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ABSTRACT

To fast approximate the least squares estimator efficiently in a Big Data linear regression by a sub-
sampling estimator, numerous optimal sampling distributions are derived based on the criterion of
minimizing the trace norm of the variance-covariance matrix of the subsampling estimator. Relative
error bounds and conditions for subsample sizes to be bounded are provided. A scoring algorithm is
constructed with far less running time than the full-sample LSE. An almost sure asymptotic normal-
ity result is proved for the subsampling estimator for an arbitrary sampling distribution. Motivated
by subsampling and data-splitting in machine learning, sample size determination for multidimen-
sional parameters is presented. The numerical performance of the results is studied through large
simulated and real data.

Keywords Asymptotic normality; Least squares estimator; Big data; Optimal sampling; Sample size determination

1 Introduction

In a linear regression model, the response yi and covariate vector xi satisfy

(1) yi = β⊤xi + εi, i = 1, . . . , n,

where β ∈ Rp is an unknown parameter and ε1, . . . , εn are independent and identically (i.i.d.) random errors with
zero mean and finite positive variance σ2 = Var(εi). Assume that X = (x1, . . . ,xn)

⊤ is a nonrandom n× p matrix
of full rank p.

The parameter vector β can be estimated by the ordinary least squares estimator (LSE) β̂ols = (X⊤X)−1X⊤y,
where y = (y1, . . . , yn)

⊤. Consider the case of data of massive size in which β̂ols is not available. One may draw a
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subsample (X∗,y∗) of small size r << n using a sampling distribution πn = (π1, . . . , πn) as a surrogate for the full
sample, and calculate the subsampling weighted LSE β̂

∗
r to approximate β̂ols,

(2) β̂
∗
r = (X∗⊤W∗X∗)−1X∗⊤W∗y∗.

where W∗ = diag(1/rπ∗) is the diagonal matrix with π∗ equal to the vector of the corresponding sampling proba-
bilities. Here we adopt the componentwise division a/b = (a1/b1, . . . , an/bn)

⊤ for vectors a,b. This is a Hansen-
Hurwitz estimator and could also be viewed as a weighted bootstrap estimator based on a subsample. Full sample
weighted bootstrap estimators were well studied in the literature, see the monograph by Barbe and Bertail (1995)[2].

Over the past two decades, there have been considerable progresses on subsampling, see Liang, et al. (2013)[11],
Kleiner, et al. (2014)[9], Wang, et al. (2015)[20], Wang, et al. (2019)[19] among others. Algorithms for fast computing
the LSE were constructed, see the monograph by Mahoney (2011)[14] and the references therein. A key feature of
these results is the nonuniform sampling. While these results were mainly focused on the algorithmic properties, we
shall be concerned with statistical inference. Zhu, et al. (2015)[22] pioneered in this aspect and their work is influential
in our work. They obtained several A-optimal distributions and proved asymptotic normality in probability. We give
the A-optimal distributions for approximating a smooth function g(β̂ols) of β̂ols (the choice of g(β̂ols) = X⊤Xβ̂ols =
X⊤y yields their results), and prove an almost sure asymptotic normality result. We present the relative error bounds
for β̂

∗
r in Section 4. Such bounds, as pointed out in Mahoney (p.17, 2011)[14], are gold standard and provide much

stronger notion of approximation than additive bounds.

In textbooks, sample sizes are generally bounded for given margin of error (MOE) and confidence level. We acknowl-
edge that sample sizes may be unbounded. One might wonder that under what conditions subsample sizes are bounded
uniformly in n for given MOE and confidence level. The result presented here for subsampling in a linear regession
model is that the leverage scores hi,i of the hat matrix must stay away from its boundary 0 and 1, the covariate matrix
X must be well-conditioned, and truncation from below of the sampling distribution is required. As a consquence, for
the uniform sampling (bootstrapping) the boundedness requires that the covariate matrix X must be well-conditioned.

It is obvious that a suitable subsample size is key for obtaining a desired result within a desired peroid of time. Sample
size determination (SSD) for scalar parameters is a melody. In this article, we extend SSD to multidimensional
parameters and study the numerical behavior through simulations. The result may also be useful for data spliting in
machine learning.

The statistical leverage scores based distribution ℓ has played a central role in the development of randomized ma-
trix algorithms, see e e.g. Candés and Tao (2009)[3]; Drineas et al. (2012)[7]; Ma and Sun (2014)[12]; Ma, et al.
(2015)[13]; Xu, et al. (2016)[21]. Interestingly, ℓ and the A-optimal distribution π̂2 draw data points in a totally
opposite way. Specifically, the former draws points close to the regression hyperplane, whereas the latter does away
from the hyperplane.

While classic methods compute the LSE β̂ols in O(np2) time, randomized methods usually take o(np2) time. Typi-
cally, the bottleneck is to compute the appropriate sampling distributions, and the A-optimal distributions fall in with
this category. As the LSE β̂ols and ℓ are fundamental and ubiquitous, there have been developed randomized al-
gorithms on rapidly approximating them, see e.g. Drineas, et al. (2006)[6]. These algorithms can be utilized to fast
compute the optimal distributions. In the spirit of the scoring method for improving estimation efficiency, we construct
the Scoring Algorithm in Fig. 2 with running time O(rp2) where r << n. Our extensive simulations indicated that
the algorithm worked particularly well.

The article is organized as follows. In Section 2, we define SSD for multidimensional parameters and proivde the
formula. In Section 3, we prove an asymptotic normality result, give the A-optimal distributiogns, construct the
Scoring Algorithm, and discuss trunction and the raltationship between the leverage scores based distribution and the
A-optimal distributions. The relative error bounds and the boundedness conditions for subsample sizes are offered in
Section 4. Some simulations are reported in Section 5. The proofs are collected in Sections 6–7.

2 SSD for multidimensional parameters

Let P be a probability measure on some measurable space. Let m the Borel measure on Rp. Typically, m is the volume
measure on Rp. Consider a parameter vector θ ∈ Rp, and a random region Rn on Rp. Given ϵ > 0 and α ∈ (0, 1),
we seek a minimum sample size n such that at the level 1− α of confidence, Rn catches θ within the “range of error”
(ROE) ϵ, that is, m(Rn) ≤ ϵ. We now introduce the definition. Let θ0 denote the true value of parameter.

2
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Definition 1. Given ϵ > 0 and α ∈ (0, 1), the sample size with the range of error (ROE) ϵ > 0 at the level 1 − α of
confidence is defined as

n(ϵ, α) = min {n : P (θ0 ∈ Rn, m(Rn) ≤ ϵp) ≥ 1− α} .

We give two examples below, using the following two-step method.

Step 1 Construct a (1− α)- level confidence region Rn for θ.
Step 2 Find the minimum sample size n such that the ROE is ϵ, that is, m(Rn) ≤ ϵp.

Example 1. (Ellipsoid) Let θ̂ be an estimator of a parameter θ0 ∈ Θ ⊂ Rp such that the variance-covariance matrix
Σn of θ̂ satisfies that nΣn converges in probability to some positive definite matrix Σ. Let m be the volume measure
on Rp, and Rn be the (1− α)- level confidence ellipsoid centered at θ̂n,

Rn = {θ ∈ Θ : Tn(θ) ≤ qα(p)} ,

where Tn(θ) = n(θ− θ̂)⊤Σ−1(θ− θ̂), and qα(p) denotes the upper α-percentile of the distribution of T (θ0), that is,
P (T (θ0) > qα(p)) = α. By definition, the sample size is determined by

np(ϵ, α) = min {n : P (θ0 ∈ Rn, m(Rn) ≤ ϵp) ≥ 1− α} .
The volume of the ellipsoid is

m(Rn) =
n−p/2πp/2

Γ(p/2 + 1)
qp/2α (p)

p∏
d=1

√
λd,

where λd, d = 1, . . . , p are the eigenvalues of Σ. Solving m(CRn) ≤ ϵ about n yields the sample size np(ϵ, α) with
ROE ϵ at the level of 1− α, given by

(3) n ≥ np(ϵ, α) =
πqα(p)

Γ2/p(p/2 + 1)

p
√

det(Σ)

ϵ2
,

where det(Σ) =
∏p

d=1 λd is the determinant of Σ. Often Σ is unknown, one uses an estimator Σ̂ of Σ (or estimators
λ̂d of the eigenvalues λd). For p = 1, as Γ(3/2) =

√
π/2, the sample size with ROE 2ϵ (margin of error (MOE) ϵ) at

the level 1− α boils down to the formula n1(ϵ, α) = qα(1)σ
2/ϵ2 found in textbooks.

Example 2. (Bonferroni) Consider the same problem as in Example 1, but now based on Bonferroni’s method. We
take Rn to be the p-dimensional (1− α)-confidence hyperrectangle,

Rn =

p∏
d=1

(θ̂d,n − qα/pσd/
√
n, θ̂d,n + qα/pσd/

√
n),

where qα denotes the upper α-percentile of the distribution of Σ−1/2
√
n(θ̂n − β0), and θ̂d,n and σ2

d denote the d-th
component of θ̂n and the d-th diagonal entry of Σ, respectively. As the volume of the hyperrectangle Rn is

m(Rn) = 2pn−p/2qpα/pσ1 · · ·σp,

solving m(Rn) ≤ ϵ about n yields the sample size,

(4) n ≥ nbon
p (ϵ, α) = 4q2α/pσ

2/p
1 · · ·σ2/p

p /ϵ2.

For unknown parameters σd’s, one uses estimators σ̂d’s of them.
Remark 1. If Tn(θ0) is chisquare distributed with p degrees of freedom (often approximately), one then takes qα(p) =
χ2
α(p), the upper α-percentile of the chisquare distribution χ2

α(p) with d degrees of freedom. Similarly for Bonferroni,
qα = Zα, the upper α-percentile of the standard normal N (0, 1). Alternatively, one can get an estimate of qα(p) by
bootstrapping or pre-subsampling in the Scoring Algorithm 2 in the case of Big Data.
Remark 2. In nonuniform subsampling for data of massive size, a sampling distribution π = (π1, . . . , πn) must
be computed before actually subsampling. An optimal sampling distribution π typically has the same computational
complexity as the original problem. To tackle this problem, one may take a uniform pre-subsample of small size
and compute an approximation π̃0 to π as described in the Scoring Algorithm 2, choosing suitable values of ϵ, α
and qα(p) = χ2

α(p). To determine the pre-subsample size, one may take Σ to be the identity matrix in (3) to get a
pre-subsample size,

(5) n ≥ np,0(ϵ, α) =
πqα(p)

Γ2/p(p/2 + 1)

1

ϵ2
.

The formula can be used for SSD in the uniform sampling (bootstrapping) and data splitting in machine learning.

3
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Figure 1: Algorithm 1 (Computing the subsampling estimator β̂
∗
r )

1. Construct a distribution π on the data points (xi, yi)’s, use it to draw a subsample (X∗,y∗) of size r << n
and formulate the diagonal matrix W∗ = diag(1/rπ∗) with π∗ the corresponding probability vector.

2. Calculate the weighted least squares estimator β̂
∗
r = (X∗⊤W∗X∗)−1X∗⊤W∗y∗.

3 Almost sure ASN and the A-optimal distributions

In this section, we prove ASN, derive the optimal distributions, construct the Scoring Algorithm and discuss truncation
and the relationship of the leverage scores based and the A-optimal distributions.

3.1 Asymptotic normality

We give a set of conditions on π below for the almost sure asymptotic normality of β̂
∗
r for an arbitrary sampling

distribution. Occasionally, we write π = πn and πi = πn,i to stress their dependene on the sample size n.

(M1)
1

n2

n∑
i=1

xix
⊤
i (ε

2
i − σ2)

πn,i
= O(1), a.s.

(M2) There is a p× p symmetric matrix Γ whose smallest eigenvalue is bounded away from zero, i.e., λmin(Γ) ≥
b0 > 0 for some constant b0, such that

1

n

n∑
i=1

xix
⊤
i = Γ + o(1).

(M3)
1

n2

n∑
i=1

∥xi∥4

πn,i
= O(1) a.s.

(M4) Ln(π) =:
∑n

i=1 xix
⊤
i /n

2πn,i satisfies 0 < b ≤ λminLn(π) ≤ λmaxLn(π) ≤ B < ∞ a.s. for constants
b, B, where λmin and λmax denote the maximum and minimum eigenvalues, respectively.

(M5) Lindeberg condition: the double array ηn,i := xiεi/nπn,i, i = 1, 2, . . . , n, n ≥ 1 satisfies that for any t > 0,

n∑
i=1

πn,i∥ηn,i∥21[∥ηn,i∥ ≥
√
rt] = o(1), a.s. r → ∞.

(D1) Condition (M1) can be verified using the result on the SLLN for weighted i.i.d. rv’s of Baxter, et al. (2004)[1].
Specifically, for a sequence {ai}, 1

n

∑n
j=1 |ai|q = O(1) for some q > 1 implies 1

n

∑n
j=1 aiξi → 0 a.s. for an

i.i.d. {ξn} with E(ξ1) = 0 and E(|ξ1|) < ∞.

(D2) Condition (M2) was used in Lemma 3.1 of Portnoy (1984)[15].

Theorem 1. Assume (M1)–(M5). Suppose that for every ϱ > 0,

(6) max
1≤i≤n

∥xi∥ = o(n1/2 log−ϱ(n)), a.s.

Suppose that there exists some ρ > 2 such that

(7) E(|ε1|ρ) < ∞.

Then β̂
∗
r is asymptotically normal along almost all the sample paths of the sequence {(xi, yi)} as r → ∞, i.e.,

(8) Σ−1/2(π)
√
r(β̂

∗
r − β̂ols) =⇒ N (0, Ip), a.s. r → ∞,

where Σ(π) = (X⊤X)−1X⊤Diag(ε̂2/π)X(X⊤X)−1.

4
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3.2 The A-optimal distributions

For a q × p matrix A, we minimize the trace norm Tr(ΣA) over distributions supported on the data points, where

(9) ΣA(π) = AΣ(π)A⊤ = A(X⊤X)−1Σc(π)(X
⊤X)−1A⊤,

with Σc(π) = X⊤Diag(ε̂2/rπ)X. Let θ̂ = Aβ̂ols. The plug-in estimate θ̂
∗
= Aβ̂

∗
r of θ̂ has Var∗(θ̂

∗
) = ΣA(π).

Consider θ = g(β), where g has the continuous partial derivative ġ. Then θ̂
∗
= g(β̂

∗
r) is a subsampling estimator

to approximate θ̂ = g(β̂ols), and an A-optimal distribution for θ̂
∗

to approximate θ̂ is given by taking A = ġ(β̄) for
some pilot estimator β̄ of β.

An A-optimal distribution depends on data, parameters, and the estimation method. With these in mind and for
convenience, we introduce the following definition.
Definition 2. Given a σ-field F , a distribution π supported on the data points is said to be A-optimal for the subsam-
pling estimate θ̂

∗
to approximate an estimate θ̂ of parameter θ if π asymptotically minimizes the trace norm of the

conditional variance-covariance matrix Var(θ̂
∗
|F) of θ̂

∗
given F .

If F is the σ-field generated by {(xi, yi)} ({xi}), then π is referrred to as Â (Ā)-optimal. Note that the plug-in
estimtor g(θ̂

∗
) is not A-optimal for it to approximate g(θ̂).

The Â-optimal distributions π̂2. Minimizing the trace norm of the variance-covariance matrix ΣA in (9), we obtain
the Â-optimalizer π̂A. Let Ĥ2,A = Diag(ε̂)H2,ADiag(ε̂), where

(10) H2,A = X(X⊤X)−1A⊤A(X⊤X)−1X⊤.

We now invoke the Lagrange multipliers to get
Proposition 1. Let A be a q × p matrix which is independent of π. Assume that A(X⊤X)−1xi ̸= 0 and hi,i ̸= 1 for
all i. Then the square roots of the diagonal entries of Ĥ2,A induce the unique Â-optimal distribution π̂A for Aβ̂

∗
r to

approximate Aβ̂ols.

We shall refer to Ĥ2,A as the Â-optimal score matrix. Write pi ∝ bi if pi = bi/
∑

j bj for ∀i. Then π̂A is given by

(11) π̂A,i ∝ ∥A(X⊤X)−1xi∥ |ε̂i|.

For A = (X⊤X)1−α/2, set Hα = H2,A and Ĥα = Ĥ2,A, so that

Hα = X(X⊤X)−αX⊤, Ĥα = Diag(ε̂)HαDiag(ε̂), α ∈ R.

It then follows Ĥα is the Â-optimal score matrix for θ̂
∗
α = (X⊤X)1−α/2β̂

∗
r to approximate θ̂α =

(X⊤X)1−α/2β̂ols = (X⊤X)−α/2X⊤y, with the unique Â-optimal distribution π̂α given by

π̂α,i ∝
√
hα,i,i|ε̂i|, where hα,i,i = x⊤

i (X
⊤X)−αxi.

Consequently, π̂2 is the unique Â-optimal distribution for β̂
∗
r to approximate β̂ols.

Remark 3. While π̂0,i ∝ ∥xi∥|ε̂i| has less computational cost than π̂α (α ̸= 0) (as only ∥xi∥ and |ε̂i| must be
computed), π̂1,i ∝

√
hi,i|ε̂i| can be computed using the fast algorithm given in Drineas, et al. (2006)[6].

The Ā-optimal π̄2 and its approximation π̃2. Consider minimizing the trace norm of the conditional variance-
covariance matrix given X. Since τ̂A(π) = Tr(ΣA(π)) = r−1

∑n
i=1 ∥ai∥2ε̂2i /πi and Var(ε̂|X) = (In −H)σ2, we

integrate out the squared residuals in the trace τ̂A(π) to get

(12) τ̄A(π) = E(τA(π)|X) =
σ2

r

n∑
i=1

∥ai∥2(1− hi,i)

πi
, ai = A(X⊤X)−1xi.

Suppose that hi,i’s satisfy maxi=1,...,n hi,i = o(1). One then obtains an approximation to the trace as follows:

τ̃A(π) =
σ2

r

n∑
i=1

∥ai∥2

πi
.

5
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Figure 2: The Scoring Algorithm

1. Take a uniform pre-subsample (X∗
0,y

∗
0) of size r0 from (X,y), and use it to compute H∗

0,α (H̄∗
0,α or Ĥ∗

0,α)
given in (14).

2. Call Algorithm 1 in Fig. 1 with the subsample size r and the A-optimal distribution π.

Minimizing τ̄A(π) and τ̃A(π) yields the sampling distributions π̄A and π̃A, respectively. Note the conditional version
of Ĥ2,A in (10) takes the form,

H̄2,A = Diag((1− hi,i)
1/2)H2,ADiag((1− hi,i)

1/2).

Thus π̄A can be expressed as π̄A,i ∝ ∥ai∥
√
1− hi,i. For A = (X⊤X)1−α/2, let H̄α = H̄2,A. The Ā-optimal π̄α

can be written as
π̄α,i ∝

√
hα,i,i

√
1− hi,i.

Hence π̄2 is the unique Ā-optimal distribution for β̂
∗
r to approximate β̂ols. Likewise, π̃α is given by

(13) π̃α,i ∝
√
hα,i,i.

Remark 4. As in Remark 3, while π̄1, π̃1 can be fast computed, π̄0, π̃0 enjoy computational ease. The latter are,
respectively, the optimal sampling (OPT) and predictor-length (PL) sampling given in Zhu, et al. (2015).

Comparison and truncation. Since π̂A minimizes τ̂A(π), it follows from Proposition 1 that τ̂A(π̂A) ≤ τ̂A(π̄A).
Hence, by (12), we obtain

E(τ̂A(π̂A)) ≤ E(τ̂A(π̄A)) = τ̄A(π̄A).

This shows that π̂A is, on average, better A-optimizing than π̄A. Our extensive simulations and real data applications
exhibited that π̂A was much better optimizing than both π̄A and π̃A.

TRUNCATION. Observe that (11) implies that (xi, yi) must be drawn with probability π̂A,i proportional to |ε̂i|. Since
each probability is inversely used in constructing β̂

∗
r , π̂A must be truncated from below in order to guarantee appropri-

ate statistical properties for β̂
∗
r . Truncation was used in constructing the generalized bootstrap estimator by Chatterjee

and Bose (2002)[4]. Specifically, we truncate π̂A from below by L/n and define π̂A(l) by

π̂A,i(l) ∝ π̂A,i1[π̂A,i≥L/n] + (l/n)1[π̂A,i<L/n], i = 1, 2, . . . , n,

where L is a threshold value. Typically 0 < L ≤ 1. This is, in fact, a mixture distribution of the optimal and the
uniform distributions. For fast computing, we may drop “unimportant” observations by taking l = 0, otherwise l = L.
See p. 18 (Tropp, 2019)[17] for further discussion. As π̄A,i = 0 at hi,i = 1, we truncate π̄A,i similarly from below
by π̄A,i(l). Although π̃A is positive, we also truncate it and define the likewise π̃A(l).

To determine the value of L, we must take it into consideration the desired running time and the accuracy. Our
extensive numerical results exhibited that even high percentages of truncation led to only slight loss of efficiency.

The Scoring Algorithm. Like a typical optimal sampling, the A-optimal sampling π̂2, π̄2 and π̃2 have the same
running time O(np2) as the full data LSE β̂ols. We provide a fast algorithm in Fig. 2.

Since the computational bottleneck is to invert X⊤X, we shall approximate it by the subsampling (X∗⊤
0 X∗

0)
−1 based

on a computationally easy pre-subsample (X∗
0,y

∗
0) from the data (X,y). Let the resulting estimator and residuals be

β̂
∗
0 = (X∗⊤

0 X∗
0)

−1X∗⊤
0 y∗

0, ε̂∗0 = y1 −X1β̂
∗
0,

where (X1,y1) is the remaining observations in (X,y). Compute one of

(14) H∗
0,α = X1(X

∗⊤
0 X∗

0)
−αX⊤

1 , Ĥ∗
0,α, and H̄∗

0,α, α = 1, 2.

Our simulations in Section 5 exhibited that the Scoring Algorithm performed paticularly well.
Remark 5. The Algorithm in Fig. 2 can be implemented in O(max(r0, r) p

2) much faster than the original running
time O(np2) as max(r0, r) << n.

The leverage scores based distribution.

The formula ℓi = u⊤
i ui/p indicates that ℓi depends only on the singular vector ui of X. Meanwhile, since the

Â-optimal π̂2,i depends on h2,i,i, which can be written as

h2,i,i = u⊤
i Diag(1/σ2

1 , . . . , 1/σ
2
p)ui,

6
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it follows that π̂2,i depends on not only ui but all the singular values σi’s of X. These suggest that ℓ is not efficient in
extracting information as it ignores the singular value information.

Suppose that X is column-orthonormal. Then hi,i = ∥xi∥2 and

π̄2,i ∝
{ √

hi,i + o(1), hi,i = o(1),√
1− hi,i + o(1), hi,i = 1− o(1).

When sampling according to ℓ, the ith observation is drawn with probability proportional to hi,i, especially in the
vicinity of hi,i = 1. The Ā-optimality, however, dictates that in this vicinity the ith observation must be drawn with
the probability proportional to

√
1− hi,i — decreasing with hi,i. In fact, the increasing relationship occurs in the

vicinity of hi,i = 0 with the probability proportional to
√
hi,i. Similarly, π̂2,i ∝ h

1/2
2,i,i|ε̂i|, suggesting data points

closer to the regression hyperplane is less informative than those farther away.

4 Relative error bounds and boundedness of subsample sizes

In this section, we give non-asymptotic error bounds, and conditions for the subsample sizes to be bounded.

Relative error bounds. Drineas, et al. (2006)[6] established relative error bounds for a subsampling estimator in a
linear model for an arbitrary distribution {pi}, and utilized the results to study stochastic algorithms. We now apply
their results to specific distributions and, as a result, we obtain explicit formulas for determining subsample sizes. The
authors assumed the existence of constants b1, b2, b3 in their conditions (3.8)–(3.10). Specifically, in statistical terms,
these conditions can be, respectively, reformulated as
(15) pi ≥ b1ℓ1,i, pi ≥ b2ℓ2,i, pi ≥ b3ℓ3,i, i = 1, . . . , n,

where bk > 0 and ℓk = (ℓk,i), k = 1, 2, 3 are the distributions defined by

ℓ1,i = ℓi ∝ hi,i, ℓ2,i ∝
√
hi,i|ε̂i|, ℓ3,i ∝ ε̂2i .

Here we used the identity U⊥U⊥⊤y = y −Xβ̂ols = ε̂, where U⊥ is the orthogonal matrix whose column space is
the ortho-complement of the column space of U.

The key is to determine the values of bk’s. As mentioned by the authors (see also below), almost all distributions
will satisfy (15) if one chooses sufficiently small values of bk’s. The small values, nevertheless, will have a direct
adverse effect on the sampling complexity. Our goal is, therefore, to find the largest possible values of bk’s. Consider
a distribution {pi} of the form
(16) pi ∝ vn,i, i = 1, . . . , n,

where v = (vn,i, i = 1, . . . , n) are nonnegative rv’s. Let Sv =
∑n

i=1 vn,i. Evidently, the largest values of bk’s are
given by
(17) bk = (Sℓk

/Sv) min
1≤i≤n

(vn,i/ℓk,i), k = 1, 2, 3.

Observe that the LSE β̂ols and the residuals ε̂ satisfy

inf{∥y −Xβ∥ : β ∈ Rp} = ∥y −Xβ̂∥ = ∥ε̂∥.

Let ε̃∗ =
√
W∗y∗ −

√
W∗X∗β̂

∗
r . Obviously, it differs from ε̂∗ and satisfies

inf{∥
√
W∗y∗ −

√
W∗X∗β∥ : β ∈ Rp} = ∥

√
W∗y∗ −

√
W∗X∗β̂

∗
r∥ = ∥ε̃∗∥.

Define c(ϵ, δ, p) = p2 log(3/δ)/ϵ4. Recognizing the formulae for bk’s in (17), Theorem 3.1 of Drineas, et al. can be
re-stated in statistical terms as follows:
Theorem 2. Consider {pi} of the form (16). Let ϵ > 0 and 0 < δ < 1. If r ≥ r1 =: 64c(ϵ, δ, p)/min(b21, b

2
3), then

with P∗-probability at least 1− δ,
(18) ∥ε̃∗∥ ≤ (1 + ϵ)∥ε̂∥.
If r ≥ r2 =: 388c(

√
ϵ, δ, p)/min(b21, b

2
2, b

2
3), then with P∗-probability at least 1− δ,

(19) ∥y −Xβ̂
∗
r∥ ≤ (1 + ϵ)∥ε̂∥,

(20) ∥β̂
∗
r − β̂ols∥ ≤ σ−1

min(X)ϵ∥ε̂∥.
If, in addition, ∥ε̂∥ ≥ ρ∥y∥ for ρ ∈ (0, 1), then with P∗-probability at least 1− δ,

(21) ∥β̂
∗
r − β̂ols∥/∥β̂ols∥ ≤ ρ(1− ρ2)−1/2κ(X)ϵ.

7
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Boundedness of subsample sizes. By Theorem 2, given ϵ > 0 and confidence level 1 − δ, subsample sizes r1 and
r2 given in Theorem 2 can be calculated for a distribution pi ∝ vi in (16), although these sizes are far from sharp
and improvement can certainly be made. Our interest here is that under what conditions r1 and r2 are bounded. In
the case of q-stable random errors εi’s, using a result about Orlicz norms by Gordon, et al. (2002)[8], we obtained the
following boundedness conditions.

Noting that r1, r2 are inversely proportional to b2k for some k, the boundedness is equivalent to 0 < b ≤ maxi |ciε̂i| ≤
B < ∞ in probability for constants ci’s provided that the results in Theorem 3 hold. Condition (24) restricts the
truncation, which is inevitable from the following Proposition 2, whose proof is clear in view of

min
i

|cn,iε̂i| ≤ min
i

|cn,iεi|+max
i

|cn,ix⊤
i (b̂− β0)|.

Proposition 2. Assume that ε1, . . . , εn are arbitrary random errors satisfying mini |cn,iεi| = oP (1) for some con-
stants cn,i’s. Let b̂ be an estimator of β0 such that maxi |cn,ix⊤

i (b̂− β0)| = oP (1). Then mini |cn,iε̂i| = oP (1).

Recall a rv Z is q-stable with q ∈ (0, 2] if its characteristic function satisfies E(exp(
√
−1tZ)) = exp(−c|t|q), t ∈ R

for some constant c > 0. The normal variable with zero mean corresponds to q = 2.

Theorem 3. Let ε1, . . . , εn be i.i.d. with a q-stable distribution for q ∈ (1, 2]. Suppose that g1, . . . , gn satisfy

(22)
1

n

n∑
i=1

1
√
gi

+
1

n

n∑
i=1

n∑
j=1

|hi,j |√
gi

+

n∑
j=1

max
i

h2
i,j√
gi

= O(1/qn),

(23)
∑∑
j1 ̸=j2

(
max

i

hi,j1hi,j2√
gi

−min
i

hi,j1hi,j2√
gi

)
= O(1/qn),

where qn = n−1
∑

i

√
gi. We have

1. For gi = 1, if maxi(hi,i) = O(1/n), then the uniform U satisfies 1/bk(U ) = OP (1), k = 1, 2, 3.

2. For gi = h2
i,i, the leverage scores based ℓ satisfies 1/bk(ℓ) = OP (1), k = 2, 3.

Assume, further, κ(X) = O(1). For α = 0, 1, 2, we have

3 For gi = h2
i,i, if there exists ln = (ln,i) such that

(24) sup
n

max
1≤i≤n

(n1+αhi,ihα,i,i,/ln,i) < ∞,

then the truncated π̂α(ln) satisfies 1/bk(π̂α(ln)) = OP (1), k = 1, 3.

4 For gi = hi,i(1 − hi,i), if maxi
√
hi,i/(1− hi,i) = O(1/nqn), then π̄α satisfies 1/bk(π̄α) = OP (1),

k = 1, 2, 3.

5 For gi = hi,i, if maxi(
√
hi,i) = O(1/nqn), then π̃α satisfies 1/bk(π̃α) = OP (1), k = 1, 2, 3.

It is worth mentioning that the above conditions are necessary for the validity of the results, in view of the ranges
0 ≤ hi,i ≤ 1 and −1/2 + 1/n ≤ hi,j ≤ 1/2 for i ̸= j.

5 Simulations

In this Section, we report some simulation results about the numerical behaviors of the A-optimal distributions and
their comparison with the uniform and the leverage scores (lev) based distributions.

Simulated “efficiency” of the uniform sampling. Reported on Table 2 are the simulated relative frequencies of the
diagonal entries h∗

i,i of H∗ = X(X∗⊤X∗)−1X⊤ falling in [0, 1] based on n = 104 and 500 repetitions. Here the
r rows x∗

j of X∗ is uniform (Unif) and A-optimal (Aopt) random samples from the n rows xi of X, where the rows
were generated from the mixture 0.5N(0,Σ) + 0.5LN(0,Σ). Note that H∗ approximates H = X(X⊤X)−1X⊤

whose diagonal entries satisfy hi,i ∈ [0, 1]. The results indicated that the uniform sampling was inefficient, with its
“efficiency” equal to only 1/15 of the A-optimal sampling considered.

8
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Simulated MSE. As in Zhu, et al. (2015)[22], we chose the coefficient β = (1⊤
30, 0.1 · 1⊤

20)
⊤, generated p = 50-

dimensional covariate vector x (treated as non-random) from Gaussian N(0,Σ) (GA), Log-normal exp(N(0,Σ))(LN),
and Mixing Gaussian 0.5N(0,Σ) + 0.5N(0, 625Σ)(MG) with Σij = 2 ∗ 0.8|i−j|. The random error ε was generated
from the normal (N ) and the logistic (L ), both with zero mean and unit standard deviation. For sample size n = 105

and a few subsample sizes r, we calculated the empirical mean squared errors of β̂
∗
r as follows:

EMSE(β̂
∗
r) =

1

M

M∑
m=1

∥β̂
∗
m − β̂ols∥2, M = 500.

Reported on Tables 3–6 are the ratios of the EMSE of β̂
∗
r to that of the uniform subsampling estimator, where the

sampling distributions are untruncated in Table 3 and truncated in Tables 4-6; the residual ε̂ was computed based on
the full sample (X,y) in Tables 3-4 and on a uniform pre-subsample (X∗

0,y
∗
0) of size 0.1n in Tables 5-6. In addition,

the Scoring Algorithm in Fig. 2 was used in Table 6.

Observe first that the ratios in all the tables are almost all less than one, indicating that the uniform sampling is
ineffective in extracting information. This is most noticeable for Â-optimal sampling, and for the LN covariate in
which some of the ratios were as low as 25%. Note that the LN is skewed, whereas both GA and MG are symmetric
in which the uniform sampling had better performance. Second, the small differences of the ratios in all the tables
indicated that the uniform pre-subsampling of a small size resulted in small loss of efficiency, and that the Scoring
Algorithm worked well. Third, the Â-optimal sampling performed the best, and gave substantially smaller EMSE
ratios than Ā-, Ã- and the leverage scores based sampling. In particular, π̂2 gave the smallest EMSE ratios in Table
3, when the subsample size reached half the full sample size, which was mostly kept for the truncated sampling
distributions in Tables 4-6.

The Running Time. Reported on Table 7 are the running times of the Scoring Algorithm and the LSE. They were
measured on a computing cluster with 16 processors running at 2.60GHz with 250GB of memory. The R package (ver
3.3.1) was used to carry out the numerical computations. Since X⊤X was approximated by the subsampling X∗⊤

0 X∗
0,

the time-consuming part is the matrix multiplications in Ĥ∗
2. Instead of using solve to find the inverse, we called svd

to obtain a singular value decomposition of X∗
0 to compute the sampling distribution π̂2, and called lm to compute

both the subsampling estimator β̂
∗
r and the full data β̂ols. The Scoring Algorithm saved time in comparison with the

LSE. The times spent on the matrix multiplications were found to be about 30% of the total running times, which can
be improved by fast matrix multiplication. Here x was generated from GA and ε from N (0, 1). The results for the
other distributions of x and ε considered in Table 3 are similar (not reported here).

6 Proof for boundedness of subsample sizes

We need the following result about Orlicz norms of a sequence of random variables, which combines Example 14 and
17 of Gordon, et al. (2002)[8]. A convex function O : R+ → R+ is Orlicz if it satisfies O(0) = 0 and O(t) > 0 for
t > 0. The Orlicz norm of x ∈ Rn is |x|O = inf {ρ > 0 :

∑n
i=1 O(|xi|/ρ) ≤ 1} .

Lemma 1. Let Z1, . . . , Zn be i.i.d with a q ∈ (1, 2]-stable distribution. Let O be the Orlicz function given by O(0) = 0
and

O(t) =

{
c1(q)t

p + c2(q) exp(−3/2t2), t ∈ (0, 1),
d1(q)t+ d2(q), t ≥ 1,

where ck(q) ≥ 0, dk(q) are absolute constants with c1(2) = 0 and c2(q) = 0 for q ∈ (1, 2) and d1(q) > 0. Then for
every x = (x1, . . . , xn) there are positive constants c, C such that

c|x|O ≤ E( max
1≤i≤n

|xiZi|) ≤ C|x|O .

PROOF (of Theorem 3). Consider vα,n,i =
√

hα,i,ien,i for en,i ≥ 0. Let bk(vα) be the corresponding bk in (17). Let
S(e) =

∑n
i=1

√
hi,ien,i, and let

b̌1(e)=
p

S(e)
min
i

en,i√
hi,i

, b̌2(e)=
S(ε̂)

S(e)
min
i

en,i
|ε̂i|

, b̌3(e)=
∥ε̂∥2

S(e)
min
i

√
hi,ien,i

ε̂2i
.

These expressions are independent of α. Recalling hα,i,i, one gets

σ−|1−α|
max (X)

√
hi,i ≤

√
hα,i,i ≤ σ

−|1−α|
min (X)

√
hi,i, α = 1, 2,

9
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whereas for α = 0, we have

σmin(X)
√

hi,i ≤
√
h0,i,i = ∥xi∥ ≤ σmax(X)

√
hi,i, i = 1, . . . , n.

As a consequence,

(25) κ−|1−α|(X) ≤ bk(vα)/b̌k(e) ≤ κ|1−α|(X), α = 0, 1, 2, k = 1, 2, 3.

Setting now en,i = h
−1/2
i,i ,

√
hi,i, |ε̂i|,

√
1− hi,i and 1, we obtain the upper and lower bounds, respectively, for bk’s

in terms of b̌k(e) and κ−|1−α|(X) for the distributions U (α = 1), ℓ (α = 1), π̂α, π̄α and π̃α.

We shall prove case 1 (ℓ) and the rest are similar. It suffices to show b̌−1
3 (ℓ) = OP (1) because

b̌−1
2 (ℓ) =

p∑√
hi,i|ε̂i|

max
i

(
|ε̂i|√
hi,i

), b̌−1
3 (ℓ) =

p

∥ε̂∥2
max

i
(
ε̂2i
hi,i

).

Let hi = X(X⊤X)−1xi. Then hi = (hi,j , j = 1, . . . , n)⊤ and ε̂i = εi − h⊤
i ε. As a result,

(26) E
(
max

i

ε̂2i
hi,i

)
≤ E

(
max

i

ε2i
hi,i

)
+ E

(
max

i

(h⊤
i ε)

2

hi,i

)
− 2E

(
min
i
(Ti)

)
,

where Ti =
∑

j:j ̸=i(hi,j/hi,i)εiεj . By Lemma 1,

(27) E
(
max

i

ε2i
hi,i

)
≤ c1σ

2

n

∑
i

1

hi,i
,

where c1 > 0 is a constant. Let ε+, ε− be the positive, negative parts of ε and v = E(ε+). Then E(ε) = 0 implies
v = E(ε−). As a consequence,

E(min
i
(Ti)) ≥

∑
j:j ̸=i

E((min
i
(εiεjhi,j/hi,i))

≥ v
∑
j:j ̸=i

E(min
i
(hi,jεi/hi,i)−max

i
(hi,jεi/hi,i))

≥ −2v
∑
j:j ̸=i

E(max
i

(|hi,jεi|/hi,i)).

By Lemma 1 again, there is a constant c2 > 0 such that uniformly in j,

E(max
i

(|hi,jεi|/hi,i)) ≤
c2σ

n

n∑
i=1

|hi,j |
hi,i

.

This implies

(28) −E(min
i
(Ti)) ≤

2c2vσ

n

n∑
i=1

n∑
j=1

|hi,j |
hi,i

.

Noting E(maxi(hi,j1hi,j2εj1εj2)) = 2v2(maxi(hi,j1hi,j2) − mini(hi,j1hi,j2)) for j1 ̸= j2, and using (h⊤
i ε)

2 =∑
j h

2
i,jε

2
j +

∑
j1 ̸=j2

hi,j1hi,j2εj1εj2 , we get

(29)

E
(
max

i

(h⊤
i ε)

2

hi,i

)
≤σ2

∑
j

max
i

h2
i,j

hi,i
+
∑
j1 ̸=j2

E
(
max

i
(
hi,j1hi,j2εj1εj2

hi,i
)
)

≤ σ2
∑
j

max
i

h2
i,j

hi,i
+2v2

∑
j1 ̸=j2

(
max

i

hi,j1hi,j2

hi,i
−min

i

hi,j1hi,j2

hi,i

)
.

The desired result now follows from (25)–(29).
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7 Proof for asymptotic normality

A rv w = (w1, · · · , wn)
⊤ ∼ sMult(π, r) (the scaled multinomial distribution) for π ∈ [0, 1]n with

∑n
i=1 πi = 1 if

(30) P
(
w1 =

k1
rπ1

, . . . , wn =
kn
rπn

)
=

r!∏n
i=1 ki!

n∏
i=1

πki
i , ki ≥ 0,

n∑
i=1

ki = r.

It is customary to express β̂
∗
r in the full data using w, decoupling the resampling scheme from the data. Stochastically

equivalently,

(31) β̂
∗
r

d
= (X⊤WX)−1X⊤Wy, W = Diag(w),

where x
d
= y denotes x and y have the same distribution. Note that the laws Pw and P∗ governed by sMult(π, r)

and π, respectively, are stochastically equivalent, see, e.g., page 2055, Præstgaard and Wellner (1993)[16] and Zhu,
et al. (2015)[22]. Such equivalence is commonly used in the bootstrap theory, see Sections 3.5–3.6, Van de Vaart and
Wellner (1996)[18]. We shall use P∗ also for Pw, and write E∗, Var∗, etc. for the expected value, variance, etc. It is
easy to check

(32) E∗(w) = 1, Cov∗(w) = (1/r)(Diag(1/π)− 11⊤).

Lemma 2. Assume (M2). Suppose (6) holds for all ϱ > 0 and (7) holds for some ρ > 2. Then

(33) ∥β̂ols − β0∥ = O(n−1/2 log
1/2
2 (n)), a.s.

Hence,

(34) max
1≤i≤n

|x⊤
i (β̂ols − β0)| = o(1), a.s.

PROOF. We show without loss of generality that (33) holds for the first component β̂1 of β̂ols. To do so, we shall apply
Theorem 2 of Lai and Wei (1982)[10], for which we need to verify

(35) lim
n→∞

An = ∞, lim sup
n→∞

An+1/An < ∞, and

(36) max
1≤i≤n

|xi,1 − k⊤
nH

−1
n ti| = o(n1/2 log−ϱ(n))

for all ϱ > 0, where xi = (xi,1, t
⊤
i )

⊤, kn =
∑n

i=1 xi,1ti, Hn =
∑n

i=1 tit
⊤
i , and An =

∑n
i=1(xi,1 − k⊤

nH
−1
n ti)

2.
Partition M0 as follows:

M0 =

(
m1,1 m⊤

1
m1 M1,1

)
.

It follows from (M2) that

(37)
1

n

n∑
i=1

x2
i,1 = m1,1 + o(1),

kn

n
= m1 + o(1),

Hn

n
= M1,1 + o(1).

The last two equalities imply k⊤
nH

−1
n = m⊤

1 M1,1 + o(1). Hence,

n−1An = m1,1 −m⊤
1 M

−1
1,1m1 + o(1).

Since the above difference is positive as it is the inverse of the positive definite matrix M0, it follows that (35) holds,
while (36) follows from the triangle inequality, ∥ti∥ ≤ max1≤i≤n ∥xi∥ and (6). Apply now Theorem 2 of Lai and
Wei (1982)[10] to finish the proof.

PROOF (of Theorem 1). Let

(38) w̄ = w − 1, W̄ = W − I, ∆∗ = (X⊤WX)−1 − (X⊤X)−1.

Then Ew(w̄) = 0, Ew(W̄) = 0, and stochastically equivalently,

(39) ∆∗ d
= (X∗⊤W∗X∗)−1 − (X⊤X)−1, X⊤W̄y

d
= X∗⊤W∗y∗ −X⊤y.

11
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Let ∆∗
1 = −(X⊤X)−1(X⊤W̄X). Stochastically equivalently,

(40) ∆̄
∗
1 =: I−∆∗

1 = (X⊤X)−1(X⊤WX).

Recall W̄ and ∆∗ in (38) and write

(X⊤WX)−1 = (X⊤X)−1 +∆∗, Wy = y + W̄y.

Substitution of them in the full-data formula (31) of β̂
∗
r yields

β̂
∗
r = (X⊤WX)−1X⊤Wy

=
(
(X⊤X)−1 +∆∗)X⊤(y + W̄y)

= β̂ols + (X⊤X)−1X⊤W̄y +∆∗X⊤y +∆∗X⊤W̄y

= β̂ols + (X⊤X)−1X⊤W̄ε̂+ (X⊤X)−1X⊤W̄ŷ +∆∗X⊤y +∆∗X⊤W̄y

= β̂ols+(X⊤X)−1X⊤W̄ε̂+∆∗X⊤W̄ε̂+[(X⊤WX)−1X⊤W̄ŷ+∆∗X⊤y].

Substituting ŷ = X(X⊤X)−1X⊤y in the square bracket, the sum inside it is identically zero. Since all the preceding
statements hold on the subspace in which X⊤WX is invertible, we show (41)-(42),

(41) β̂
∗
r = β̂ols +

1

r

r∑
j=1

(X⊤X)−1
x∗
j ε̂

∗
j

π∗
j

+ r∗,

valid on the subspace in which X∗⊤W∗X∗ is invertible, where r∗ is given by

(42) r∗ =
(
(X∗⊤W∗X∗)−1 − (X⊤X)−1

)
(X∗⊤W∗ε̂∗).

Let A∗
n be the event on which ∆̄

∗
1 is nonsingular. Using ∆∗

1(∆̄
∗
1)

−1 = (∆̄
∗
1)

−1∆∗
1, we express

∆∗ = ∆∗
1(X

⊤WX)−1 = ∆∗
1(∆̄

∗
1)

−1(X⊤X)−1 = (∆̄
∗
1)

−1∆∗
1(X

⊤X)−1,

valid on A∗
n. Recalling δ∗ = (X⊤X)−1(X⊤W̄ε̂), we thus obtain

(43) r∗ = ∆∗X⊤W̄ε̂ = (∆̄
∗
1)

−1∆∗
1δ

∗ valid on A∗
n.

By the second equality in (32), one gets

E∗(∥∆∗
1∥2) ≤

1

r

n∑
i=1

h2,i,i

πi
∥xi∥2.

Using ε̂2i ≤ 2ε2i + 2∥β0∥2∥xi∥2, one has

E∗(∥δ∗∥2) ≤ 1

r

n∑
i=1

h2,i,i

πi
ε̂2i ≤ 2

r

n∑
i=1

h2,i,i

πi
ε2i +

2∥β0∥2

r

n∑
i=1

h2,i,i

πi
∥xi∥2.

It thus follows from (M1) and (M3) that

r[E∗(∥∆∗
1δ

∗∥)]2 ≤ rE∗(∥∆∗
1∥2)E∗(∥δ∗∥2) = o(1), a.s.

This, ∆̄∗
= I+ oP∗(1) a.s. and the expression (43) for the remainder r∗ prove

√
rr∗ = oP∗(1) a.s. Consequently, by

(41), it suffices to show for any t ∈ Rp with ∥t∥ = 1,

(44)
σ−1
n (t)√

r

r∑
j=1

t⊤(X⊤X)−1
x∗
j ε̂

∗
j

π∗
nj

=⇒ N (0, 1), a.s. r → ∞,

where σ2
n(t) = t⊤Σ(π)t. As X⊤ε̂ = 0, we have

(45) E∗(x∗
j ε̂

∗
j/π

∗
nj

)
= X⊤ε̂ = 0, Var∗(x∗

j ε̂
∗
j/π

∗
nj) = X⊤Diag(ε̂2/π)X.

Let ξ∗j = t⊤(X⊤X)−1x∗
j ε̂

∗
j/π

∗
nj . It is shown below for every η > 0,

(46) σ−2
n (t)E∗(|ξ∗1 |21[|ξ∗1 | >

√
rσn(t)η]) → 0, a.s. r → ∞.

12
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We now apply the Lindeberg-Feller theorem (e.g. Theorem 7.2.1. of Chung (2001)[5]) to claim (44). To show (46),
we prove below

(47)
1

n2

n∑
i=1

xix
⊤
i

πi
(ε̂2i − ε2i ) = o(1), a.s.

Let Σc = n−2X⊤Diag(ε̂2/π)X. Then Σ(π) = (n−1X⊤X)−1Σc(n
−1X⊤X)−1. It follows from (47) and (M1) that

Σc =
1

n2

n∑
i=1

xix
⊤
i

πi
σ2 +

1

n2

n∑
i=1

xix
⊤
i

πi
(ε2i − σ2) +

1

n2

n∑
i=1

xix
⊤
i

πi
(ε̂2i − ε2i )

=
1

n2

n∑
i=1

xix
⊤
i

πi
σ2 + o(1), a.s.

We now use (M2) to get

(48) Σ(π) = σ2Γ−1
n

1

n2

n∑
i=1

xix
⊤
i

πi
Γ−1
n + o(1), a.s.

This immediately yields for any unit vector t,

(49) σ2
n(t) = σ2t⊤Γ−1

n

1

n2

n∑
i=1

xix
⊤
i

πi
Γ−1
n t+ o(1), a.s.

By (M2)–(M4), there are constants b0, B0 such that

0 < b0 ≤ sup sup
∥t∥=1

σ2
n(t) ≤ B0 < ∞, a.s.

This shows that (46) is implied by the following (shown below)

(50) L(r, n) := E∗(|ξ∗1 |21[|ξ∗1 | >
√
rb0η]) → 0, a.s. r → ∞.

To prove (47), we use (M1) and (M3) to get

(51)
1

n2

n∑
i=1

∥xi∥2

πi
ε2i =

1

n2

n∑
i=1

∥xi∥2

πi
(ε2i − σ2) +O(1) = O(1), a.s.

By (34), we have uniformly in i = 1, . . . , n,

(52) ε̂i − εi = x⊤
i (β̂ols − β0) = o(1), ε̂i + εi = 2εi + o(1), a.s.

Thus ε̂2i − ε2i = o(1)εi a.s. uniformly in i. This yields (47) in view of∥∥∥ 1

n2

n∑
i=1

xix
⊤
i

πi
εi

∥∥∥2 ≤ 1

n2

n∑
i=1

∥xi∥2

πi

1

n2

n∑
i=1

∥xi∥2

πi
ε2i = O(1), a.s.

where (51) and (M3) were used. To finish, it remains to prove (50). This follows from (M2), (M5), the first equality in
(52), and

L(r, n) =

n∑
i=1

|t⊤(X⊤X)−1xi|2

πi
ε̂2i1

[ |t⊤(X⊤X)−1xi|
πi

|ε̂i| ≥
√
rb0η

]
≤ 2∥Γ−1

n ∥2o
1

n2

n∑
i=1

∥xi∥2ε̂2i
πi

1
[∥xi∥|ε̂i|

nπi
≥

√
rb0η

∥Γ−1
n ∥o

]
≤ 4∥Γ−1

n ∥2o
1

n2

n∑
i=1

∥xi∥2ε2i
πi

1
[∥xi∥|εi|

nπi
≥

√
rb0η

2∥Γ−1
n ∥o

]
−→ 0, a.s. r → ∞.

See Table 2 in which the “efficiency” of the uniform sampling is only 1/15 of the optimal sampling for n = 104 and
500 repetitions.
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Table 1: Simulated relative frequencies of the diagonal entries h∗
i,i falling in [0, 1].

r 0.1n 0.3n 0.5n 0.9n 1.2n 1.5n 2.0n 3.0n 3.5n 4.5n
Aopt 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Unif 0.00 0.00 0.00 0.07 0.18 0.33 0.60 0.91 0.98 1.00

Table 2: Simulated relative frequencies of the diagonal entries h∗
i,i of H∗ = X(X∗⊤X∗)−1X⊤ falling in [0, 1] for a

uniform (Unif) and A-optimal (Aopt) random sample X∗.

r 0.1n 0.3n 0.5n 0.9n 1.2n 1.5n 2.0n 3.0n 3.5n 4.5n
Aopt 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Unif 0.00 0.00 0.00 0.07 0.18 0.33 0.60 0.91 0.98 1.00

Here X∗ = (x∗
1, . . . ,x

∗
r)

⊤ was of size r drawn from X = (x1, . . . ,xn)
⊤ with xi’s generated from

the mixture distribution 0.5N(0,Σ) + 0.5LN(0,Σ). Note H∗ approximates H = X(X⊤X)−1X⊤

whose diagonal entries satisfy hi,i ∈ [0, 1].

Table 3: Simulated ratios of the MSE of the subsampling estimator β̂
∗
r according to the optimal sampling distributions

and the leverage scores to the MSE of Efron’s (uniform) subsampling estimator with sample size n = 105 and sub-
sample sizes r. The residual ε̂ was computed based on the full sample.

x ε r : n π̂2 π̂1 π̂0 π̄2 π̄1 π̄0 π̃2 π̃1 π̃0 Lev
.5% .823 .832 .884 .992 .975 .999 .968 .960 1.03 .979

N 1% .784 .783 .813 1.01 .995 1.07 .994 1.01 1.06 1.02
GA 10% .649 .658 .685 .981 .983 1.03 .985 .997 1.02 1.00

45% .653 .638 .651 .983 .991 1.03 .994 .982 1.06 1.01
50% .620 .629 .660 .961 .971 1.04 .965 .964 1.02 .995
.5% .795 .813 .873 .990 1.02 1.03 .988 .998 1.04 1.02

L 1% .728 .716 .752 1.00 .985 1.02 .990 .987 1.02 .999
10% .618 .615 .661 1.03 1.03 1.06 1.01 1.02 1.07 1.04
45% .565 .588 .610 .980 .975 1.01 .987 .989 1.04 .998
50% .586 .599 .613 1.00 1.00 1.03 .990 .988 1.04 .983
.5% .302 .303 .322 .333 .327 .352 .328 .332 .360 .493

N 1% .281 .278 .306 .338 .334 .366 .338 .331 .360 .599
LN 10% .262 .267 .282 .381 .387 .401 .379 .389 .404 .851

45% .276 .278 .286 .419 .425 .447 .415 .425 .453 .952
50% .280 .280 .293 .430 .428 .450 .431 .435 .441 .977
.5% .283 .284 .315 .324 .333 .361 .330 .335 .361 .486

L 1% .256 .253 .279 .331 .330 .361 .332 .331 .361 .576
10% .238 .238 .254 .382 .388 .404 .382 .385 .402 .848
45% .253 .253 .266 .412 .422 .450 .428 .426 .444 .942
50% .253 .253 .268 .420 .425 .450 .418 .427 .446 .959
.5% .558 .551 .593 .644 .651 .675 .633 .636 .687 .900

N 1% .515 .506 .542 .655 .662 .709 .649 .651 .690 .948
MG 10% .451 .454 .476 .682 .695 .723 .685 .683 .714 1.02

45% .438 .446 .458 .684 .692 .719 .694 .682 .698 1.01
50% .433 .438 .459 .671 .680 .721 .667 .697 .710 1.00
.5% .554 .555 .562 .664 .658 .696 .648 .670 .690 .933

L 1% .500 .500 .509 .662 .685 .706 .672 .659 .698 .953
10% .399 .408 .428 .658 .654 .713 .673 .660 .690 .971
45% .395 .397 .417 .666 .684 .699 .673 .692 .712 .974
50% .407 .410 .428 .710 .685 .712 .690 .683 .722 .995
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Table 4: Same as Table 3 except that the sampling distributions are truncated.

x ε r : n π̂2 π̂1 π̂0 π̄2 π̄1 π̄0 π̃2 π̃1 π̃0 Lev
Truncation 10%

.5% .800 .812 .852 .985 .964 1.03 1.00 .994 1.02 .976
N 1% .718 .740 .755 .961 1.00 1.03 .985 1.01 1.04 .994

GA 10% .646 .646 .680 .982 1.01 1.04 .989 1.00 1.04 1.00
.5% .744 .775 .788 .977 .981 1.02 .952 .985 1.02 .973

L 1% .668 .686 .714 .964 .999 1.03 .960 .983 1.02 .996
10% .595 .588 .625 .995 .999 1.04 1.01 .995 1.02 .998
.5% .305 .302 .322 .337 .330 .353 .323 .320 .361 .458

N 1% .269 .275 .286 .339 .329 .362 .331 .336 .359 .569
LN 10% .260 .263 .278 .384 .392 .402 .386 .390 .409 .813

.5% .287 .279 .303 .328 .327 .370 .324 .331 .358 .462
L 1% .253 .258 .277 .335 .340 .369 .331 .334 .364 .580

10% .247 .247 .258 .396 .406 .425 .398 .391 .424 .840
.5% .545 .559 .572 .637 .632 .656 .633 .656 .670 .888

N 1% .522 .514 .556 .656 .674 .708 .661 .688 .705 .964
MG 10% .455 .449 .477 .692 .685 .715 .695 .681 .724 .985

.5% .527 .534 .558 .653 .638 .676 .636 .650 .684 .905
L 1% .478 .476 .504 .664 .663 .697 .649 .665 .687 .955

10% .412 .416 .430 .680 .671 .718 .676 .664 .695 .959
Truncation 30%

.5% .753 .749 .802 .980 .983 1.02 .971 1.01 1.02 1.01
N 1% .705 .689 .726 .970 .974 1.01 .967 .980 1.01 .971

GA 10% .664 .684 .708 .995 1.01 1.06 .991 1.03 1.03 1.00
.5% .701 .712 .730 .978 .983 1.01 .980 .989 .999 .990

L 1% .658 .673 .694 1.00 1.01 1.02 .991 1.00 1.02 1.01
10% .612 .619 .638 .989 .983 1.00 .987 .994 1.03 .998
.5% .295 .301 .330 .340 .334 .373 .344 .342 .384 .422

N 1% .269 .266 .295 .326 .332 .356 .323 .341 .356 .500
LN 10% .263 .264 .280 .391 .394 .416 .393 .391 .414 .741

.5% .290 .291 .309 .348 .344 .390 .350 .344 .376 .434
L 1% .258 .257 .276 .331 .342 .364 .337 .340 .362 .515

10% .247 .251 .263 .403 .399 .426 .395 .398 .423 .747
.5% .560 .546 .580 .646 .645 .659 .652 .651 .666 .866

N 1% .504 .510 .532 .659 .657 .698 .667 .656 .692 .886
MG 10% .456 .466 .481 .685 .681 .733 .685 .677 .709 .945

.5% .524 .535 .546 .655 .650 .642 .652 .658 .670 .861
L 1% .468 .481 .500 .660 .663 .688 .663 .670 .689 .926

10% .421 .420 .439 .693 .692 .710 .675 .693 .724 .939
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Table 5: Same as Table 4 except that the residual ε̂ was approximated based on a uniform pre-subsample X∗
0 of size

r0 : n = 10%.

x ε r : n π̂2 π̂1 π̂0 π̄2 π̄1 π̄0 π̃2 π̃1 π̃0 Lev
Truncation 10%

.5% .843 .814 .868 .985 1.01 1.06 1.00 1.01 1.03 1.02
N 1% .730 .724 .781 1.00 .984 1.05 .975 .996 1.04 .994

GA 10% .649 .651 .699 1.02 .986 1.04 .996 1.01 1.05 1.00
.5% .808 .798 .846 .988 1.01 1.04 1.02 1.02 1.05 1.02

L 1% .690 .694 .715 .982 .992 1.02 .977 .990 1.03 1.00
10% .593 .603 .631 .991 1.01 1.05 .984 1.02 1.03 .986
.5% .288 .287 .311 .320 .324 .365 .322 .325 .353 .474

N 1% .268 .269 .298 .336 .335 .365 .338 .342 .364 .585
LN 10% .279 .281 .295 .391 .387 .415 .401 .399 .417 .834

.5% .256 .266 .286 .318 .316 .349 .312 .320 .341 .455
L 1% .249 .255 .277 .339 .340 .355 .335 .326 .349 .572

10% .253 .258 .270 .382 .391 .407 .383 .390 .409 .828
.5% .555 .554 .587 .636 .643 .665 .628 .638 .673 .879

N 1% .527 .533 .547 .660 .669 .708 .676 .681 .690 .944
MG 10% .460 .466 .491 .714 .701 .743 .697 .707 .745 1.02

.5% .531 .516 .549 .630 .633 .652 .632 .640 .661 .888
L 1% .471 .483 .501 .650 .652 .674 .643 .639 .679 .922

10% .422 .420 .442 .670 .673 .691 .666 .676 .709 .972
Truncation 30%

.5% .772 .781 .828 1.01 .989 1.01 1.00 1.01 1.04 1.00
N 1% .694 .718 .743 .978 1.01 1.02 .972 .978 1.04 1.00

GA 10% .683 .686 .706 1.02 1.01 1.03 1.03 1.00 1.04 1.01
.5% .722 .714 .739 .983 .996 1.03 .985 1.01 1.03 .996

L 1% .652 .666 .691 .996 .988 1.04 .993 .990 1.02 1.01
10% .614 .613 .623 .987 .998 1.02 .982 .995 1.03 .998
.5% .288 .294 .309 .328 .333 .368 .329 .337 .366 .413

N 1% .263 .264 .283 .321 .346 .364 .336 .338 .368 .510
LN 10% .279 .275 .297 .396 .398 .419 .383 .395 .416 .732

.5% .258 .270 .294 .332 .336 .365 .332 .331 .362 .408
L 1% .240 .236 .260 .325 .328 .376 .328 .326 .355 .493

10% .258 .258 .275 .394 .406 .429 .395 .400 .420 .753
.5% .555 .557 .576 .644 .656 .677 .656 .645 .675 .862

N 1% .517 .510 .548 .677 .675 .689 .688 .675 .691 .925
MG 10% .469 .477 .491 .703 .706 .716 .694 .696 .711 .977

.5% .515 .522 .546 .627 .640 .665 .655 .633 .667 .846
L 1% .486 .483 .508 .664 .663 .703 .663 .671 .684 .943

10% .438 .438 .458 .717 .701 .746 .701 .713 .729 .972
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Table 6: The Scoring Algorithm in Fig. 2 was used, i.e. same as Table 5 except that the sampling distributions were
also approximated by replacing (X⊤X)−1 by (X∗⊤

0 X∗
0)

−1.

x ε r : n π̂2 π̂1 π̂0 π̄2 π̄1 π̄0 π̃2 π̃1 π̃0 Lev
Truncation 10%

.5% .834 .844 .869 .999 1.01 1.06 1.01 1.01 1.05 .986
N 1% .740 .749 .777 .965 1.01 1.03 .977 1.03 1.05 1.01

GA 10% .663 .670 .709 1.03 1.02 1.04 1.02 1.01 1.04 1.02
.5% .764 .779 .813 .976 1.01 1.02 .970 .995 1.02 .981

L 1% .680 .688 .734 .987 .978 1.02 .994 .969 1.01 .986
10% .604 .605 .641 .987 .982 1.05 1.01 1.02 1.03 1.02
.5% .288 .280 .313 .340 .335 .364 .338 .331 .357 .485

N 1% .274 .262 .280 .358 .344 .360 .338 .337 .351 .612
LN 10% .292 .285 .301 .409 .404 .424 .394 .403 .413 .858

.5% .284 .275 .308 .357 .348 .369 .341 .335 .370 .486
L 1% .242 .242 .258 .338 .334 .359 .332 .319 .343 .588

10% .259 .254 .262 .394 .385 .402 .381 .387 .394 .852
.5% .555 .550 .591 .619 .639 .670 .632 .630 .667 .889

N 1% .534 .539 .556 .687 .686 .712 .682 .676 .713 .979
MG 10% .458 .454 .475 .668 .686 .705 .664 .688 .713 .973

.5% .528 .537 .560 .635 .641 .702 .639 .643 .669 .919
L 1% .481 .497 .509 .657 .662 .681 .653 .659 .690 .930

10% .419 .420 .442 .684 .672 .713 .676 .687 .712 .980
Truncation 30%

.5% .782 .776 .800 .999 1.02 1.06 1.00 1.01 1.03 .990
N 1% .726 .735 .747 .971 1.01 1.03 .992 1.02 1.03 1.00

GA 10% .676 .691 .715 1.03 1.03 1.03 1.01 1.03 1.03 1.01
.5% .719 .716 .746 .978 1.00 1.01 .976 .996 1.01 .975

L 1% .655 .670 .711 .992 .982 1.01 .992 .978 1.01 .987
10% .615 .617 .642 .991 .985 1.04 1.00 1.01 1.01 1.01
.5% .302 .285 .303 .357 .349 .379 .342 .337 .358 .438

N 1% .274 .276 .291 .355 .357 .382 .342 .345 .358 .544
LN 10% .288 .289 .303 .414 .412 .431 .410 .404 .420 .780

.5% .287 .279 .302 .368 .352 .383 .359 .343 .377 .438
L 1% .244 .244 .253 .346 .342 .364 .335 .331 .343 .528

10% .260 .250 .268 .395 .399 .407 .392 .394 .401 .773
.5% .547 .547 .574 .629 .643 .676 .652 .632 .665 .866

N 1% .528 .529 .536 .677 .683 .713 .681 .677 .704 .940
MG 10% .462 .455 .483 .679 .695 .689 .674 .676 .731 .936

.5% .528 .523 .556 .634 .642 .674 .647 .639 .662 .879
L 1% .474 .471 .497 .656 .676 .672 .657 .664 .682 .887

10% .422 .429 .446 .675 .665 .712 .679 .683 .722 .939

Table 7: The running times (in seconds) of the Scoring Algorithm in Fig. 2 and the LSE for sample sizes n and
subsample sizes r with x ∼ GA and ε ∼ N (0, 1).

The Scoring Algorithm LSE
n\r 0.05n 0.10n 0.20n 0.30n 0.40n 0.50n n

6 ∗ 106 11.807 12.576 18.671 23.276 29.296 30.050 36.344
6 ∗ 105 0.882 0.981 1.502 1.896 2.266 2.784 3.809
6 ∗ 104 0.116 0.134 0.161 0.175 0.173 0.201 0.234
6 ∗ 103 0.012 0.013 0.017 0.018 0.030 0.029 0.027
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