
.



Adamyan-Arov-Krein Approximants

Take for now A = {|z| ≥ 1}. Denote by H∞ be space of bounded analytic
functions in the unit disk. Set

H∞n = H∞ +Rn(A),

which is the set of meromorphic functions with at most n poles in the unit
disk and bounded traces on the unit circle T.

Consider the following approximation problem: given a bounded function φ on
the unit circle, find Mn ∈ H∞n such that

dist(φ,H∞n ) = inf
M∈H∞n

‖φ−M‖T = ‖φ−Mn‖T.

When n = 0, this is known as the Nehari problem (1957).

If φ is Dini-continuous on T, then such Mn exists and is continuous up to T
(Carleson and Jacobs, 1972).
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Hardy Spaces

The space of the square integrable functions on T can be defined as

L2 =

{
∞∑
−∞

anz
n : |z| = 1,

∞∑
−∞

|an|2 <∞

}
.

The Hardy spaces H2 and H2
− = L2 	H2 can be defined as

H2 =

{
∞∑
0

anz
n : |z| = 1,

∞∑
0

|an|2 <∞

}

and

H2
− =

{ −1∑
−∞

anz
n : |z| = 1,

−1∑
−∞

|an|2 <∞

}
.

They can be identified with spaces of analytic functions in {|z| < 1} and
{|z| > 1} that have uniformly bounded L2-means on Tr .



Adamyan-Arov-Krein Approximants

Let φ be a bounded function on T. The Hankel operator Γφ with symbol φ is
given by

Γφ : H2 → H2
−, h 7→ P−(hφ),

where P− : L2 → H2
− is the orthogonal projection. When φ is continuous, Γφ

is compact. Moreover,

(Γφh)(z) =
1

2πi

∫
T

(hφ)(s)

z − s ds, |z| > 1.

Theorem (Adamyan-Arov-Krein 1971)

Let φ be a continuous function on T. Then it holds that

dist(φ,H∞n ) = sn(Γφ),

where sn(Γφ) is the n-th singular number of Γφ.
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Rates of Rational and Meromorphic Approximation

Let f be analytic in Bc ⊃ A = {|z| ≥ 1} and Mn be the best meromorphic
approximant of f in H∞n . Write

Mn = hn + rn,

where hn ∈ H∞ and rn ∈ Rn(A), rn(∞) = f(∞).

Then it holds that

f(z)− rn(z) =
1

2πi

∫
T

(f −Mn)(s)

z − s ds, |z| > 1.

Therefore, we get for any δ > 0 that

‖f − rn‖{|z|≥1+δ} ≤
‖f −Mn‖T

2πδ
=
sn(Γf )

2πδ
.

Subsequently, it is enough to show that

lim inf
n→∞

s1/n
n (Γf ) ≤ exp

{
− 2

C(A,B)

}
.
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Parfënov’s Estimate

Assume that f is analytic in the closure of Bc, where ∂B is a smooth Jordan
curve in the unit disk. Then

(Γfh)(z) =
1

2πi

∫
T

(fh)(ζ)

z − ζ dζ =
1

2πi

∫
∂B

(fh)(ζ)

z − ζ dζ, |z| > 1.

Therefore, Γf = E2 ◦ P ◦Mf ◦ E1, where

• E1 is the embedding of H2 into L2(∂B)

• Mf is the multiplication by f in L2(∂B)

• P is the projection from L2(∂B) into Smirnov class S2(Bc)

• E2 is the embedding of S2(Bc) into H2
−

It is known that P,Mf are bounded operators and

lim
m→∞

s1/m
m (E1) = lim

m→∞
s1/m
m (E2) = exp {−1/C(B,A)}

by (Zakharyuta-Skiba 1976) and (Fisher-Micchelli, 1980). The claim now
follows from Horn-Weyl inequalities.
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Parfënov’s and Prokhorov’s Theorems

Theorem (Prokhorov 1993)

Let A,B be arbitrary disjoint closed sets. Let f be holomorphic in Bc.
Then

lim inf
n→∞

ρ1/n
n (f,A) ≤ exp

{
− 2

C(A,B)

}
.

Moreover,

lim sup
n→∞

ρ1/n
n (f,A) = exp

{
− 1

C(A,B)

}
⇒ lim inf

n→∞
ρ1/n
n (f,A) = 0.

The case where A is a continuum was proved by Parfënov in 1986.

Prokhorov’s proof relies on the generalization of the AAK theory to multiply
connected domains (Prokhorov 1991).



Multi-Valued Functions

When is true that

lim
n→∞

ρ1/n
n (f,A) = inf

B∈B(f,A)
exp

{
− 2

C(A,B)

}
?



Stahl’s Class

We say that a function f belongs to Stahl’s class S if f is holomorphic
and multi-valued outside of a compact polar set Ef .

That is, for any point z0 /∈ Ef and any path γ starting at z0 and avoiding Ef ,
f admits analytic continuation along γ. Moreover, there are paths with the
same endpoints that lead to distinct continuations.

All algebraic functions (solutions of pn(z)fn + pn−1(z)fn−1 + · · ·+ p0(z) = 0,
where pk(z) are polynomials) are in this class as well as functions of the form

f(z) =
L∑
l=1

Il∏
i=1

(z − zl,i)αl,i ,

where
∑Il
i=1 αl,i is an integer but some αl,i are not. Logarithmic functions are

in this class. All the above functions could be multiplied by factors like
ec/(z−z∗) or any other single-valued function holomorphic off a polar set.



Minimal Capacity Contours

Theorem (Stahl 1985)

Given a branch of f ∈ S analytic on a continuum A ⊂ Ecf , there exists
a compact set B ∈ B(f,A) such that

C(A,B) ≤ C(A,B), B ∈ B(f,A).

B “essentially” consists of analytic arcs.
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Figure 4. The minimal set K0(f4, ∞) for Problem (f4, ∞) with

f4 defined in (6.13) with parameter values ϕ = π/6 and c =
√

0.4.

points of the minimal set, and these points are crucial for the quadratic
differential (5.6) in Theorem 9. The third question is therefore: How do
the bifurcation points of the minimal set K0(f4, ∞) depend on the param-
eter values, and at which parameter constellations do these points merge
or split up?

The function f4 has in general eight branch points; four of them are identical
with those of the two functions f2 and f3, and they will be denoted again by
z1, . . . , z4. These four branch points do not depend on the parameter c.

For every parameter ϕ ∈ [0, π/2) there exists a whole region of parameter
values c such that only these four ’old’ branch points z1, . . . , z4 of f4 appear in the
minimal set K0(f4, ∞), and in these cases they are the only branch points that play
an active role in the determination of K0(f4, ∞). All other branch points will be
called ’inactive’.

Throughout the discussion, we keep the parameter ϕ = π/6 fixed, which implies
that all minimal sets K0(f4, ∞) that will be considered during our discussion should
be compared with the set K0(f3, ∞) in the first window of Figures 3.

In a first step we choose

c = r eit with t ∈ [0, 2π) and r > 0 small, (6.14)

and see what happens. If |c| > 0 is small, then the four new branch points z5, . . . , z8

of the function f4 lie close to the four old branch points z1, . . . , z4. In Figure 4 the
situation is shown for the parameter values ϕ = π/6 and c =

√
0.4. Of course,√

0.4 is not very small, however, smaller values of |c| lead to configurations that are
difficult to plot.

While in (6.14) the parameter t runs through [0, 2π), each one of the four new
branch points z5, . . . , z8 encircles two times the corresponding old branch point
z1, . . . , z4.

The interesting point is now that the four new branch points z5, . . . , z8 are
elements of the minimal set K0(f4, ∞) only on one half of their twofold circular
path. On the other half, they become ’inactive’, i.e., they are hidden away on
another sheet of the Riemann surface Rf4 . In this later case, the set K0(f4, ∞)

Minimal (logarithmic) capacity contour for
√√

1− z−2 + z−4 − 0.4



Theorem of Gonchar-Rakhmanov

Theorem (Gonchar-Rakhmanov 1989)

Given f ∈ S and a continuum A ⊂ Ecf , there exists a sequence of
rational interpolants Rn such that

lim
n→∞

ρ1/n
n (f,A) = lim

n→∞
‖f −Rn‖1/nA = exp

{
− 2

C(A,B)

}
.

Moreover, the poles of these interpolants asymptotically distribute as
ωB,A (interpolation points asymptotically distribute as ωA,B).



Multipoint Padé Approximants (proof of GR Theorem)

Let {zn,1, . . . , zn,2n} ⊂ A be a multiset of not necessarily distinct nor finite
points and

Vn(z) =
∏

|zn,i|<∞

(z − zn,i).

The n-th diagonal multipoint Padé approximant is a rational function Pn/Qn
of type (n, n) such that

(Qnf − Pn)(z)

Vn(z)
= O

(
z−n−1) as z →∞

and is analytic on A. The above equation is in fact defines a linear system
with one more unknown than equations. Hence, the rational function Pn/Qn
exists and happens to be unique.



Multipoint Padé Approximants (proof of GR Theorem)

Since B is a essentially a system of analytic arcs, it follows from the formula
defining Pn/Qn, Cauchy theorem and integral formula that∫

B

tkQn(t)(f+ − f−)(t)
dt

Vn(t)
= 0

for k ∈ {0, . . . , n− 1}, and

(Qnf − Pn)(z)

Vn(z)
=

1

2πi

∫
B

Qn(t)(f+ − f−)(t)

z − t
dt

Vn(t)
.

Stahl and then Gonchar-Rakhmanov had developed machinery how to use
the above orthogonality relations and the minimality of B to get n-th root
asymptotic behavior of error in the complex plane.

This gave the upper estimate for the limit superior.



Multipoint Padé Approximants (proof of GR Theorem)

If the limit inferior was smaller, there would exist rational functions
pn/qn ∈ Rn(A) such that

max
z∈γ
|f(z)− pn(z)/qn(z)| < min

z∈γ
|f(z)− Pn(z)/Qn(z)|

for some Jordan curve γ whose exterior domain, say D, lies in Bc and
contains A.

Since Pn/Qn interpolates f at {zn,1, . . . , zn,2n,∞}, f − Pn/Qn has 2n+ 1

zeros in D. By Rouche’s theorem,

pn
qn
− Pn
Qn

must have 2n+ 1 zeros in D (including one at infinity), but it is impossible as
its numerator has degree at most 2n− 1.



Behavior in Ac

In memory of Herbert Stahl (1942-2013).

What do the poles of best rational approximants do?

In what follows A is unbounded set whose boundary is a Jordan curve.
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Distribution of Poles

We say that a sequence of rational approximants Rn ∈ Rn(A) is n-th root
optimal if

lim
n→∞

‖f −Rn‖1/nA = exp

{
− 2

C(A,B)

}
.

Theorem (Baratchart-Stahl-Ya.)

There exists a class of functionsF(A) analytic onA such that for every
f ∈ F(A) if Rn are n-th root optimal rational approximants to f on A,
then

ν(Rn)
∗→ ωB,A,

where ν(Rn) is the normalized counting measure of poles of Rn.

Moreover, the functions Rn converge in capacity to f in Bc \A.

The same is true for n-th root optimal meromorphic approximants.



Approximated Functions

Recall that A is the closure of the unbounded component of the complement
of a Jordan curve. Let D be the bounded component. The class F(A) consists
of functions holomorphic on A with the following two properties:

• they can be continued into D along any path originating on ∂D which
stays in D while avoiding a closed polar subset of D (that may depend
on the function);

• they are not single-valued, but the number of distinct function elements
lying above a point of D is uniformly bounded (the bound may depend
on the function).


