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Dedicated on the occasion of his 80th birthday to Ed Saff,
our friend, colleague and mentor into Approximation Theory, who did so much for the subject.

Abstract. In this note we study the relation between the limit superior and the limit inferior
of the 𝑛-th root error in rational approximation of degree 𝑛 to holomorphic functions, in
the supremum norm on a continuum contained in the domain of holomorphy. We stress
links with meromorphic approximation, initially introduced by Parfënov in this context.

1. Introduction and main results

Let 𝐴 be a closed set in the complex plane C and Hp𝐴q the space of functions holo-
morphic in a (variable) neighborhood of 𝐴. One of the central questions of complex
approximation theory is to investigate the behavior of

𝜌𝑛p 𝑓 , 𝐴q :“ inf
R𝑛pCz𝐴q

} 𝑓 ´ 𝑟}𝐴,

where 𝑓 P Hp𝐴q, } ¨ }𝐴 is the supremum norm on 𝐴, and R𝑛pΩq is the class of rational
functions of type p𝑛, 𝑛q with all their poles in Ω; specifically, letting P𝑛 be the space of
algebraic polynomials of degree at most 𝑛 and M𝑛pΩq the set of monic polynomials of
degree 𝑛 with all their zeros in Ω, it holds that R𝑛pΩq :“ P𝑛M´1

𝑛 pΩq.
It was shown by Walsh [26, 1] using techniques of rational interpolation that

(1) lim sup
𝑛Ñ8

𝜌
1{𝑛
𝑛 p 𝑓 , 𝐴q ď exp

"

´
1

capp𝐴, 𝐾q

*

,

where 𝐾 is any closed set in the complement of which 𝑓 is holomorphic and capp𝐴, 𝐾q is
the capacity of the condenser p𝐴, 𝐾q; for notions of potential theory, we refer the reader
to the excellent monographs [20, 21, 12]. In general, it is known that Walsh’s inequality
cannot be improved [13]. However, it was conjectured by Gonchar [11] and proved in the
case of continua with connected complement by Parfënov [16], and for arbitrary compact
sets by Prokhorov [19], that

(2) lim inf
𝑛Ñ8

𝜌
1{𝑛
𝑛 p 𝑓 , 𝐴q ď exp

"

´
2

capp𝐴, 𝐾q

*

.

Hence, 𝜌𝑛p 𝑓 , 𝐴q has no limit in general as 𝑛 Ñ 8, and when the limit exists it cannot
exceed the infimum of the right-hand side of (2) over all compact 𝐾 outside of which 𝑓

is analytic and single-valued. The limit indeed exists for certain classes of functions: for
instance, if 𝑓 belongs to the class Sp𝐴q of functions in Hp𝐴q admitting a multiply sheeted
analytic continuation to every point of the complement of a closed, polar set (i.e., if 𝑓 can
be continued over the extended complex plane C into a multi-valued function with a closed,
polar singular set), then it follows from the work of Stahl [22, 23, 24] and of Gonchar and
Rakhmanov [9, Theorem 11] that

lim
𝑛Ñ8

𝜌
1{𝑛
𝑛 p 𝑓 , 𝐴q “ inf

𝐾
exp

"

´
2

capp𝐴, 𝐾q

*

,
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where the infimum is taken over all compact sets𝐾 such that 𝑓 admits an analytic and single-
valued continuation to their complement. The existence of a compact set 𝐾 𝑓 minimizing
capp𝐴, 𝐾q under this constraint, and its uniqueness up to addition or removal of a set of
capacity zero, follow from the work in [22, 23] as soon as 𝑓 P Hp𝐴q.

The goal of this note is to further elucidate the connection between the behavior of the
limit superior in (1) and the limit inferior in (2) when no particular assumption is made on
continuability properties of 𝑓 . More precisely, we wish to prove the following theorem.

Theorem 1. Let 𝑓 P Hp𝐴q, where 𝐴 is a continuum. If one defines the number 𝑏 ą 0 by
the limiting relation

lim sup
𝑛Ñ8

𝜌
1{𝑛
𝑛 p 𝑓 , 𝐴q “ exp

"

´
𝑏

capp𝐴, 𝐾q

*

,

where 𝐾 is a closed set disjoint from 𝐴 to the complement of which 𝑓 admits an analytic
and single-valued continuation, then 𝑏 ě 1 and

(3) lim inf
𝑛Ñ8

𝜌
1{𝑛
𝑛 p 𝑓 , 𝐴q ď exp

"

´
maxt𝑏, 𝑏{p2 ´ 2{𝑏qu

capp𝐴, 𝐾q

*

.

Of necessity 𝑏 ě 1, by (1). However, let us emphasize that our approach provides an
independent proof of Walsh’s result. The theorem asserts, in a quantitative manner, that
if along some subsequence of degrees the 𝑛-th-root asymptotic error rate is larger than
Parfënov’s upper bound for the liminf given by the right-hand side of (2) with 𝐾 “ 𝐾 𝑓 ,
then along some other subsequence the corresponding rate must be smaller than this bound.
It is so, for if 𝑏 P r1, 2q then 𝑏{p2 ´ 2{𝑏q P p2,8s and the endpoint cases are:

(4) 𝑏 “ 2 ô
𝑏

2 ´ 2{𝑏
“ 2 and 𝑏 “ 1 ô

𝑏

2 ´ 2{𝑏
“ 8.

In particular, Theorem 1 generalizes the observation, made in [19], that if along some
subsequence of degrees the best rational approximants have worst possible asymptotic 𝑛-th
root error in rational approximation (given by the right-hand side of (1) with 𝐾 “ 𝐾 𝑓 ),
then along some other subsequence such approximants will converge superexponentially
fast with the degree. It may also be worth stating the following consequence of Theorem 1,
an analog of which was shown in [9] for multipoint Padé approximants to functions from
Sp𝐴q, though in the context of convergence in capacity.

Corollary 2. With the notation and assumptions of Theorem 1, if (2) is an equality, then
𝜌

1{𝑛
𝑛 p 𝑓 , 𝐴q does have a limit when 𝑛 Ñ 8.

Proof. This follows readily from (3) and (4). □

Our proof elaborates on the approach taken in [16], trading rational approximation for
meromorphic approximation, and exploiting the connection of the latter with the spectral
analysis of Hankel operators as stressed in the so-called AAK-theory (for Adamjan-Arov-
Krein); see [17, Chapter 4]. Our main contribution here is to analyze more thoroughly than
[16] the Horn-Weyl inequalities for the Hankel operators with symbol 𝑓 , and to derive from
them the quantitative rule set forth in Theorem 1. Another, lesser contribution is to clarify
issues of existence and uniqueness of best meromorphic approximants on B𝐴 to functions
in Hp𝐴q, in the case where B𝐴 is a non-rectifiable Jordan curve.

2. Meromorphic approximants

We set 𝐷 :“ Cz𝐴, which is a simply connected domain since 𝐴 is a continuum. In this
case, one has capp𝐴, 𝐾q “ cap𝐷p𝐾q for any compact set 𝐾 Ă 𝐷, where cap𝐷p¨q is the
Greenian capacity of 𝐾 as a subset of 𝐷, see [21, 12]. Following the original approach of
Parfënov, we proceed by enlarging the class of approximants from rational to meromorphic
ones. However, we do it only under the additional assumption that 𝑇 :“ B𝐴 is a Jordan
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curve. We shall keep this assumption in force all the way up to the proof of Theorem 1.
Moreover, since composition with a Möbius transformation preserves rational functions
and their degree, we shall assume from now on that 𝐴 is unbounded and 𝑇 :“ B𝐴 “ B𝐷 is
compact; i.e., that the point at infinity lies interior to 𝐴.

Let𝐻8p𝐷q denote the space of bounded analytic functions on𝐷 and Ap𝐷q the subspace
of those extending continuously to 𝑇p“ B𝐷q. Further, let us put

#

𝐻8
𝑛 p𝐷q :“

␣

ℎ{𝑞 : ℎ P 𝐻8p𝐷q, 𝑞 P M𝑛p𝐷q
(

,

A𝑛p𝐷q :“
␣

ℎ{𝑞 : ℎ P Ap𝐷q, 𝑞 P M𝑛p𝐷q
(

.

That is, 𝐻8
𝑛 p𝐷q is the set of meromorphic function with at most 𝑛 poles in 𝐷 that are

bounded near 𝑇 , and A𝑛p𝐷q is the subset of those extending continuously to 𝑇 . Note that
R𝑛p𝐷q Ă A𝑛p𝐷q.

Assume first that 𝑇 “ T, the unit circle. The meromorphic approximation (Nehari-
Takagi) problem we are interested in is the following one: given 𝑓 P 𝐿8pTq, find 𝑀8

𝑛 P

𝐻8
𝑛 pDq such that1

(5) } 𝑓 ´ 𝑀8
𝑛 }T “ inf

𝑀P𝐻8
𝑛 pDq

} 𝑓 ´ 𝑀}T.

It is known that 𝑀8
𝑛 always exists and that it is unique when 𝑓 lies in 𝐶pTq ` 𝐻8pDq,

see [17, Chapter 4]. Moreover, if 𝑓 is Dini-continuous on T, then 𝑀8
𝑛 is continuous on

T; indeed, if we write 𝑀8
𝑛 “ 𝑟𝑛 ` 𝑔 where 𝑟𝑛 P R𝑛pDq and 𝑔 P 𝐻8pDq, then 𝑔 must be

the best Nehari approximant to 𝑓 ´ 𝑟𝑛 and the latter is Dini-continuous on T, so the claim
follows from [4].

When 𝑇 is rectifiable, each ℎ P 𝐻8p𝐷q has a non-tangential limit almost everywhere on
𝑇 with respect to arclength, that we still call ℎ, and putting } ¨ }𝑇 for the essential supremum
norm on𝑇 (with respect to arclength) it holds that }ℎ}𝑇 “ }ℎ}𝐷 [5, Theorems 10.3 & 10.5].
Thus, in this case, one can readily replace D by 𝐷 in (5) and carry over to 𝑇 all properties
of best meromorphic approximants on T by conformal mapping.

When 𝑇 is a non-rectifiable Jordan curve, however, limiting values on 𝑇 of 𝐻8p𝐷q-
functions generally exist at sectorially accessible points only, and such points may reduce
to a set of zero linear measure [14]. In this case, the very existence of best meromorphic
approximants depends on the analyticity of the approximated function across 𝑇 .

Lemma 3. Let 𝑇 , 𝐴 and 𝐷 be as above. Given 𝑓 P Hp𝐴q, to each integer 𝑛 there exists a
unique 𝑀8

𝑛 P A𝑛p𝐷q such that

(6) } 𝑓 ´ 𝑀8
𝑛 }𝑇 “ inf

𝑀PA𝑛p𝐷q
} 𝑓 ´ 𝑀}𝑇 .

If 𝑇 is rectifiable, A𝑛p𝐷q can be replaced by 𝐻8
𝑛 p𝐷q in (6) without changing 𝑀8

𝑛 .

The proof of the above lemma can be found in [2]. However, since it is short, we do
present it for completeness of the exposition. Before we start, let us recall some definitions
and make pieces of notation. We denote by 𝐿2pTq the space of square integrable functions
on T, and let 𝐻2 Ă 𝐿2pTq be the Hardy space of functions whose Fourier coefficients with
negative index do vanish. It is known that 𝐻2 can be identified with (non-tangential limits
a.e. on T of) analytic functions in D whose 𝐿2-means on circles centered at the origin are
uniformly bounded, see [5, Theorem 3.4]. We set 𝐻2

´ :“ 𝐿2pTq a𝐻2 to be the orthogonal
complement of 𝐻2, which is the Hardy space of 𝐿2-functions whose Fourier coefficients
with nonnegative index are equal to zero. The latter can be identified with functions analytic
in CzD that vanish at infinity, and whose 𝐿2-means with respect to normalized arclength
on circles centered at the origin are uniformly bounded. We let P´ : 𝐿2pTq Ñ 𝐻2

´ and

1If 𝑛 “ 0, (5) reduces to the question of best analytic approximation of bounded functions on the unit circle by
elements of 𝐻8pDq, which is the so-called Nehari problem named after [15] (that deals with an equivalent issue).
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P` : 𝐿2pTq Ñ 𝐻2 be the orthogonal projections. Observe that P˘ admit standard integral
representations via Cauchy integrals:

(7) P`p 𝑓 qp𝑧q “
1

2𝜋i

ż

T

𝑓 p𝜁q

𝜁 ´ 𝑧
𝑑𝜁, |𝑧| ă 1; P´p 𝑓 qp𝑧q “

1
2𝜋i

ż

T

𝑓 p𝜁q

𝑧 ´ 𝜁
𝑑𝜁, |𝑧| ą 1.

Proof of Lemma 3. Let 𝜙 : D Ñ 𝐷 be a conformal map. Since 𝐷 is a Jordan domain, 𝜙
extends to a homeomorphism from D to 𝐷 by Carathéodory theorem [18, Section 2]. If we
pick a continuous function 𝑓 on 𝑇 , then 𝑓 ˝ 𝜙 is continuous on T and, in particular, it lies
in 𝐿2pTq. Set 𝐹 :“ P´p 𝑓 ˝ 𝜙q and 𝐺 :“ P`p 𝑓 ˝ 𝜙q, so that 𝐹 P 𝐻2

´ and 𝐺 P 𝐻2. Since
P` ` P´ is the identity operator on 𝐿2pTq, it holds that

(8) 𝐹p𝑧q “ p 𝑓 ˝ 𝜙qp𝑧q ´ 𝐺p𝑧q, a.e. 𝑧 P T.

Now, if 𝑓 P Hp𝐴q, then 𝑓 ˝ 𝜙p𝑧q is holomorphic in 𝑟 ă |𝑧| ă 1 and continuous in
𝑟 ď |𝑧| ď 1, for 𝑟 close enough to 1. Hence, the right-hand side of (8) is holomorphic in
𝑟 ă |𝑧| ă 1 with uniformly bounded 𝐿2-means on circles centered at the origin, while the
left-hand side lies in 𝐻2

´ and both sides have the same non-tangential limit on T. By an
easy variant of Morera’s theorem [7, Chapter II, Exercise 12], the function equal to 𝐹p𝑧q

for |𝑧| ą 1 and to p 𝑓 ˝ 𝜙qp𝑧q ´𝐺p𝑧q for 𝑟 ă |𝑧| ă 1 is holomorphic across T, in particular
𝐹 extends analytically across T and 𝐺 extends continuously to D. Then, as mentioned
after (5), the best meromorphic approximant 𝑀8

𝑛 P 𝐻8
𝑛 pDq to 𝑓 ˝ 𝜙 exists and is unique,

moreover it is readily checked that 𝑀8
𝑛 is equal to the sum of 𝐺 (a member of ApDq)

and of the best approximant to 𝐹 from 𝐻8
𝑛 pDq, which lies in A𝑛pDq because 𝐹 is analytic

across T and therefore is Dini-continuous on T; hence, we get that 𝑀8
𝑛 P A𝑛pDq. If now

𝑀 P A𝑛p𝐷q, then 𝑀 ˝ 𝜙 P A𝑛pDq and

} 𝑓 ´ 𝑀}𝑇 “ } 𝑓 ˝ 𝜙 ´ 𝑀 ˝ 𝜙}T ě } 𝑓 ˝ 𝜙 ´ 𝑀8
𝑛 }T

by definition of 𝑀8
𝑛 . As 𝑀8

𝑛 ˝ 𝜙´1 P A𝑛p𝐷q, it is the unique best meromorphic approxi-
mant to 𝑓 we are looking for. The previous argument also shows that, when 𝑓 P Hp𝐴q, the
best meromorphic approximant to 𝑓 ˝ 𝜙 necessarily belongs to A𝑛pDq. If 𝑇 is rectifiable
then composition with 𝜙 is an isometric isomorphism 𝐿8p𝑇q Ñ 𝐿8pTq (understood with
respect to the arclength measure), hence one can equivalently use𝐻8

𝑛 p𝐷q instead of A𝑛p𝐷q

in definition (6). □

The next theorem stands analogous to Theorem 1 for meromorphic approximants.

Theorem 4. Let 𝑇 , 𝐴 and 𝐷 be as above. Further, let 𝑓 P Hp𝐴q and the approximants
𝑀8
𝑛 P A𝑛p𝐷q be as in Lemma 3. If a number 𝑏 ě 0 is such that

(9) lim sup
𝑛Ñ8

} 𝑓 ´ 𝑀8
𝑛 }

1{𝑛

𝑇
ě exp

"

´𝑏

cap𝐷p𝐾q

*

,

where 𝐾 Ă 𝐷 is a closed set to the complement of which 𝑓 admits an analytic and
single-valued continuation, then 𝑏 ě 12 and

(10) lim inf
𝑛Ñ8

} 𝑓 ´ 𝑀8
𝑛 }

1{𝑛

𝑇
ď exp

"

´
maxt𝑏, 𝑏{p2 ´ 2{𝑏qu

cap𝐷p𝐾q

*

.

As we shall see later, the proof of Theorem 4 quickly reduces to the case of the unit
disk. Our argument will be a refinement of Parfënov’s original proof of estimate (2) given
in [16], that we review in the next section on our way to the proof of Theorem 4.

2Since the inclusion R𝑛p𝐷q Ă A𝑛p𝐷q implies that } 𝑓 ´ 𝑀8
𝑛 }𝑇 ď 𝜌𝑛p 𝑓 , 𝐴q, the conclusion 𝑏 ě 1 is a

consequence of (1), but it also independently follows from our analysis.
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3. Factorization of Hankel operators and 𝑛-th root singular values estimates

Parfënov’s argument is based on AAK-theory and a factorization of the Hankel operator
with symbol 𝑓 that involves embedding operators. The latter have singular values whose
𝑛-th root asymptotics is known, and the desired estimate (2) then drops out of the Horn-Weyl
inequalities when applied to this factorization. Again, we assume without loss of generality
that 𝑓 p8q “ 0.

Recall the definition of Hardy spaces after the statement of Lemma 3. Given ℎ P 𝐿8pTq,
one defines the Hankel operator with symbol ℎ to be

Γℎ : 𝐻2 Ñ 𝐻2
´, Γℎp𝑔q :“ P´p𝑔ℎq.

For a non-negative integer 𝑛, let 𝑠𝑛pΓℎq be the p𝑛 ` 1q-th singular number of the operator
Γℎ; that is, 𝑠𝑛pΓℎq :“ infrank 𝑅ď𝑛 }Γℎ ´ 𝑅}, where the infimum is taken over all operators
𝑅 : 𝐻2 Ñ 𝐻2

´ of rank at most 𝑛 and } ¨ } stands for the operator norm. Then, it holds that
(11) inf

𝑀P𝐻8
𝑛 pDq

}ℎ ´ 𝑀}T “ 𝑠𝑛pΓℎq.

If, in addition, ℎ P 𝐶pTq ` 𝐻8pDq, then Γℎ is compact so that 𝑠2
𝑛pΓℎq is the p𝑛 ` 1q-st

eigenvalue of Γ˚
ℎ
Γℎ, when these are arranged in non-increasing order. Moreover in this

case, the infimum is uniquely attained at 𝑀 “ 𝑀8
𝑛 P 𝐻8

𝑛 pDq and (11) becomes a pointwise
equality:
(12) |pℎ ´ 𝑀8

𝑛 qp𝑧q| “ 𝑠𝑛pΓℎq a.e. on T.

Going back to the subject matter of Theorem 4, let 𝐿 be a finite disjoint union of 𝐶8-
smooth Jordan curves in D, whose interior components cover the set 𝐾 . Further, let 𝐿 be
oriented counterclockwise and denote its exterior by Ω. Cauchy’s formula then yields that

𝑓 p𝑧q “

ż

𝐿

𝑓 p𝑠q

𝑧 ´ 𝑠

𝑑𝑠

2𝜋i
, 𝑧 P Ω.

Recall from (7) that the orthogonal projection P´ can be computed via a Cauchy integral
on T. Hence, it follows from Fubini’s theorem and the residue formula that
(13)

pΓ 𝑓 𝑔qp𝑧q “

ż

𝐿

ˆ
ż

T

𝑔p𝜁q

p𝑧 ´ 𝜁qp𝜁 ´ 𝑠q

𝑑𝜁

2𝜋i

˙

𝑓 p𝑠q
𝑑𝑠

2𝜋i
“

ż

𝐿

𝑔p𝑠q 𝑓 p𝑠q

𝑧 ´ 𝑠

𝑑𝑠

2𝜋i
, 𝑧 P CzD,

for any 𝑔 P 𝐻2. This, of course, shows that Γ 𝑓 𝑔 extends to an analytic function in Ω, and
thus to an analytic function in Cz𝐾 upon varying 𝐿.

Before we proceed with the factorization of Γ 𝑓 , recall that the Smirnov class E2pΩq

consists of all functions ℎ holomorphic in Ω for which there exists an increasing sequence
of domains Ω𝑛, with Ω𝑛 Ă Ω, such that BΩ𝑛 is a finite union of rectifiable Jordan arcs and
each compact subset of Ω is eventually contained in Ω𝑛 for 𝑛 large enough, while
(14) sup

𝑛PN
}ℎ}𝐿2pBΩ𝑛q ă 8,

where 𝐿2pBΩ𝑛q is meant with respect to arclength. The set E2pΩq forms a vector space,
although this may not be obvious at first glance, because in fact there is a single system
tΩ𝑛u𝑛PN that works for all ℎ P E2pΩq at the same time. The norm defined by (14) then
makes E2pΩq into a Hilbert space [5, Chapter 10]. We further denote by E2

0pΩq the subspace
of functions vanishing at infinity. Since the boundary 𝐿 “ BΩ consists of finitely many
rectifiable Jordan curves, each ℎ P E2pΩq has non-tangential limits a.e. with respect to
arclength on 𝐿, and the boundary functions thus defined a.e. on 𝐿 belong to 𝐿2p𝐿q. The
boundary function characterizes ℎ P E2pΩq completely, in that it cannot vanish on a set of
positive arclength on 𝐿 unless ℎ ” 0. The 𝐿2p𝐿q-norm of its boundary function matches
the norm (14) of ℎ in E2pΩq. Consequently, we can identify E2pΩq with a closed subspace
of 𝐿2p𝐿q. Moreover, a function ℎ P E2pΩq can be recovered from its boundary values on
BΩ by a Cauchy integral, see [5, Section 10.5]. The correspondence just discussed makes it
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possible to regard E2pΩq both as a Hilbert space of analytic functions in Ω and as a Hilbert
space of functions on 𝐿. Finally, since 𝐿 consists of smooth and therefore Ahlfors-regular
Jordan curves, the Cauchy integral operator defines a bounded projection from 𝐿2p𝐿q onto
E2

0pΩq, see [5, Section 10.5] and [3, Corollary 6.8].
Using (13), we see that the Hankel operator Γ 𝑓 is a composition of four “elementary”

operators, namely Γ 𝑓 “ 𝐵1 𝐵2 𝐵3 𝐵4, where
(15)
$

’

’

’

’

&

’

’

’

’

%

𝐵4 : 𝐻2 Ñ 𝐿2p𝐿q is the embedding operator obtained by restricting functions to 𝐿;
𝐵3 : 𝐿2p𝐿q Ñ 𝐿2p𝐿q is the multiplication by 𝑓 ;
𝐵2 : 𝐿2p𝐿q Ñ E2

0pΩq is the Cauchy projection onto the Smirnov class;
𝐵1 : E2

0pΩq Ñ 𝐻2
´ is the embedding operator arising by restriction to CzD.

The operator 𝐵3 is clearly bounded and the boundedness of 𝐵2 follows from the discussion
above. The operators 𝐵1 and 𝐵4 are immediately seen to be compact by a normal family
argument. Further it is known, see [28], that their singular numbers must satisfy

(16) lim
𝑘Ñ8

𝑠
1{𝑘

𝑘
p𝐵1q “ lim

𝑘Ñ8
𝑠

1{𝑘

𝑘
p𝐵4q “ exp

"

´
1

capDp𝐾𝐿q

*

,

where 𝐾𝐿 is the closure of the interior domain of 𝐿. Indeed, the second limit in (16) follows
from [6, Chapter 7, Theorem 6.4], once it is recognized that the Green equilibrium density
𝜇D,𝐿 on 𝐿 is smooth with non-vanishing density 𝑑𝜇D,𝐿p𝑠q{|𝑑𝑠| with respect to arclength.
To see this, observe that the equilibrium potential solves the Dirichlet problem in Ω with
smooth (even constant) boundary data on T and 𝐿, hence it is smooth and so is its normal
derivative which is precisely 𝑑𝜇D,𝐿p𝑠q{|𝑑𝑠|; since every point of 𝐿 is a maximum place
for the equilibrium potential, the density in question cannot vanish by the Hopf lemma.
The conclusion can be verified also by methods presented in [21, Section IV.2] for the
determination of equilibrium measures. The first limit in (16) is obtained by applying the
same argument to the adjoint operator 𝐵˚

1 , which is unitarily equivalent to the embedding
operator 𝐻2

´ Ñ 𝐿2p𝐿˚q, where 𝐿˚ is the reflection of 𝐿 across T.
It has been the pioneering observation of Parfënov that one can estimate the product

of the first 𝑛 singular values of the Hankel operator Γ 𝑓 by using (16) together with the
Horn-Weyl inequalities:

(17) Π𝑛𝑘“0 𝑠𝑘p𝐸𝐹q ď Π𝑛𝑘“0 𝑠𝑘p𝐸qΠ𝑛𝑘“0 𝑠𝑘p𝐹q, 𝑛 P N,

which are valid for any bounded operators 𝐸 : H1 Ñ H2 and 𝐹 : H2 Ñ H3 between Hilbert
spaces, see [8]. Indeed, using the obvious inequality 𝑠𝑘p𝐸𝐹q ď mint}𝐸}𝑠𝑘p𝐹q , }𝐹}𝑠𝑘p𝐸qu,
we deduce from (17) by putting 𝐸 “ 𝐵1𝐵2 and 𝐹 “ 𝐵3𝐵4 that

(18) Π𝑛𝑘“0 𝑠𝑘pΓ 𝑓 q ď }𝐵2}𝑛`1}𝐵3}𝑛`1Π𝑛𝑘“0 𝑠𝑘p𝐵1qΠ𝑛𝑘“0 𝑠𝑘p𝐵4q, 𝑛 P N.

Combination of inequalities (16) and (18) now yields that

lim inf
𝑘Ñ8

𝑠
1{𝑘

𝑘
pΓ 𝑓 q ď exp

"

´
2

capDp𝐾𝐿q

*

.

It is known that the Greenian capacity is right continuous on compact sets. That is, if
we select a sequence t𝐿𝑛u, where each 𝐿𝑛 is a finite disjoint union of 𝐶8-smooth Jordan
curves, such that 𝐾 “ X𝑛𝐾𝐿𝑛 , then

(19) capDp𝐾q “ lim
𝑛

capDp𝐾𝐿𝑛q.

Such a choice for the sequence t𝐿𝑛u is always possible due to Whitney’s theorem (asserting
that any compact set is the zero set of a non-negative 𝐶8-smooth function), see [25,
Theorem VI.2] or [27, Theorem I], and to Sard’s theorem [10, page 62] (asserting that
almost every level line of a 𝐶8-smooth function is smooth, and thus will satisfy the
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conditions placed on 𝐿𝑛). Hence, we always can find 𝐿𝑛 such that capDp𝐾𝐿𝑛q (which is no
less than pcapDp𝐾qq) is in fact arbitrary close to capDp𝐾q. Clearly, this yields that

lim inf
𝑘Ñ8

𝑠
1{𝑘

𝑘
pΓ 𝑓 q ď exp

"

´
2

capDp𝐾q

*

,

which is precisely the result of Parfënov [16]. The improvement of this inequality stated in
Theorem 4 rests on the following lemma, which refines the above analysis.

Lemma 5. Let t𝑎𝑘u𝑘ě1 and t𝑏𝑘u𝑘ě1 be two sequences of non-negative real numbers, of
which t𝑎𝑘u is non-increasing, that satisfy

(20) Π𝑛𝑘“1𝑎𝑘 ď Π𝑛𝑘“1𝑏𝑘 for all 𝑛 P N.

Assume for some 𝜌 P p0, 1q that

(21) lim sup
𝑘Ñ8

𝑏
1{𝑘

𝑘
ď 𝜌.

If 𝜆 is a non-negative real number such that

(22) lim sup
𝑘Ñ8

𝑎
1{𝑘

𝑘
ą 𝜌𝜆,

then 1{2 ă 𝜆. Moreover, if 𝜆 ă 1, then

(23) lim inf
𝑘Ñ8

𝑎
1{𝑘

𝑘
ă 𝜌 𝜆

2{p2𝜆´1q.

Proof. By (21), there is to each 𝜀 ą 0 a constant 𝐶𝜀 such that

(24) 𝑏𝑘 ď 𝐶𝜀p𝜌 ` 𝜀q𝑘 for all 𝑘 P N.

Thus, we see from (20), (24), and the monotonicity of 𝑎𝑘 that 𝑎𝑘
𝑘

ď 𝐶𝑘𝜀p𝜌` 𝜀q𝑘p𝑘`1q{2. As
𝜀 ą 0 is arbitrary, the fact that 𝜆 ą 1{2 follows from the inequalities

𝜌𝜆 ă lim sup
𝑘Ñ8

𝑎
1{𝑘

𝑘
ď lim sup

𝑘Ñ8

𝐶
1{𝑘
𝜖 p𝜌 ` 𝜀qp1`1{𝑘q{2 “ p𝜌 ` 𝜀q1{2.

Suppose now that 𝜆 ă 1. If the lim inf in (23) is equal to zero, there is nothing more to
prove. Otherwise, let 𝛼 ą 𝜆 be such that

(25) lim inf
𝑘Ñ8

𝑎
1{𝑘

𝑘
ą 𝜌𝛼 .

Since 𝑎𝑘 ‰ 0 for all 𝑘 by monotonicity, this implies the existence of a strictly positive
constant 𝑐1 for which

(26) 𝑎𝑘 ą 𝑐1𝜌
𝛼𝑘 for all 𝑘 P N.

Likewise, by (22), there is an infinite subsequence t𝑎𝑘𝑛u𝑛ě1 and a strictly positive constant
𝑐2 such that

(27) 𝑎𝑘𝑛 ą 𝑐2𝜌
𝜆𝑘𝑛 for all 𝑛 P N.

Given a natural number 𝑚 ą 1, put 𝛿 :“ p𝛼´𝜆q{p𝑚´ 1q ą 0 and consider the decreasing
sequence of 𝑚 positive real numbers defined by

𝑠 𝑗 :“ 𝜆 ` p𝑚 ´ 𝑗q𝛿, 1 ď 𝑗 ď 𝑚,

so that 𝑠𝑚 “ 𝜆 and 𝑠1 “ 𝛼. Choose 𝑛 ą 1 and define

ℓ 𝑗 :“
„

𝜆𝑘𝑛

𝑠 𝑗

ȷ

, 1 ď 𝑗 ď 𝑚,

where r𝑥s indicates the smallest integer which is bigger than or equal to 𝑥. Note that
ℓ𝑚 “ 𝑘𝑛 and that ℓ1 ě 1. It follows at once from the definition that ℓ 𝑗 𝑠 𝑗 ě 𝜆𝑘𝑛 and
therefore, since 𝑎𝑘 is non-increasing and 0 ă 𝜌 ă 1, we deduce from (27) that

(28) 𝑎ℓ ą 𝑐2𝜌
ℓ𝑠 𝑗 for ℓ 𝑗 ă ℓ ď ℓ 𝑗`1, 1 ď 𝑗 ď 𝑚 ´ 1.
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Next, apply (20) where 𝑛 is replaced by 𝑘𝑛. Using the estimate (28) for ℓ ą ℓ1 and the
estimate (26) for 1 ď 𝑘 ď ℓ1, we see from (24) on setting 𝑐 :“ minp𝑐1, 𝑐2q that

𝑐𝑘𝑛 𝜌𝛼ℓ1pℓ1`1q{2Π𝑚´1
𝑗“1 𝜌

𝑠 𝑗pℓ 𝑗`1pℓ 𝑗`1`1q{2´ℓ 𝑗pℓ 𝑗`1q{2q ă 𝐶𝑘𝑛𝜀 p𝜌 ` 𝜀q𝑘𝑛p𝑘𝑛`1q{2.

Raising both sides of this inequality to the power 2{𝑘2
𝑛 and letting 𝑛 tend to infinity leads

us to
𝜌𝜆

2{𝛼Π𝑚´1
𝑗“1 𝜌

p1{𝑠2
𝑗`1´1{𝑠2

𝑗
q𝜆2𝑠 𝑗 ă 𝜌 ` 𝜀.

Since 0 ă 𝜌 ă 1 while 𝜀 ą 0 was arbitrary, this amounts to saying that

𝜆2

𝛼
` 𝜆2

𝑚´1
ÿ

𝑗“1
𝑠 𝑗

˜

1
𝑠2
𝑗`1

´
1
𝑠2
𝑗

¸

ě 1.

Rearranging the terms on the left-hand side and using that 𝑠 𝑗 ´ 𝑠 𝑗`1 “ 𝛿 and 𝑠 𝑗`1 ď 𝑠 𝑗
yields a fortiori that

𝜆2

𝛼
` 2𝜆2

𝑚´1
ÿ

𝑗“1

𝛿

𝑠2
𝑗`1

ě 1.

Further, by letting 𝑚 tend to infinity, we get in the limit for this Riemann sum

𝜆2

𝛼
` 2𝜆2

ż 𝛼

𝜆

𝑑𝑠

𝑠2 “ 2𝜆 ´
𝜆2

𝛼
ě 1.

Therefore, as 𝜆 ą 1{2, it holds that

(29) 𝛼 ě
𝜆2

2𝜆 ´ 1
ą 0.

Now, if we had

lim inf
𝑘Ñ8

𝑎
1{𝑘

𝑘
ą 𝜌𝜆

2{p2𝜆´1q,

then there would exist 0 ă 𝛼 ă 𝜆2{p2𝜆 ´ 1q for which (25) would still hold, but this
contradicts (29). Hence (23) is satisfied, at least with a less than or equal sign; the
inequality, however, is strict because we could have taken 𝜆 slightly smaller in (22). □

We are now in a position to achieve the proofs of the two main results of this note.

4. Proof of Theorems 4 and 1

Proof of Theorem 4. First, we claim that it is enough to prove Theorem 4 in the special
case where 𝐴 “ t|𝑧| ě 1u, so that 𝑇 “ T and 𝐷 “ D. To see this, we use the notation
introduced in the proof of Lemma 3. By conformal invariance of the condenser capacity, it
holds that

cap𝐷p𝐾q “ capDp𝜙´1p𝐾qq.

Let 𝑀8
𝑛 be the best meromorphic approximant of 𝑓 from A𝑛p𝐷q while 𝑀8

𝑛 p 𝑓 ˝ 𝜙q and
𝑀8
𝑛 p𝐹q denote the AAK approximants of 𝑓 ˝ 𝜙 and 𝐹 “ P´p 𝑓 ˝ 𝜙q, respectively. As

explained in the proof of Lemma 3,

(30) } 𝑓 ´ 𝑀8
𝑛 }𝑇 “ } 𝑓 ˝ 𝜙 ´ 𝑀8

𝑛 p 𝑓 ˝ 𝜙q}T “ }𝐹 ´ 𝑀8
𝑛 p𝐹q}T.

Hence, if (9) holds for 𝑓 , 𝑇 , and 𝐾 , then an analogous limiting inequality holds for 𝐹, T
and 𝜙´1p𝐾q, whence the validity of the conclusion (10) for 𝐹, T and 𝜙´1p𝐾q implies that
it must also hold for 𝑓 , 𝑇 and 𝐾 , as claimed.
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Now, to prove Theorem 4 in the case of the unit disk, we use Lemma 5. Let 𝐿 be a finite
disjoint union of 𝐶8-smooth Jordan curves such that 𝐾 lies in the interior of 𝐿, whose
closure we continue to denote by 𝐾𝐿 . Decompose Γ 𝑓 as in (15). Set

$

’

&

’

%

𝜌 “ expt´2{capDp𝐾𝐿qu,

𝑎𝑘 “ 𝑠𝑘´1pΓ 𝑓 q,

𝑏𝑘 “ }𝐵2} }𝐵3} 𝑠𝑘´1p𝐵1q 𝑠𝑘´1p𝐵4q.

With these choices we get from (18) and (16) that (20) and (21) are satisfied. Moreover, we
deduce from (12) and (9) that (22) holds for any 𝜆 ą 𝑏{2. The first conclusion of Lemma 5
states that 𝜆 ą 1{2, which implies that 𝑏 ě 1. Moreover, if 𝑏 P r1, 2q, then minimizing
over 𝜆 P p𝑏{2, 1q gives us

lim inf
𝑛Ñ8

} 𝑓 ´ 𝑀8
𝑛 }

1{𝑛

𝑇
ď inf
𝑏{2ă𝜆ă1

exp
"

´
2𝜆2

p2𝜆 ´ 1q

1
capDp𝐾𝐿q

*

“ exp
"

´
𝑏2

2p𝑏 ´ 1q

1
capDp𝐾𝐿q

*

,

by (23). As the left-hand side of the inequality above is independent of 𝐿 and since capDp𝐾𝐿q

can be made arbitrarily close to capDp𝐾q, see (19), the conclusion (10) follows. □

Proof of Theorem 1. Given 𝜖 P p0, 1q, let𝑇𝜖 :“ t𝜙p𝑧q : |𝑧| “ 1´𝜖u and 𝐷 𝜖 be the interior
domain of 𝑇𝜖 . Clearly, 𝑇𝜖 is a smooth Jordan curve for any continuum 𝐴. Fix 𝜖 small
enough so that 𝑓 extends analytically across 𝑇𝜖 . Let 𝑀8

𝑛,𝜖 P A𝑛p𝐷 𝑒𝑝𝑠𝑖𝑙𝑜𝑛q be the best
meromorphic approximant to 𝑓 on 𝑇𝜖 . Write 𝑀𝑛,𝜖 “ 𝑟𝑛 ` 𝑔𝑛, where 𝑟𝑛 P R𝑛p𝐷 𝜖 q and
𝑔𝑛 P Ap𝐷 𝜖 q. Then it follows from Cauchy’s integral formula that

|p 𝑓 ´ 𝑟𝑛qp𝑧q| “

ˇ

ˇ

ˇ

ˇ

ż

𝑇𝜖

p 𝑓 ´ 𝑟𝑛qp𝑠q

𝑧 ´ 𝑠

𝑑𝑠

2𝜋i

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

𝑇𝜖

p 𝑓 ´ 𝑀8
𝑛,𝜖 qp𝑠q

𝑧 ´ 𝑠

𝑑𝑠

2𝜋i

ˇ

ˇ

ˇ

ˇ

ď 𝐶𝜖 } 𝑓 ´ 𝑀8
𝑛,𝜖 }𝑇𝜖 , 𝑧 P 𝑇,

for some constant 𝐶𝜖 . Put 𝜙𝜖 p𝑧q :“ 𝜙p𝑧p1 ´ 𝜖qq, which maps D conformally onto 𝐷 𝜖 . Set
𝐹𝜖 :“ P´p 𝑓 ˝ 𝜙𝜖 q. Then, the above estimate together with (30) and (12) yield that

𝜌𝑛p 𝑓 , 𝐴q ď 𝐶𝜖 𝑠𝑛pΓ𝐹𝜖
q.

As in the previous proof, let 𝐿 be a finite disjoint union of 𝐶8-smooth Jordan curves with
𝐾 Ă 𝐾𝐿 Ă 𝐷 𝜖 . Decompose Γ𝐹𝜖

as in (15) with respect to 𝜙´1
𝜖 p𝐿q. Then, similarly to

the previous proof, we get from (16) and (18) along with the conformal equivalence of
Greenian capacity that

$

’

’

’

’

&

’

’

’

’

%

ś𝑛
𝑘“1 𝜌𝑘´1p 𝑓 , 𝐴q ď

ś𝑛
𝑘“1 𝑏𝑘 ,

𝑏𝑘 “ 𝐶𝜖 }𝐵2} }𝐵3} 𝑠𝑘´1p𝐵1q 𝑠𝑘´1p𝐵4q,

lim
𝑘Ñ8

𝑏
1{𝑘

𝑘
“ exp

"

´
2

cap𝐷𝜖
p𝐾𝐿q

*

.

Since cap𝐷𝜖
p𝐾𝐿q “ capCz𝐾𝐿

pCz𝐷 𝜖 q by characteristic properties of Greenian equilibrium
potentials [21, Theorems II.5.11 & II.5.12], we get from the right continuity of Greenian
capacity on compact sets that this quantity can be made arbitrarily close to cap𝐷p𝐾q, see
(19). Now, Theorem 1 follows from Lemma 5 exactly as Theorem 4 did. □
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10 LAURENT BARATCHART AND MAXIM YATTSELEV

[4] L. Carleson and S. Jacobs. Best uniform approximation by analytic functions. Ark. Mat., 10:219–229, 1972.
3

[5] P.L. Duren. Theory of 𝐻 𝑝 Spaces. Pure and Applied Mathematics, Vol. 38. Academic Press, New York-
London, 1970. 3, 5, 6

[6] S.D. Fisher. Function Theory on Planar Domains. A Second Course in Complex Analysis. Pure and Applied
Mathematics. A Wiley-Interscience Publication, New York, 1983. 6

[7] J.B. Garnett. Bounded Analytic Functions. Number 236 in GTM. Springer, 2007. 4
[8] I. Gohberg and M.G. Krein. Introduction to the Theory of Linear Non-Selfadjoint Operators on Hilbert

Space. Amer. Math. Soc., Providence, RI, 1969. 6
[9] A.A. Gonchar and E.A. Rakhmanov. Equilibrium distributions and degree of rational approximation of

analytic functions. Mat. Sb. (N.S.), 134(176)(3):306–352, 447, 1987. 1, 2
[10] V. Guillemin and A. Pollack. Differential Topology. Englewood Cliffs, N.J., Prentice-Hall, 1974. 6
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