On Rational Approximants of Multi-Valued Functions

Maxim L. Yattselev

Analysis Seminar

University of Wisconsin, Madison November 13th, 2024

- \bullet f is the approximated analytic function
- A is a closed set on which f is approximated
- *B* is a closed set with connected complement B^c such that *f* is analytic in B^c and $A \subset B^c$ (B is for "boundary")
- $\mathcal{B}(f, A)$ is the collection of the sets B as above
- $\mathcal{R}_n(A)$ all the rational functions of type (n, n) with poles in A^c

Theorem (Runge 1885)

Suppose A is compact and f is analytic on A. Given $\epsilon > 0$, there exists a rational function R with poles in A^c such that $|(f-R)(z)| < \epsilon$, $z \in A$.

There exists a rectifiable contour Γ such that

$$
f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in A.
$$

By uniform continuity on $\Gamma \times A$, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$
\left|\frac{f(\zeta)}{\zeta-z}-\frac{f(\zeta^*)}{\zeta^*-z}\right|<\frac{2\pi}{|\Gamma|}\epsilon,\quad z\in A,\quad\zeta,\zeta^*\in\Gamma,\quad|\zeta-\zeta^*|<\delta.
$$

Let $\{\Gamma_i\}$ be a partition of Γ into Jordan arcs such that $|\Gamma_i| < \delta$, and $\zeta_i \in \Gamma_i$.

$$
\left|f(z) - \frac{1}{2\pi i} \sum_{i} \frac{f(\zeta_i)}{\zeta_i - z} \int_{\Gamma_i} d\zeta \right| \leq \frac{1}{2\pi} \sum_{i} \int_{\Gamma_i} \left| \frac{f(\zeta)}{\zeta - z} - \frac{f(\zeta_i)}{\zeta_i - z} \right| |d\zeta| < \epsilon.
$$

Limit Superior

$$
\limsup_{n\to\infty} \rho_n^{1/n}(f,A) \leq', \quad \rho_n(f,A) := \inf_{R \in \mathcal{R}_n(A)} ||f - R||_A.
$$

In what follows, it will be convenient to think of A as compact.

Finding best uniform approximants is hard, constructing interpolants is easier.

Finding best uniform approximants is hard, constructing interpolants is easier.

Let f be analytic and bounded in $\{|z| < 1\} \supset A, B = \{|z| > 1\}.$

Let $z_1, \ldots, z_n \in A$. There exists $r_n \in \mathcal{R}_n({\{|z| \leq 1\}})$ (with poles outside of the closed unit disk) such that $f(z_i) = r_n(z_i)$ and

$$
|(f - r_n)(z)| \leq Cn^a |b_n(z)|
$$

for some C , α independent of n , where

$$
b_n(z) = \prod_{i=1}^n \frac{z - z_i}{1 - \overline{z}_i z}
$$

is a rational function with zeros z_i and such that $|b_n(z)| \equiv 1$ on $\mathbb{T} = \{|z| = 1\}$.

$$
|b_n(z)| = \prod_{i=1}^n \left| \frac{z - z_i}{1 - \overline{z}_i z} \right| = \exp \left\{ - \sum_{i=1}^n \log \left| \frac{1 - \overline{z}_i z}{z - z_i} \right| \right\}.
$$

$$
|b_n(z)| = \prod_{i=1}^n \left| \frac{z - z_i}{1 - \overline{z}_i z} \right| = \exp \left\{ - \sum_{i=1}^n \log \left| \frac{1 - \overline{z}_i z}{z - z_i} \right| \right\}.
$$

Let $\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{z_i}$ the normalized sum of point masses. Then

$$
|f(z) - r_n(z)| \le Cn^a \exp\left\{-n \int \log \left|\frac{1-\overline{\zeta}z}{z-\zeta}\right| d\nu_n(\zeta)\right\}
$$

$$
|b_n(z)| = \prod_{i=1}^n \left| \frac{z - z_i}{1 - \overline{z}_i z} \right| = \exp \left\{ - \sum_{i=1}^n \log \left| \frac{1 - \overline{z}_i z}{z - z_i} \right| \right\}.
$$

Let $\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{z_i}$ the normalized sum of point masses. Then

$$
|f(z) - r_n(z)| \le Cn^a \exp\left\{-n \int \log \left|\frac{1-\overline{\zeta}z}{z-\zeta}\right| d\nu_n(\zeta)\right\}
$$

and therefore

$$
||f - r_n||_A^{1/n} \le (Cn^a)^{1/n} \exp \left\{-\inf_{z \in A} \int \log \left|\frac{1 - \overline{\zeta}z}{z - \zeta}\right| d\nu_n(\zeta)\right\}.
$$

$$
|b_n(z)| = \prod_{i=1}^n \left| \frac{z - z_i}{1 - \overline{z}_i z} \right| = \exp \left\{ - \sum_{i=1}^n \log \left| \frac{1 - \overline{z}_i z}{z - z_i} \right| \right\}.
$$

Let $\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{z_i}$ the normalized sum of point masses. Then

$$
|f(z) - r_n(z)| \le Cn^a \exp\left\{-n \int \log \left|\frac{1-\overline{\zeta}z}{z-\zeta}\right| d\nu_n(\zeta)\right\}
$$

and therefore

$$
||f - r_n||_A^{1/n} \le (Cn^a)^{1/n} \exp \left\{-\inf_{z \in A} \int \log \left|\frac{1 - \overline{\zeta}z}{z - \zeta}\right| d\nu_n(\zeta)\right\}.
$$

We have a complete freedom in choosing ν_n *.*

Take a sequences such that $\nu_n\stackrel{*}{\rightarrow}\nu$ for some Borel measure ν on A :

$$
\int h d\nu_n \to \int h d\nu
$$

for any continuous function h on A . Then it holds that

$$
\limsup_{n \to \infty} ||f - r_n||_A^{1/n} \le \exp \left\{ - \inf_{z \in A} \int \log \left| \frac{1 - \overline{\zeta} z}{z - \zeta} \right| d\nu(\zeta) \right\}.
$$

Take a sequences such that $\nu_n\stackrel{*}{\rightarrow}\nu$ for some Borel measure ν on A :

$$
\int h d\nu_n \to \int h d\nu
$$

for any continuous function h on A . Then it holds that

$$
\limsup_{n \to \infty} ||f - r_n||_A^{1/n} \le \exp \left\{ - \inf_{z \in A} \int \log \left| \frac{1 - \overline{\zeta} z}{z - \zeta} \right| d\nu(\zeta) \right\}.
$$

We still have a complete freedom in choosing ν*.*

Take a sequences such that $\nu_n\stackrel{*}{\rightarrow}\nu$ for some Borel measure ν on A :

$$
\int h d\nu_n \to \int h d\nu
$$

for any continuous function h on A . Then it holds that

$$
\limsup_{n \to \infty} ||f - r_n||_A^{1/n} \le \exp \left\{-\inf_{z \in A} \int \log \left|\frac{1 - \overline{\zeta}z}{z - \zeta}\right| d\nu(\zeta)\right\}.
$$

We still have a complete freedom in choosing ν. Therefore,

$$
\limsup_{n \to \infty} \rho_n^{1/n}(f, A) \le \inf_{|\nu|=1} \exp \left\{-\inf_{z \in A} \int \log \left|\frac{1-\overline{\zeta}z}{z-\zeta}\right| d\nu(\zeta)\right\}.
$$

The function \log $1-\zeta z$ $z-\zeta$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ is known as the Green's function for the unit disk with pole at ζ .

It describes the work done in bringing a unit charge particle from the boundary (unit circle) to the point z in the presence of an electric field generated by a fixed unit charge at ζ .

It was not actually important that A *was a subset of the unit disk. The latter could be* replaced by other domain B^c .

It was not actually important that A *was a subset of the unit disk. The latter could be* replaced by other domain B^c .

Given a closed (non-polar) set B with connected complement B^c and $\zeta \in B^c$, there exists the unique function $g_B(z, \zeta)$, Green's function for B^c , such that

- $g_B(z,\zeta)$ is positive and harmonic in $B^c \setminus {\{\zeta\}}$;
- $g_B(z,\infty) \log|z|$ is bounded near $\zeta = \infty$;
- $g_B(z, \zeta) + \log|z \zeta|$ is bounded near $\zeta \neq \infty$;
- $g_B(z,\zeta) = 0$ for quasi every (up to a polar set) $z \in \partial B^c$.

The Green potential of a finite Borel measure ν supported in B^c is defined by

$$
g_B(z;\nu) := \int g_B(z,\zeta) d\nu(\zeta).
$$

The Green's energy of ν is defined by

$$
I_B[\nu] := \int \int g_B(z,\zeta) d\nu(\zeta) d\nu(z).
$$

The Green potential of a finite Borel measure ν supported in B^c is defined by

$$
g_B(z;\nu) := \int g_B(z,\zeta) d\nu(\zeta).
$$

The Green's energy of ν is defined by

$$
I_B[\nu] := \int \int g_B(z,\zeta) d\nu(\zeta) d\nu(z).
$$

If $A \subset B^c$ is non-polar, then there exists the unique probability measure $\omega_{A,B}$ supported on A, the so-called Green equilibrium distribution on A, such that

$$
I_B[\omega_{A,B}] = \inf I_B[\nu],
$$

where the infimum is taken over all probability measures supported on A. The condenser capacity of A with respect to B is defined as

 $C(A, B) := 1/I_B[\omega_{A, B}].$

The measure $\omega_{A,B}$ describes the distribution of the unit charge that can freely move on A when it reaches the equilibrium (minimal energy) position.

The equilibrium potential $g_B(z; \omega_{A,B})$ is characterized by the property

$$
g_B(z; \omega_{A,B}) = 1/C(A, B), \quad z \in A,
$$

$$
g_B(z; \omega_{A,B}) = 0, \qquad z \in \partial B^c,
$$

and it is harmonic in $B^c \setminus A$.

In the previous computation we have shown that

$$
\limsup_{n \to \infty} \rho_n^{1/n}(f, A) \le \inf_{|\nu|=1} \exp \left\{-\inf_{z \in A} \int \log \left|\frac{1-\overline{\zeta}z}{z-\zeta}\right| d\nu(\zeta)\right\}
$$

$$
= \inf_{|\nu|=1} \exp \left\{-\inf_{z \in A} g_B(z; \nu)\right\}.
$$

In the previous computation we have shown that

$$
\limsup_{n \to \infty} \rho_n^{1/n}(f, A) \le \inf_{|\nu|=1} \exp \left\{-\inf_{z \in A} \int \log \left|\frac{1-\overline{\zeta}z}{z-\zeta}\right| d\nu(\zeta)\right\}
$$

$$
= \inf_{|\nu|=1} \exp \left\{-\inf_{z \in A} g_B(z;\nu)\right\}.
$$

It holds that

$$
\inf_{z \in A} g_B(z; \nu) \le \int g_B(z; \nu) d\omega_{A,B}(z) = \int g_B(z; \omega_{A,B}) d\nu(z) = 1/C(A, B).
$$

In the previous computation we have shown that

$$
\limsup_{n \to \infty} \rho_n^{1/n}(f, A) \le \inf_{|\nu|=1} \exp \left\{-\inf_{z \in A} \int \log \left|\frac{1-\overline{\zeta}z}{z-\zeta}\right| d\nu(\zeta)\right\}
$$

$$
= \inf_{|\nu|=1} \exp \left\{-\inf_{z \in A} g_B(z;\nu)\right\}.
$$

It holds that

$$
\inf_{z \in A} g_B(z; \nu) \le \int g_B(z; \nu) d\omega_{A,B}(z) = \int g_B(z; \omega_{A,B}) d\nu(z) = 1/C(A, B).
$$

Hence,

$$
\limsup_{n \to \infty} \rho_n^{1/n}(f, A) \le \exp \left\{-\frac{1}{C(A, B)}\right\}.
$$

Theorem (Walsh 1934)

Let f be analytic in some neighborhood of a compact set A. Let $\mathcal{B}(f, A)$ be the collection of closed sets B such that $\infty \in B^{\circ}$, $A \subset B^c$ and f be analytic in B^c . Then

$$
\limsup_{n \to \infty} \rho_n^{1/n}(f, A) \le \inf_{B \in \mathcal{B}(f, A)} \exp \left\{-\frac{1}{C(A, B)}\right\}.
$$

The bound is achieved by certain lacunary series (Levin and Tikhomirov 1967).

Limit Inferior

$$
\liminf_{n \to \infty} \rho_n^{1/n}(f, A) \leq', \quad \rho_n(f, A) := \inf_{R \in \mathcal{R}_n(A)} ||f - R||_A.
$$

In what follows, it will be convenient to think of B as compact.

In 1978 (most likely earlier), Gonchar conjectured that

$$
\liminf_{n \to \infty} \rho_n^{1/n}(f, A) \le \inf_{B \in \mathcal{B}(f, A)} \exp \left\{-\frac{2}{C(A, B)}\right\}.
$$

Take for now $A = \{|z| \ge 1\}$. Denote by H^{∞} be space of bounded analytic functions in the unit disk. Set

$$
H_n^{\infty} = H^{\infty} + \mathcal{R}_n(A),
$$

which is the set of meromorphic functions with at most n poles in the unit disk and bounded traces on the unit circle T.

Take for now $A = \{|z| \ge 1\}$. Denote by H^{∞} be space of bounded analytic functions in the unit disk. Set

$$
H_n^{\infty} = H^{\infty} + \mathcal{R}_n(A),
$$

which is the set of meromorphic functions with at most n poles in the unit disk and bounded traces on the unit circle T.

Consider the following approximation problem: *given a bounded function* φ *on the unit circle, find* $M_n \in H_n^{\infty}$ *such that*

$$
\text{dist}(\phi, H_n^{\infty}) = \inf_{M \in H_n^{\infty}} \|\phi - M\|_{\mathbb{T}} = \|\phi - M_n\|_{\mathbb{T}}.
$$

When $n = 0$, this is known as the Nehari problem (1957).

If ϕ is Dini-continuous on $\mathbb T$, then such M_n exists and is continuous up to $\mathbb T$ (Carleson and Jacobs, 1972).

The space of the square integrable functions on T can be defined as

$$
L^{2} = \left\{ \sum_{-\infty}^{\infty} a_{n} z^{n} : |z| = 1, \sum_{-\infty}^{\infty} |a_{n}|^{2} < \infty \right\}.
$$

The Hardy spaces H^2 and $H^2_-=L^2\ominus H^2$ can be defined as

$$
H^{2} = \left\{ \sum_{0}^{\infty} a_{n} z^{n} : |z| = 1, \sum_{0}^{\infty} |a_{n}|^{2} < \infty \right\}
$$

and

$$
H_{-}^{2} = \left\{ \sum_{-\infty}^{-1} a_n z^n : \ |z| = 1, \ \sum_{-\infty}^{-1} |a_n|^2 < \infty \right\}.
$$

They can be identified with spaces of analytic functions in $\{|z| < 1\}$ and ${|z| > 1}$ that have uniformly bounded L^2 -means on \mathbb{T}_r .

Let ϕ be a bounded function on $\mathbb T$. The Hankel operator Γ_{ϕ} with symbol ϕ is given by

$$
\Gamma_{\phi}: H^2 \to H^2_-, \quad h \mapsto \mathbb{P}_-(h\phi),
$$

where $\mathbb{P}_- : L^2 \to H^2_-$ is the orthogonal projection. When ϕ is continuous, Γ_ϕ is compact. Moreover,

$$
(\Gamma_{\phi}h)(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{(h\phi)(s)}{z - s} ds, \quad |z| > 1.
$$

Let ϕ be a bounded function on T. The Hankel operator Γ_{ϕ} with symbol ϕ is given by

$$
\Gamma_{\phi}: H^2 \to H^2_-, \quad h \mapsto \mathbb{P}_-(h\phi),
$$

where $\mathbb{P}_- : L^2 \to H^2_-$ is the orthogonal projection. When ϕ is continuous, Γ_ϕ is compact. Moreover,

$$
(\Gamma_{\phi}h)(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{(h\phi)(s)}{z - s} ds, \quad |z| > 1.
$$

Theorem (Adamyan-Arov-Krein 1971)

Let ϕ be a continuous function on $\mathbb T$. Then it holds that

 $dist(\phi, H_n^{\infty}) = s_n(\Gamma_{\phi}),$

where $s_n(\Gamma_{\phi})$ is the *n*-th singular number of Γ_{ϕ} .

Let *f* be analytic in $B^c \supset A = \{|z| \ge 1\}$ and M_n be the best meromorphic approximant of f in H_n^{∞} . Write

$$
M_n = h_n + r_n,
$$

where $h_n \in H^{\infty}$ and $r_n \in \mathcal{R}_n(A)$, $r_n(\infty) = f(\infty)$.

Let *f* be analytic in $B^c \supset A = \{|z| \ge 1\}$ and M_n be the best meromorphic approximant of f in H_n^{∞} . Write

$$
M_n = h_n + r_n,
$$

where $h_n \in H^{\infty}$ and $r_n \in \mathcal{R}_n(A)$, $r_n(\infty) = f(\infty)$. Then it holds that

$$
f(z) - r_n(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{(f - M_n)(s)}{z - s} ds, \quad |z| > 1.
$$

Therefore, we get for any $\delta > 0$ that

$$
||f - r_n||_{\{|z| \ge 1 + \delta\}} \le \frac{||f - M_n||_{\mathbb{T}}}{2\pi\delta} = \frac{s_n(\Gamma_f)}{2\pi\delta}.
$$

Let *f* be analytic in $B^c \supset A = \{|z| \ge 1\}$ and M_n be the best meromorphic approximant of f in H_n^{∞} . Write

$$
M_n = h_n + r_n,
$$

where $h_n \in H^{\infty}$ and $r_n \in \mathcal{R}_n(A)$, $r_n(\infty) = f(\infty)$. Then it holds that

$$
f(z) - r_n(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{(f - M_n)(s)}{z - s} ds, \quad |z| > 1.
$$

Therefore, we get for any $\delta > 0$ that

$$
||f - r_n||_{\{|z| \ge 1 + \delta\}} \le \frac{||f - M_n||_{\mathbb{T}}}{2\pi\delta} = \frac{s_n(\Gamma_f)}{2\pi\delta}.
$$

Subsequently, it is enough to show that

$$
\liminf_{n \to \infty} s_n^{1/n}(\Gamma_f) \le \exp \left\{-\frac{2}{C(A,B)}\right\}.
$$

Assume that *f* is analytic in the closure of B^c , where ∂B is a smooth Jordan curve in the unit disk. Then

$$
(\Gamma_f h)(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{(fh)(\zeta)}{z - \zeta} d\zeta = \frac{1}{2\pi i} \int_{\partial B} \frac{(fh)(\zeta)}{z - \zeta} d\zeta, \quad |z| > 1.
$$

Assume that *f* is analytic in the closure of B^c , where ∂B is a smooth Jordan curve in the unit disk. Then

$$
(\Gamma_f h)(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{(fh)(\zeta)}{z - \zeta} d\zeta = \frac{1}{2\pi i} \int_{\partial B} \frac{(fh)(\zeta)}{z - \zeta} d\zeta, \quad |z| > 1.
$$

Therefore, $\Gamma_f = \mathbb{E}_2 \circ \mathbb{P} \circ \mathbb{M}_f \circ \mathbb{E}_1$, where

- \mathbb{E}_1 is the embedding of H^2 into $L^2(\partial B)$
- M_f is the multiplication by f in $L^2(\partial B)$
- **P** is the projection from $L^2(\partial B)$ into Smirnov class $S^2(B^c)$
- \mathbb{E}_2 is the embedding of $S^2(B^c)$ into H^2

Assume that *f* is analytic in the closure of B^c , where ∂B is a smooth Jordan curve in the unit disk. Then

$$
(\Gamma_f h)(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{(fh)(\zeta)}{z - \zeta} d\zeta = \frac{1}{2\pi i} \int_{\partial B} \frac{(fh)(\zeta)}{z - \zeta} d\zeta, \quad |z| > 1.
$$

Therefore, $\Gamma_f = \mathbb{E}_2 \circ \mathbb{P} \circ \mathbb{M}_f \circ \mathbb{E}_1$, where

- \mathbb{E}_1 is the embedding of H^2 into $L^2(\partial B)$
- M_f is the multiplication by f in $L^2(\partial B)$
- **P** is the projection from $L^2(\partial B)$ into Smirnov class $S^2(B^c)$
- \mathbb{E}_2 is the embedding of $S^2(B^c)$ into H^2

It is known that \mathbb{P}, \mathbb{M}_f are bounded operators and

$$
\lim_{m \to \infty} s_m^{1/m}(\mathbb{E}_1) = \lim_{m \to \infty} s_m^{1/m}(\mathbb{E}_2) = \exp \{-1/C(B, A)\}
$$

by (Zakharyuta-Skiba 1976) and (Fisher-Micchelli, 1980). The claim now follows from Horn-Weyl inequalities.

Theorem (Prokhorov 1993)

Let A, B be arbitrary disjoint closed sets. Let f be holomorphic in B^c . Then

$$
\liminf_{n \to \infty} \rho_n^{1/n}(f, A) \le \exp\left\{-\frac{2}{C(A, B)}\right\}.
$$

Moreover,

$$
\limsup_{n \to \infty} \rho_n^{1/n}(f, A) = \exp\left\{-\frac{1}{C(A, B)}\right\} \Rightarrow \liminf_{n \to \infty} \rho_n^{1/n}(f, A) = 0.
$$

The case where A is a continuum was proved by Parfenov in 1986.

Prokhorov's proof relies on the generalization of the AAK theory to multiply connected domains (Prokhorov 1991).

Multi-Valued Functions

When is true that

$$
\lim_{n \to \infty} \rho_n^{1/n}(f, A) = \inf_{B \in \mathcal{B}(f, A)} \exp \left\{-\frac{2}{C(A, B)}\right\}?
$$

We say that a function f belongs to Stahl's class S if f is holomorphic and multi-valued outside of a compact polar set E_f .

That is, for any point $z_0 \notin E_f$ and any path γ starting at z_0 and avoiding E_f , f admits analytic continuation along γ . Moreover, there are paths with the same endpoints that lead to distinct continuations.

All algebraic functions (solutions of $p_n(z)f^n + p_{n-1}(z)f^{n-1} + \cdots + p_0(z) = 0$, where $p_k(z)$ are polynomials) are in this class as well as functions of the form

$$
f(z) = \sum_{l=1}^{L} \prod_{i=1}^{I_l} (z - z_{l,i})^{\alpha_{l,i}},
$$

where $\sum_{i=1}^{I_l} \alpha_{l,i}$ is an integer but some $\alpha_{l,i}$ are not. Logarithmic functions are in this class. All the above functions could be multiplied by factors like $e^{c/(z-z_*)}$ or any other single-valued function holomorphic off a polar set.

Theorem (Stahl 1985)

Given a branch of $f \in S$ analytic on a continuum $A \subset E_f^c$, there exists a compact set $B \in \mathcal{B}(f, A)$ such that

$$
C(A, B) \le C(A, B), \quad B \in \mathcal{B}(f, A).
$$

B "essentially" consists of analytic arcs.

Minimal (logarithmic) capacity contour for $\sqrt{\sqrt{1-z^{-2}+z^{-4}}-0.4}$

Theorem (Gonchar-Rakhmanov 1989)

Given $f \in S$ and a continuum $A \subset E_f^c$, there exists a sequence of rational interpolants R_n such that

$$
\lim_{n \to \infty} \rho_n^{1/n}(f, A) = \lim_{n \to \infty} ||f - R_n||_A^{1/n} = \exp \left\{ -\frac{2}{C(A, B)} \right\}.
$$

Moreover, the poles of these interpolants asymptotically distribute as $\omega_{\text{B},A}$ (interpolation points asymptotically distribute as $\omega_{A,B}$).

Let $\{z_{n,1}, \ldots, z_{n,2n}\} \subset A$ be a multiset of not necessarily distinct nor finite points and

$$
V_n(z) = \prod_{|z_{n,i}| < \infty} (z - z_{n,i}).
$$

The *n*-th diagonal multipoint Padé approximant is a rational function P_n/Q_n of type (n, n) such that

$$
\frac{(Q_n f - P_n)(z)}{V_n(z)} = \mathcal{O}\left(z^{-n-1}\right) \quad \text{as} \quad z \to \infty
$$

and is analytic on A . The above equation is in fact defines a linear system with one more unknown than equations. Hence, the rational function P_n/Q_n exists and happens to be unique.

Since B is a essentially a system of analytic arcs, it follows from the formula defining P_n/Q_n , Cauchy theorem and integral formula that

$$
\int_{\mathsf{B}} t^k Q_n(t) (f_+ - f_-)(t) \frac{dt}{V_n(t)} = 0
$$

for $k \in \{0, ..., n-1\}$, and

$$
\frac{(Q_n f - P_n)(z)}{V_n(z)} = \frac{1}{2\pi i} \int_{\mathsf{B}} \frac{Q_n(t)(f_+ - f_-)(t)}{z - t} \frac{dt}{V_n(t)}.
$$

Stahl and then Gonchar-Rakhmanov had developed machinery how to use the above orthogonality relations and the minimality of \overline{B} to get *n*-th root asymptotic behavior of error in the complex plane.

This gave the upper estimate for the limit superior.

If the limit inferior was smaller, there would exist rational functions $p_n/q_n \in \mathcal{R}_n(A)$ such that

$$
\max_{z \in \gamma} |f(z) - p_n(z)/q_n(z)| < \min_{z \in \gamma} |f(z) - P_n(z)/Q_n(z)|
$$

for some Jordan curve γ whose exterior domain, say D , lies in B^c and contains A.

Since P_n/Q_n interpolates f at $\{z_{n,1}, \ldots, z_{n,2n}, \infty\}$, $f - P_n/Q_n$ has $2n + 1$ zeros in D . By Rouche's theorem,

$$
\frac{p_n}{q_n} - \frac{P_n}{Q_n}
$$

must have $2n + 1$ zeros in D (including one at infinity), but it is impossible as its numerator has degree at most $2n - 1$.

Behavior in A^c In memory of Herbert Stahl (1942-2013). $1942 - 2013$

What do the poles of best rational approximants do?

In what follows A is unbounded set whose boundary is a Jordan curve.

We say that a sequence of rational approximants $R_n \in \mathcal{R}_n(A)$ is *n*-th root optimal if

$$
\lim_{n \to \infty} ||f - R_n||_A^{1/n} = \exp \left\{-\frac{2}{C(A, \mathsf{B})}\right\}.
$$

Theorem (Baratchart-Stahl-Ya.)

There exists a class of functions $\mathcal{F}(A)$ analytic on A such that for every $f \in \mathcal{F}(A)$ if R_n are *n*-th root optimal rational approximants to f on A, then

$$
\nu(R_n) \stackrel{*}{\to} \omega_{\mathsf{B},A},
$$

where $\nu(R_n)$ is the normalized counting measure of poles of R_n . Moreover, the functions R_n converge in capacity to f in $\mathsf{B}^c \setminus A$. The same is true for n -th root optimal meromorphic approximants. Recall that \vec{A} is the closure of the unbounded component of the complement of a Jordan curve. Let D be the bounded component. The class $\mathcal{F}(A)$ consists of functions holomorphic on \vec{A} with the following two properties:

- they can be continued into D along any path originating on ∂D which stays in \overline{D} while avoiding a closed polar subset of D (that may depend on the function);
- they are not single-valued, but the number of distinct function elements lying above a point of D is uniformly bounded (the bound may depend on the function).