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ABSTRACT

To fast approximate the least squares estimator efficiently in a Big Data linear regression by a sub-
sampling estimator, numerous optimal sampling distributions are derived based on the criterion of
minimizing the trace norm of the variance-covariance matrix of the subsampling estimator. Relative
error bounds and conditions for subsample sizes to be bounded are provided. A scoring algorithm is
constructed with far less running time than the full-sample LSE. An almost sure asymptotic normal-
ity result is proved for the subsampling estimator for an arbitrary sampling distribution. Motivated
by subsampling and data-splitting in machine learning, sample size determination for multidimen-
sional parameters is presented. The numerical performance of the results is studied through large
simulated and real data.

Keywords Asymptotic normality; Least squares estimator; Big data; Optimal sampling; Sample size determination

1 Introduction

In a linear regression model, the response y; and covariate vector x; satisfy
T .
(1) yl:ﬁ X; + €4, Zzlw"vna

where 3 € RP is an unknown parameter and €1, . .., &, are independent and identically (i.i.d.) random errors with
zero mean and finite positive variance o2 = Var(e;). Assume that X = (x3,...,X,) " is a nonrandom n x p matrix
of full rank p.

The parameter vector 3 can be estimated by the ordinary least squares estimator (LSE) [3 = (XTX)"'XTy,

ols
where y = (y1,...,¥yn)". Consider the case of data of massive size in which 3, is not available. One may draw a

ols



A PREPRINT - MARCH 28, 2023

subsample (X*,y*) of small size r << n using a sampling distribution 7,, = (71, ..., m,) as a surrogate for the full
sample, and calculate the subsampling weighted LSE B,. to approximate B

ols>

where W* = diag(1/rm*) is the diagonal matrix with 7v* equal to the vector of the corresponding sampling proba-
bilities. Here we adopt the componentwise division a/b = (ay /by, ..., a,/b,)" for vectors a, b. This is a Hansen-
Hurwitz estimator and could also be viewed as a weighted bootstrap estimator based on a subsample. Full sample
weighted bootstrap estimators were well studied in the literature, see the monograph by Barbe and Bertail (1995)[2].

Over the past two decades, there have been considerable progresses on subsampling, see Liang, et al. (2013)[11],
Kleiner, et al. (2014)[9], Wang, et al. (2015)[20], Wang, et al. (2019)[19] among others. Algorithms for fast computing
the LSE were constructed, see the monograph by Mahoney (2011)[14] and the references therein. A key feature of
these results is the nonuniform sampling. While these results were mainly focused on the algorithmic properties, we
shall be concerned with statistical inference. Zhu, et al. (2015)[22] pioneered in this aspect and their work is influential
in our work. They obtained several A-optimal distributions and proved asymptotic normality in probability. We give
the A-optimal distributions for approximating a smooth function g(3,,) of 3., (the choice of g(3,,,) = X X3, =

XTy ylelds their results), and prove an almost sure asymptotic normality result. We present the relative error bounds

for B in Section 4. Such bounds, as pointed out in Mahoney (p.17, 2011)[14], are gold standard and provide much
stronger notion of approximation than additive bounds.

In textbooks, sample sizes are generally bounded for given margin of error (MOE) and confidence level. We acknowl-
edge that sample sizes may be unbounded. One might wonder that under what conditions subsample sizes are bounded
uniformly in n for given MOE and confidence level. The result presented here for subsampling in a linear regession
model is that the leverage scores h; ; of the hat matrix must stay away from its boundary 0 and 1, the covariate matrix
X must be well-conditioned, and truncation from below of the sampling distribution is required. As a consquence, for
the uniform sampling (bootstrapping) the boundedness requires that the covariate matrix X must be well-conditioned.

It is obvious that a suitable subsample size is key for obtaining a desired result within a desired peroid of time. Sample
size determination (SSD) for scalar parameters is a melody. In this article, we extend SSD to multidimensional
parameters and study the numerical behavior through simulations. The result may also be useful for data spliting in
machine learning.

The statistical leverage scores based distribution £ has played a central role in the development of randomized ma-
trix algorithms, see e e.g. Candés and Tao (2009)[3]; Drineas et al. (2012)[7]; Ma and Sun (2014)[12]; Ma, et al.
(2015)[13]; Xu, et al. (2016)[21]. Interestingly, £ and the A-optimal distribution 7o draw data points in a totally
opposite way. Specifically, the former draws points close to the regression hyperplane, whereas the latter does away
from the hyperplane.

While classic methods compute the LSE 3, in O(np?) time, randomized methods usually take o(np?) time. Typi-
cally, the bottleneck is to compute the appropriate sampling distributions, and the A-optimal distributions fall in with

this category. As the LSE BOIS and £ are fundamental and ubiquitous, there have been developed randomized al-
gorithms on rapidly approximating them, see e.g. Drineas, et al. (2006)[6]. These algorithms can be utilized to fast
compute the optimal distributions. In the spirit of the scoring method for improving estimation efficiency, we construct
the Scoring Algorithm in Fig. 2 with running time O(rp?) where r << n. Our extensive simulations indicated that
the algorithm worked particularly well.

The article is organized as follows. In Section 2, we define SSD for multidimensional parameters and proivde the
formula. In Section 3, we prove an asymptotic normality result, give the A-optimal distributiogns, construct the
Scoring Algorithm, and discuss trunction and the raltationship between the leverage scores based distribution and the
A-optimal distributions. The relative error bounds and the boundedness conditions for subsample sizes are offered in
Section 4. Some simulations are reported in Section 5. The proofs are collected in Sections 6-7.

2 SSD for multidimensional parameters

Let P be a probability measure on some measurable space. Let m the Borel measure on RP. Typically, m is the volume
measure on RP. Consider a parameter vector & € RP, and a random region R,, on RP. Given ¢ > 0 and « € (0, 1),
we seek a minimum sample size n such that at the level 1 — « of confidence, R,, catches 6 within the “range of error”
(ROE) ¢, that is, m(RR,,) < e. We now introduce the definition. Let 8 denote the true value of parameter.
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Definition 1. Given e > 0 and o € (0, 1), the sample size with the range of error (ROE) € > 0 at the level 1 — a of
confidence is defined as
n(e,a) =min{n: P(0y € R,, m(R,) <) >1—-a}.

We give two examples below, using the following two-step method.

Step 1 Construct a (1 — «)- level confidence region R,, for 6.
Step 2 Find the minimum sample size n such that the ROE is ¢, that is, m(R,,) < €?.

Example 1. (Ellipsoid) Let 6 be an estimator of a parameter 8y € © C RP such that the variance-covariance matrix
>, of @ satisfies that n5,, converges in probability to some positive definite matrix 3. Let m be the volume measure
on RP, and R,, be the (1 — «)- level confidence ellipsoid centered at 8,

R,={0€0: T,00) <q.p},

where T, (8) = n(6 —0)T£~1(0 — ), and ¢, (p) denotes the upper a-percentile of the distribution of 7'(8y), that is,
P(T(00) > ga(p)) = c. By definition, the sample size is determined by

ny(e,a) =min{n: POy € R,, m(R,) <€’) >1—a}.

The volume of the ellipsoid is

n—P/27p/2 P
m(Ry,) = 220) TT Vs
d=1

T(p/2+ 1)

where \g,d = 1, ..., p are the eigenvalues of X. Solving m(CR,,) < ¢ about n yields the sample size n,(¢, &) with
ROE ¢ at the level of 1 — «, given by

4o (p) det(%)
> =
¥ PO T S ) @
where det(X) = []5_, Aq is the determinant of 3. Often X is unknown, one uses an estimator 3 of ¥ (or estimators

Ag of the eigenvalues \g). For p = 1, as I'(3/2) = /7 /2, the sample size with ROE 2¢ (margin of error (MOE) €) at
the level 1 — « boils down to the formula n1 (¢, @) = qo (1)0?/€? found in textbooks.

Example 2. (Bonferroni) Consider the same problem as in Example 1, but now based on Bonferroni’s method. We
take R,, to be the p-dimensional (1 — «)-confidence hyperrectangle,

p

Rn - H(éd,n - qa/pad/\/ﬁ: éd,n + QQ/po—d/\/ﬁ)v
d=1
where ¢, denotes the upper a-percentile of the distribution of £ ~1/2,/n (én — By), and éd,n and o2 denote the d-th
component of 6, and the d-th diagonal entry of X, respectively. As the volume of the hyperrectangle R,, is

m(R,) = Qpn—p/qu/pgl oy,
solving m(R,,) < e about n yields the sample size,
) nz n;’,on(ﬁoz) = 4qi/paf/p e Ui/p/eQ.

For unknown parameters o4’s, one uses estimators d4’s of them.

Remark 1. If T, (0y) is chisquare distributed with p degrees of freedom (often approximately), one then takes q,,(p) =
X2 (p), the upper a-percentile of the chisquare distribution x* (p) with d degrees of freedom. Similarly for Bonferroni,
Go = Za, the upper a-percentile of the standard normal A (0, 1). Alternatively, one can get an estimate of q,(p) by
bootstrapping or pre-subsampling in the Scoring Algorithm 2 in the case of Big Data.

Remark 2. In nonuniform subsampling for data of massive size, a sampling distribution ® = (7y,...,7,) must
be computed before actually subsampling. An optimal sampling distribution m typically has the same computational
complexity as the original problem. To tackle this problem, one may take a uniform pre-subsample of small size
and compute an approximation T to T as described in the Scoring Algorithm 2, choosing suitable values of €, «
and qo,(p) = x%(p). To determine the pre-subsample size, one may take X to be the identity matrix in (3) to get a
pre-subsample size,

’/TqOé(p) 1
(5) n Z TLP70(€, Oé) = W?

The formula can be used for SSD in the uniform sampling (bootstrapping) and data splitting in machine learning.
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Figure 1: Algorithm 1 (Computing the subsampling estimator B: )

1. Construct a distribution 7r on the data points (x;,y;)’s, use it to draw a subsample (X*,y*) of size r << n
and formulate the diagonal matrix W* = diag(1/rz*) with v the corresponding probability vector.

2. Calculate the weighted least squares estimator B: = (X*TW*X*)"IX*TWHy*,
3 Almost sure ASN and the A-optimal distributions

In this section, we prove ASN, derive the optimal distributions, construct the Scoring Algorithm and discuss truncation
and the relationship of the leverage scores based and the A-optimal distributions.

3.1 Asymptotic normality

Ak
We give a set of conditions on 7 below for the almost sure asymptotic normality of 3, for an arbitrary sampling
distribution. Occasionally, we write ™ = 7, and 7; = 7, ; to stress their dependene on the sample size n.

M)

x;x; (e2 — 0?)
3 Z P~ =0(1), a.s.

(M2) There is a p X p symmetric matrix I' whose smallest eigenvalue is bounded away from zero, i.e., Apin (I') >
bo > 0 for some constant b, such that

= sz =T +o(1).
(M3)
1 - X; 4
2 Z; Lﬁﬂ'i =0() a.s.

M4) L, (w) = Y30 x;x] /n?m,; satisfies 0 < b < ApinLLy (1) < AaxLin(m) < B < oo a.s. for constants
b, B, where Ap,i, and A\, ,x denote the maximum and minimum eigenvalues, respectively.

(M5) Lindeberg condition: the double array n,, ; := X;&;/nmy i, @ = 1,2,...,n, n > 1 satisfies that for any ¢ > 0,

n
Z 7T’ﬂ7i||77n,i
i=1

(D1) Condition (M1) can be verified using the result on the SLLN for weighted i.i.d. rv’s of Baxter, et al. (2004)[1].
Specifically, for a sequence {a;}, Z;‘L=1 la;|? = O(1) for some ¢ > 1 implies 1 Z?:l a;&; — 0 a.s. for an
iid. {&,} with E(§;) = 0and E(|&]) < oo

(D2) Condition (M2) was used in Lemma 3.1 of Portnoy (1984)[15].

Theorem 1. Assume (M1)—(M5). Suppose that for every o > 0,

(7, 41l > Vrtl=o(1), a.s. r— .

_ 1/2 -0
(6) max x| = o(n'/"log™¢(n)), a.s.

Suppose that there exists some p > 2 such that

(7N E(le1]?) < 0.

Then [3: is asymptotically normal along almost all the sample paths of the sequence {(x;,y;)} asr — oo, i.e.,
®) S m)VE(B, ~ Ba) = N(O.1), as. 7 oo,

where $(m) = (X X)X "Diag(&?/7)X(XTX) !
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3.2 The A-optimal distributions
For a ¢ x p matrix A, we minimize the trace norm Tr(X o ) over distributions supported on the data points, where
) Sa(m) = AX(m)AT = AXTX) 18 (m)(XTX) AT,

with X, (7r) = X " Diag(é?/r7)X. Let @ = Af3,,.. The plug-in estimate 6 = AB: of § has Var*(é*) = Xa(m).
Consider & = g(8), where g has the continuous partial derivative g. Then o = g(@:) is a subsampling estimator

ols*

to approximate 0= gl (BOIS), and an A-optimal distribution for 0" to approximate 0 is given by taking A = g(B) for
some pilot estimator 3 of 3.

An A-optimal distribution depends on data, parameters, and the estimation method. With these in mind and for
convenience, we introduce the following definition.

Definition 2. Given a o-field F, a distribution 7 supported on the data points is said to be A-optimal for the subsam-
Ak ~
pling estimate 0 to approximate an estimate 6 of parameter 0 if 7 asymptotically minimizes the trace norm of the
X3 A%
conditional variance-covariance matrix Var(0 |F) of 0 given F.

If F is the a- field generated by {(x;,v;)} ({x;}), then 7 is referrred to as A (A)-optimal. Note that the plug-in
estimtor g(0 ) is not A-optimal for it to approximate g ().

The A-optlmal distributions 7r5. Minimizing the trace norm of the variance-covariance matrix 3 5 in (9), we obtain
the A- optimalizer 7 5. Let H2 A = Diag(é)Hy aDiag(&), where

(10) Hyp =X(X'X)PATAXTX)IXT.

‘We now invoke the Lagrange multipliers to get

Proposition 1. Let A be a q x p matrix which is independent of . Assume that A(X"X) ™ 'x; # 0 and h;i # 1 for

all v. Then the square roots of the diagonal entries of I:IZ A induce the unique A-optimal distribution T A for Aﬁ:i to
approximate A3

ols*

We shall refer to I:Il A as the A-Optimal score matrix. Write p; o< b; if p; = b;/ > ; b; for Vi. Then 7 4 is given by
a1 Taq o JAXTX) x| €4

For A = (XTX)'~%/2 set H, = Hy o and H,, = Hj 4, so that

H, = X(X'X)™*X", H, = Diag(¢)H,Diag(¢), «cR.

It then follows H, is the A-optimal score matrix for éz = (XTX)-o/ 23: to approximate 6, =
(XTX)1=/28 . = (XTX)~*/2X Ty, with the unique A-optimal distribution 7., given by

51, where B =x (XTX)™®

Tai X /e

Consequently, 75 is the unique fl—optimal distribution for BT to approximate Bols.

Remark 3. While 7ty ; o ||x;|||€;| has less computational cost than 7t (o # 0) (as only ||x;|| and |é;| must be
computed), 1 ; X /h; ;|€;| can be computed using the fast algorithm given in Drineas, et al. (2006)[6].

The A-optimal 7, and its approximation 7. Consider minimizing the trace norm of the conditional variance-

covariance matrix given X. Since 75 () = Tr(Xa (7)) = r ' Y1 | [la;]|?é? /m; and Var(é|X) = (I, — H)o?, we
integrate out the squared residuals in the trace %A(ﬂ') to get

(12) ?A(W) E(TA Z ”az” i 1)’ a; = A(XTX)—l
Suppose that h; ;’s satisfy max;—1,... , hi; = o(1). One then obtains an approximation to the trace as follows:

,
Z IIaZH
Uy

i=1
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Figure 2: The Scoring Algorithm

1. Take a uniform pre-subsample (X, y§) of size ro from (X, y), and use it to compute Hf , (Hj ,, or I:I[;,a)
given in (14).

2. Call Algorithm 1 in Fig. 1 with the subsample size r and the A-optimal distribution 7.
Minimizing 7a () and 74 () yields the sampling distributions 7 o and 7 4, respectively. Note the conditional version
of Hy a in (10) takes the form,
Hj o = Diag((1 - hii)"/?)Hy aDiag((1 — hii)'/?).
Thus 7 o can be expressed as 7a ; o ||a;||/1 — h; ;. For A = (XTX)'~%/2 let H, = Hy . The A-optimal 7,
can be written as
Toi X v/ haiin/1—his.
Hence 75 is the unique A-optimal distribution for B: to approximate 3
(13) Tayi X A/ Naii-

Remark 4. As in Remark 3, while 71,71 can be fast computed, g, o enjoy computational ease. The latter are,
respectively, the optimal sampling (OPT) and predictor-length (PL) sampling given in Zhu, et al. (2015).

1s- Likewise, 7, is given by

Comparison and truncation. Since 7o minimizes 74 (7), it follows from Proposition 1 that 74 (7 a) < Ta(7A).
Hence, by (12), we obtain

E(7a(7a)) < E(7a(7a)) = Ta(7a).

This shows that 7r o is, on average, better A-optimizing than 7 o . Our extensive simulations and real data applications
exhibited that 7w o was much better optimizing than both T and 4.

TRUNCATION. Observe that (11) implies that (x;, y;) must be drawn with probability 74 ; proportional to |¢;|. Since
each probability is inversely used in constructing B:, 7 a must be truncated from below in order to guarantee appropri-
ate statistical properties for ﬁ: Truncation was used in constructing the generalized bootstrap estimator by Chatterjee
and Bose (2002)[4]. Specifically, we truncate 7 o from below by L/n and define 7 A (1) by

() < A 1[fa:>L/n]+ (I/n)1[7a<L/n], i=1,2,...,n,

where L is a threshold value. Typically 0 < L < 1. This is, in fact, a mixture distribution of the optimal and the
uniform distributions. For fast computing, we may drop “unimportant” observations by taking [ = 0, otherwise [ = L.
See p. 18 (Tropp, 2019)[17] for further discussion. As T ; = 0 at h; ; = 1, we truncate 74 ; similarly from below
by 7ai(l). Although 7 4 is positive, we also truncate it and define the likewise 7 a ({).

To determine the value of L, we must take it into consideration the desired running time and the accuracy. Our
extensive numerical results exhibited that even high percentages of truncation led to only slight loss of efficiency.

The Scoring Algorithm. Like a typical optimal sampling, the A-optimal sampling 7o, 72 and 7ro have the same
running time O(np?) as the full data LSE 3,,,. We provide a fast algorithm in Fig. 2.

ols*

Since the computational bottleneck is to invert X " X, we shall approximate it by the subsampling (X X#)~! based
on a computationally easy pre-subsample (X§, y¢) from the data (X, y). Let the resulting estimator and residuals be

By = (X5 "X5) X5 ys, &6 =y1—XiBy,
where (X1, y1) is the remaining observations in (X, y). Compute one of
(14) Hj, =X (X;'X5)*X], Hj, and Hj, a=12

Our simulations in Section 5 exhibited that the Scoring Algorithm performed paticularly well.

Remark 5. The Algorithm in Fig. 2 can be implemented in O(max(rg,r) p*) much faster than the original running
time O(np?) as max(rg,r) << n.

The leverage scores based distribution.

The formula ¢; = u;r u;/p indicates that ¢; depends only on the singular vector u; of X. Meanwhile, since the
A-optimal 75 ; depends on hs ; ;, which can be written as

hg,iﬂ; = uLTDlag(l/crf, ey 1/0’;)112‘,
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it follows that 75 ; depends on not only u; but all the singular values o;’s of X. These suggest that £ is not efficient in
extracting information as it ignores the singular value information.

|? and

Suppose that X is column-orthonormal. Then h; ; = ||x;
_ hhl —|— 0(1)7 hi,i = 0(1),
24 & { 1-— hi,i + 0(1), hzz =1- 0(1).

When sampling according to £, the ith observation is drawn with probability proportional to h; ;, especially in the

vicinity of h; ; = 1. The A-optimality, however, dictates that in this vicinity the ith observation must be drawn with
the probability proportional to /1 — h; ; — decreasing with h; ;. In fact, the increasing relationship occurs in the

vicinity of h;; = 0 with the probability proportional to y/h; ;. Similarly, 7 ; o h;/ fi|éi , suggesting data points

closer to the regression hyperplane is less informative than those farther away.

4 Relative error bounds and boundedness of subsample sizes

In this section, we give non-asymptotic error bounds, and conditions for the subsample sizes to be bounded.

Relative error bounds. Drineas, et al. (2006)[6] established relative error bounds for a subsampling estimator in a
linear model for an arbitrary distribution {p; }, and utilized the results to study stochastic algorithms. We now apply
their results to specific distributions and, as a result, we obtain explicit formulas for determining subsample sizes. The
authors assumed the existence of constants by, by, b in their conditions (3.8)—(3.10). Specifically, in statistical terms,
these conditions can be, respectively, reformulated as

(15) pi 2 bilri, pi>baloy, pi>bslsy, 1=1,....n,

where by, > 0 and £, = ({);), k = 1,2, 3 are the distributions defined by
Kl,i ={; hi,i7 52,1‘ X/ hi,iléi|7 63,1‘ o8 572

Here we used the identity U UL Ty = y — X3, = &, where U~ is the orthogonal matrix whose column space is
the ortho-complement of the column space of U.

The key is to determine the values of b;’s. As mentioned by the authors (see also below), almost all distributions
will satisfy (15) if one chooses sufficiently small values of b;’s. The small values, nevertheless, will have a direct
adverse effect on the sampling complexity. Our goal is, therefore, to find the largest possible values of by’s. Consider
a distribution {p;} of the form

(16) Di XUps, t=1,...,n,

where v = (vy,4,¢ = 1,...,n) are nonnegative rv’s. Let S, = Z?zl vp;. Evidently, the largest values of by’s are
given by

17 br = (Sp, /Sv) @lgn(v”’i/g’”)’ k=1,2,3.

Observe that the LSE Bols and the residuals & satisfy

int{lly - X8| : 8 € R} = [ly - XB| = |[€].
Lete* = vWHy* — v W*X* B: Obviously, it differs from £* and satisfies
nf{[|VW*y" - VW*X"g| : B € R’} = [VW*y" - VW*X"B, || = [[€"].

Define c(e, 6, p) = p*log(3/8)/e*. Recognizing the formulae for by,’s in (17), Theorem 3.1 of Drineas, et al. can be
re-stated in statistical terms as follows:

Theorem 2. Consider {p;} of the form (16). Let e > 0and 0 < § < 1. Ifr > r1 =: 64c(e, 8, p)/ min(b3, b2), then
with P*-probability at least 1 — 6,

(18) 1€l < (L+)lle].-

Ifr > 1oy =: 388¢(y/€,d,p)/ min(b?, b3, b2), then with P*-probability at least 1 — §,
(19) ly = X8, < (1 +€)llell,

(20) ||[3T - BO]SH < 0-;111n(x>6‘|é||

If, in addition, ||&|| > plly|| for p € (0, 1), then with P*-probability at least 1 — 6,
@2 18, = BosslI/11Bos |l < p(1 = p°) 7/ 2k(X)e.
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Boundedness of subsample sizes. By Theorem 2, given ¢ > 0 and confidence level 1 — ¢, subsample sizes r; and
ro given in Theorem 2 can be calculated for a distribution p; o v; in (16), although these sizes are far from sharp
and improvement can certainly be made. Our interest here is that under what conditions 7; and 7 are bounded. In
the case of g-stable random errors €;’s, using a result about Orlicz norms by Gordon, et al. (2002)[8], we obtained the
following boundedness conditions.

Noting that 1, r5 are inversely proportional to b7 for some k, the boundedness is equivalent to 0 < b < max; |¢;é;| <
B < oo in probability for constants ¢;’s provided that the results in Theorem 3 hold. Condition (24) restricts the
truncation, which is inevitable from the following Proposition 2, whose proof is clear in view of

mm len,iéil < mm len,igil + max len.ix; (b= By)l-

Proposition 2. Assume that ¢1, . .., €, are arbitrary random errors satisfying min; |c,, ;&;| = op(1) for some con-
stants ¢y, ;’s. Let b be an estimator ofﬂo such that max; |, ;X; (b Bo)l = op(1). Then min; |c, ;&;| = op(1).

Recall arv Z is g-stable with ¢ € (0, 2] if its characteristic function satisfies E(exp(v/—1t2)) = exp(—c|t|?),t € R
for some constant ¢ > 0. The normal variable with zero mean corresponds to ¢ = 2.
Theorem 3. Let ¢y, ..., &, be ii.d. with a g-stable distribution for q € (1, 2]. Suppose that g1, . . ., gp, satisfy

(22) *Z* fzzm”‘ +Zmax =0(1/qn),

=1 j=1

hi i hi hi i hi
(23) D> (max 2= Dol i SRR ) = O(1/g,),
J1#j2 ( \F ’ ﬁ )

where g, = n~* >, \/g;. We have
1. For g; =1, if max;(h; ;) = O(1/n), then the uniform % satisfies 1/bi,(% ) = Op(1),k =1,2,3.

2. For g; = h?,, the leverage scores based £ satisfies 1/by.(€) = Op(1),k = 2,3,

12’

Assume, further, K(X) = O(1). For « = 0,1, 2, we have

3 For g; = h?,, if there exists 1, = (l,, ;) such that

ll’

(24) sup 1123<Xn( 1+ahi,iha,i,i,/ln,i) < 00,
n

then the truncated 7 (1) satisfies 1/b (74 (1,)) = Op(1), k =1,3.

4 For g; = hii(1 — h;y), if max; \/hi /(1 —hi ;) = O(1/ngy), then 7, satisfies 1/by(7,) = Op(1),
k=1,2,3

5 For g; = hy;, if max;(y/hii) = O(1/ngy,), then 7, satisfies 1/b,(7,) = Op(1), k =1,2,3.

It is worth mentioning that the above conditions are necessary for the validity of the results, in view of the ranges
0< hiﬂ‘ < 1and —1/2—|— 1/n < h@j < 1/2 for ¢ 75]

5 Simulations

In this Section, we report some simulation results about the numerical behaviors of the A-optimal distributions and
their comparison with the uniform and the leverage scores (lev) based distributions.

Simulated ““efficiency” of the uniform sampling. Reported on Table 2 are the simulated relative frequencies of the
diagonal entries h}, of H* = X(X*TX*)~!X " falling in [0, 1] based on n = 10* and 500 repetitions. Here the
7 rows x; of X* is umform (Unif) and A-optimal (Aopt) random samples from the n rows x; of X, where the rows
were generated from the mixture 0.5N(0,%) 4+ 0.5LN(0,%). Note that H* approximates H = X(XTX)"'XT
whose diagonal entries satisfy h; ; € [0, 1]. The results indicated that the uniform sampling was inefficient, with its
“efficiency” equal to only 1/15 of the A-optimal sampling considered.
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Simulated MSE. As in Zhu, et al. (2015)[22], we chose the coefficient 3 = (1, 0.1 - 15,) T, generated p = 50-
dimensional covariate vector x (treated as non-random) from Gaussian N(0, X) (GA), Log- normal exp(N(0, X))(LN),
and Mixing Gaussian 0.5N(0, ) + 0.5N(0, 625%)(MG) with 3;; = 2 x 0.8/*=71. The random error £ was generated
from the normal (.4") and the logistic (.#), both with zero mean and unit standard deviation. For sample size n = 10°

. . . ok
and a few subsample sizes r, we calculated the empirical mean squared errors of 3, as follows:

EMSE(3 Z 18, — Buall®, M = 500.

Reported on Tables 3-6 are the ratios of the EMSE of BT to that of the uniform subsampling estimator, where the
sampling distributions are untruncated in Table 3 and truncated in Tables 4-6; the residual & was computed based on
the full sample (X, y) in Tables 3-4 and on a uniform pre-subsample (X§, y¢) of size 0.1n in Tables 5-6. In addition,
the Scoring Algorithm in Fig. 2 was used in Table 6.

Observe first that the ratios in all the tables are almost all less than one, indicating that the uniform sampling is
ineffective in extracting information. This is most noticeable for /i-optimal sampling, and for the LN covariate in
which some of the ratios were as low as 25%. Note that the LN is skewed, whereas both GA and MG are symmetric
in which the uniform sampling had better performance. Second, the small differences of the ratios in all the tables
indicated that the uniform pre-subsampling of a small size resulted in small loss of efficiency, and that the Scoring
Algorithm worked well. Third, the A-optimal sampling performed the best, and gave substantially smaller EMSE
ratios than A-, A- and the leverage scores based sampling. In particular, 7vo gave the smallest EMSE ratios in Table
3, when the subsample size reached half the full sample size, which was mostly kept for the truncated sampling
distributions in Tables 4-6.

The Running Time. Reported on Table 7 are the running times of the Scoring Algorithm and the LSE. They were
measured on a computing cluster with 16 processors running at 2.60GHz with 250GB of memory. The R package (ver
3.3.1) was used to carry out the numerical computations. Since X " X was approximated by the subsampling X" X},
the time-consuming part is the matrix multiplications in I:I§ Instead of using solve to find the inverse, we called svd
to obtain a singular value decomposition of X, to compute the sampling distribution 75, and called /m to compute

both the subsampling estimator B: and the full data ﬁols. The Scoring Algorithm saved time in comparison with the
LSE. The times spent on the matrix multiplications were found to be about 30% of the total running times, which can
be improved by fast matrix multiplication. Here x was generated from GA and e from .#"(0, 1). The results for the
other distributions of x and ¢ considered in Table 3 are similar (not reported here).

6 Proof for boundedness of subsample sizes

We need the following result about Orlicz norms of a sequence of random variables, which combines Example 14 and
17 of Gordon, et al. (2002)[8]. A convex function &' : Rt — R* is Orlicz if it satisfies ¢(0) = 0 and &'(¢) > 0 for
t > 0. The Orlicz norm of x € R™ is |x|¢ = inf {p > 0: >, O(|z;|/p) < 1}.

Lemmal. Let Zy,. .., Z, bei.idwithaq € (1,2]-stable distribution. Let O be the Orlicz function given by 0'(0) = 0

and
o) - { @+ @ exp(-3/2%), te 0.1),
dl( )t + da(q), t>1,
where ci(q) > 0,di(q) are absolute constants with ¢1(2) = 0 and c3(q) = 0 for g € (1,2) and dy(q) > 0. Then for
every X = (x1,...,&y) there are positive constants ¢, C' such that
clxlg < E( max |z;Z;]) < C|x]|e-
1<i<n
PROOF (of Theorem 3). Consider vq i = v/ha,i,i€n,: for e, ; > 0. Let b, (v,) be the corresponding by, in (17). Let

= Z?:1 \/men,i, and let

1 _ p . €n,i i o S(é) . €ng oy o ||é||2 NV hi,ien,i
b(e)= 5(e) in hm_, ba(e)= o) min Bk bs(e)= Se) min e .

3

These expressions are independent of o. Recalling h,, ; ;, one gets

r;lllx a\ \/ ii < ha ii S Umlrll_al(X)\/hiJ, a=1,2,
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whereas for o« = 0, we have

O—min(X)\/m < mz lIx: || < Umax(X)\/m, i=1,...,n.
As a consequence,
(25) kT NX) < bp(va) /bk(e) < kX)), «=0,1,2, k=1,2,3.

Setting now ey, ; = h 1/2 Vhiis |€il, /1 — hi,; and 1, we obtain the upper and lower bounds, respectively, for by’s
in terms of by, (e) and K |1’O‘| (X)) for the distributions % (o = 1), £ (o = 1), T, T, and 7.
We shall prove case 1 (£) and the rest are similar. It suffices to show b3 *(£) = Op(1) because
- max( il
YV hiilél otV hig [HE H2

Let h; = X(X"X)~!x;. Then h; = (hij,j=1,... ,n)" and é; = ¢; — he. As aresult,

), b3'(e) =

(Z)

(26) E(max éi) < E(maxhgi) +E(m?X (h]ze)z) QE(mln( )),

K2 K2 171 ?

where T; = Zj:j#(hi7j/hi7i)si5j. By Lemma 1,

010'

27 E(max T ) <

7

h

where ¢; > 0 is a constant. Let e*, ™ be the positive, negative parts of ¢ and v = E(¢™). Then E(¢) = 0 implies
v = E(e7). As a consequence,

E(min(T, Z E(( mln(alej hij/hisi))
! JigFi
>v Z E(m.in(hmsi/hi’i) - max(hi’jai/hi’i))
gt ’
> - Z max (|hi jeil/his))-
Jij#i

By Lemma 1 again, there is a constant co > 0 such that uniformly in j,

20 < |higl
E(mZaXﬂhi,jEthi,i)) < n Z T7
7/=1 (2%4
This implies
) 20200 o o |hi ;
i=1j=1 "°

Noting E(max;(h; j, hi jnej1€j,)) = 2v*(max;(h; j, hij,) — min;(h; j, hij,)) for j1 # jo, and using (h]e)? =
Zj hl?vj(g? + Zjl;ﬁjz hiJl hi,jz‘gjlgjz’ we get

E(mlax (hi ) o? Zmax :j—i— Z E(max hi ’hh};jthgjz ))

29 h? ;1#2 hi i h
< o2 Z max 17] 1902 Z (max J}; i ijs miin m'li ii,jz )
’ J1#J2 ’ ’
The desired result now follows from (25)—(29). O

10
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7 Proof for asymptotic normality

Arvw = (wy, -+ ,wy,) " ~ sMult(r,r) (the scaled multinomial distribution) for 7 € [0, 1]" with """ | m; = 1if
kl kn r! - k. -

30 P( LI n:—):ni b g > 0,5 k=

(30) w1 rm v T, [T, k! }:[1 Ti - ; "

It is customary to express B: in the full data using w, decoupling the resampling scheme from the data. Stochastically
equivalently,

(31) By L (XTWX)"'X "Wy, W = Diag(w),

where x 2 y denotes x and y have the same distribution. Note that the laws Py, and P* governed by sMult(w, r)
and 7, respectively, are stochastically equivalent, see, e.g., page 2055, Praestgaard and Wellner (1993)[16] and Zhu,
et al. (2015)[22]. Such equivalence is commonly used in the bootstrap theory, see Sections 3.5-3.6, Van de Vaart and
Wellner (1996)[18]. We shall use P* also for Py, and write E*, Var*, etc. for the expected value, variance, etc. It is
easy to check

(32) E*(w) =1, Cov*(w)= (1/r)(Diag(l/7)—11").
Lemma 2. Assume (M2). Suppose (6) holds for all o > 0 and (7) holds for some p > 2. Then
(33) 1Bets = Boll = O(n ™"/ log,*(n)).  a.s.
Hence,

T(3 — =
(34) 1?%)(” |Xi (/Gols BO)| 0(1)7 a.s.

PROOF. We show without loss of generality that (33) holds for the first component 31 of ﬁ
Theorem 2 of Lai and Wei (1982)[10], for which we need to verify

To do so, we shall apply

ols*

(35) 1Lm A, =00, limsupA,4+1/A, <oco, and
n—o0 n—oo
(36) max [z;1 — kI H '] = o(n/log~¢(n))

for all o > 0, where X; = (Z‘i71,t?)T, kn = Z?:l $i,1tia Hn = Z;;l tit;-r, and An = Z?:l(xi,l — kIHT_thi)Q.

Partition M as follows:
T
mi1 m
My = ’ 1 .
0 ( m; My, >

It follows from (M2) that
k,

n

n

1 — H
(37) 5;x§,1=m1,1+o(1), =my +o(l), —* =My +o(l).

The last two equalities imply k,) H,;1 = m] M; ; + o(1). Hence,
nlA, = mig — mlTMl_&ml + o(1).

Since the above difference is positive as it is the inverse of the positive definite matrix M), it follows that (35) holds,
while (36) follows from the triangle inequality, ||t;|] < maxi<;<n ||%;|| and (6). Apply now Theorem 2 of Lai and

Wei (1982)[10] to finish the proof. O
PROOF (of Theorem 1). Let
(38) w=w-1, W=W-1I, A*=X'WX)' - (X"X)""

Then Ey, (W) = 0, E (W) = 0, and stochastically equivalently,

(39) A* i (X*TW*X*)71 _ (:)(T:)()fl7 XTWy i X*Tw*y* _XTy

11
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Let A} = —(XTX)"1(XTWX). Stochastically equivalently,
(40) Al =TI-A7=X"X)"}(X"TWX).
Recall W and A* in (38) and write
XTWX)™' = (XTX)"'+ A, Wy=y+Wy.
Substitution of them in the full-data formula (31) of B: yields
=(xT ) XTwy
(XTX)"'+A"XT (y + Wy)
=B+ X'X)'XTWy + A*X Ty + A*X "Wy
= ﬁols +(XTX)1X™We + (XTX) ' XWy + A*X Ty + A*X Wy
=B+ (XTX) ' X We+ A* X We+[(XTWX) X Wy+A*X y].

Substituting ¥ = X (X TX)~*X "y in the square bracket, the sum inside it is identically zero. Since all the preceding
statements hold on the subspace in which X "WX is invertible, we show (41)-(42),

koA 1 < x*éx
(41) B, =Bos+ - (XTX) =L 41,
T = ;

valid on the subspace in which X*T W*X* is invertible, where r* is given by

(42) rf = (XWX (XTX) ) (XFTWrER).

Let A* be the event on which A] is nonsingular. Using A% (A])~! = (A])"' A}, we express
A= AIXTWX) ! = ATAD) T (XTX) = (A]) ALK TX)

valid on A’ . Recalling §* = (X" X)~}(XTW&), we thus obtain

(43) r' = A*X"TWe = (A])"'AI6*  validon AF.

By the second equality in (32), one gets

n

B(IALIP) < 5 3 22 .

i=1

Using &2 < 2e7 + 2||8,|%||x:|?, one has

= 712 2 = hll
(GG M= _§Z o3 2ol 5~ Bt oo

=1

—_

It thus follows from (M1) and (M3) that

r[E(AT0" )] < B (JATIPE(I87]*) = o(1),  a.s.
This, A" = T+ op- (1) a.s. and the expression (43) for the remainder r* prove v/rr* = op- (1) a.s. Consequently, by
(41), it suffices to show for any t € R? with ||t|| = 1,
(44) 2 ZtT XTx)™! ] 2 = N(0,1), a.s. r— oo,

Tnj

where 02(t) = t " X(m)t. As XTé = 0, we have
(45) E*(x}é}/m;) = XTe=0, Var®(xjé; /) = X "Diag(e?/m)X
Let&r =7 (XTX) " !x;es /o

nj- 1t1s shown below for every 1 > 0,

(46) o, (t)E*(|§ﬂ21[|§f| > \/ro,(t)n]) =0, a.s. r— occ.

12
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We now apply the Lindeberg-Feller theorem (e.g. Theorem 7.2.1. of Chung (2001)[5]) to claim (44). To show (46),
we prove below

X;X (&2 -
47 2 Z 2 _e2)=0(1), a.s.
Let ¥, = n~2X " Diag(&?/7)X. Then X(x) = (n !XT X) 2. (n "X TX) L. It follows from (47) and (M1) that
1 GKxiX] 5 1 = xix] 1 GKoxix,
Eczﬁi:17ﬂ_i J+ﬁ; . (5 —O' ﬁ; 7'(1 5—5)
1 n Xixz 2 + (1)
= 0 a.s
n2 4 T ’
=1
We now use (M2) to get
9) S(m) = o251 5 3 p Lo
T)=0 — — 0 a.s.
nop2 — i n ’
This immediately yields for any unit vector t,
(49) o2 (t) = UQtTF_1i z": ﬂf_lt +o(1), a.s
n n n2 P e n ? o

By (M2)—(M4), there are constants by, By such that

0 < by <sup sup 02(t) < By < o0, a.s.
lItll=1

This shows that (46) is implied by the following (shown below)
(50) L(r,n) := B*(|& 21[|€]] > /rbon]) — 0, a.s. 7 — oc.
To prove (47), we use (M1) and (M3) to get

Lo all? o - 1 s Il o
(51) S ei:ﬁzl (e 0" +0(1) = 0(1), as
By (34), we have uniformly ini = 1,...,n,
(52) gi—ei =%, (B — Bo) =0(1), & +ei=2+0(1), as.

Thus &2 — 7 = o(1)e; a.s. uniformly in i. This yields (47) in view of

1 xix bol? 13- Il
HW;ﬂE,_MZ =Y —0(), as,

where (51) and (M3) were used. To finish, it remains to prove (50). This follows from (M2), (M5), the first equality in
(52), and

z": \tT(XTX)*lxiFéQl[|tT(XTX)*1

Xl .
L(’I” n) = g - 7'| |5z| > \/;b()?]}
i=1 ‘ '
IIXzII2 IIlellszl Vrbon
§2”F Z nm; - HF 1H ]

bty llled Py
S Z S 2 A0,

— 0, a.s. r— 0. O]

See Table 2 in which the “efficiency” of the uniform sampling is only 1/15 of the optimal sampling for n = 10* and
500 repetitions.

13
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Table 1: Simulated relative frequencies of the diagonal entries h; ; falling in [0, 1].

T 0.In 03n 05n 09n 12n 15n 20n 3.0n 35n 4.5n
Aopt 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Unif 0.00 0.00 0.00 0.07 0.18 033 0.60 091 098 1.00

Table 2: Simulated relative frequencies of the diagonal entries /7, of H* = X(X*TX*)~'XT falling in [0, 1] for a
uniform (Unif) and A-optimal (Aopt) random sample X*.

T 0.In 03n 05n 09n 12n 15n 20n 3.0n 3.5n 4.5n
Aopt 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Unif 000 0.00 0.00 0.07 0.18 033 0.60 091 098 1.00

Here X* = (x},...,x}) " was of size 7 drawn from X = (x1,...,X,)  with x;’s generated from
the mixture distribution 0.5N (0, %) + 0.5LN (0, X). Note H* approximates H = X (X TX)~!X T
whose diagonal entries satisfy h; ; € [0,1].

Table 3: Simulated ratios of the MSE of the subsampling estimator ,@: according to the optimal sampling distributions
and the leverage scores to the MSE of Efron’s (uniform) subsampling estimator with sample size n = 10 and sub-
sample sizes r. The residual &€ was computed based on the full sample.

X £ r:n T T o T2 T o TTo T ™0 Lev
5% | .823 832 884 | 992 975 999 | 968 960 1.03 [ .979
N 1% | 784 783 813 | 1.01 995 1.07 | 994 1.01 1.06 | 1.02
GA 10% | 649 658 .685 | 981 983 1.03 | 985 .997 1.02 | 1.00
45% | 653 .638 651 | 983 991 1.03 | 994 982 1.06 | 1.01
50% | .620 .629 .660 | 961 971 1.04 | 965 964 1.02 | .995
5% | 795 813 873 [ 990 1.02 1.03 ] 988 .998 1.04 | 1.02
< 1% | 728 716 7752 | 1.00 985 1.02 | 990 .987 1.02 | .999
10% | .618 .615 .661 | 1.03 1.03 1.06 | 1.01 1.02 1.07 | 1.04
45% | 565 588 .610 | 980 975 1.01 | 987 989 1.04 | .998
50% | .586 599 613 | 1.00 1.00 1.03 | .990 .988 1.04 | .983
5% [.302 303 322 | 333 327 352 | 328 332 360 | .493
N 1% | 281 278 306 | .338 334 366 | .338 331 .360 | .599
LN 10% | 262 267 .282 | .381 .387 401 | .379 389 .404 | .851
45% | 276 278 286 | 419 425 447 | 415 425 453 | 952
50% | 280 .280 .293 | 430 428 450 | 431 435 441 | 977
5% | 283 284 315 | 324 333 361 | 330 .335 361 | .486
A 1% | 256 253 279 | 331 .330 .361 | .332 331 .361 | .576
10% | 238 238 254 | 382 .388 404 | 382 385 402 | .848
45% | 253 253 266 | 412 422 450 | 428 426 444 | 942
50% | 253 253 268 | 420 425 450 | 418 427 446 | 959
5% | 558 551 593 | 644 651 .675 | .633 .636 .687 | .900
N 1% | 515 506 542 | 655 662 709 | .649 .651 .690 | .948
MG 10% | 451 454 476 | 682 .695 723 | .685 .683 714 | 1.02
45% | 438 446 458 | 684 692 719 | .694 682 .698 | 1.01
50% | 433 438 459 | .671 .680 .721 | .667 .697 .710 | 1.00
5% | 554 555 562 | 664 658 .696 | .648 .670 .690 | .933
<z 1% | .500 .500 509 | .662 .685 .706 | .672 .659 .698 | .953
10% | 399 408 428 | .658 .654 713 | .673 .660 .690 | 971
45% | 395 397 417 | 666 684 699 | .673 .692 712 | 974
50% | 407 410 428 | 710 .685 712 | .690 .683 .722 | .995
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Table 4: Same as Table 3 except that the sampling distributions are truncated.

X [ 5 [ r:n [ o T o [ T2 T ) [ T2 T o [ Lev
Truncation 10%
S5% [ .800 812 852 ] 985 964 1.03 ] 1.00 994 1.02 ] .976
N 1% | 718 740 755 | 961 1.00 1.03 | 985 1.01 1.04 | 994
GA 10% | 646 .646 680 | 982 1.01 1.04 | 989 1.00 1.04 | 1.00
S5% [ 744 775 788 | 977 981 1.02 | 952 985 1.02 | .973
<z 1% | 668 .686 714 | 964 999 1.03 | 960 983 1.02 | .996
10% | 595 588 .625 | 995 999 1.04 | 1.01 995 1.02 | .998
5% | 305 302 322 | 337 330 353 | 323 320 .361 | 458
N 1% | 269 275 286 | 339 329 362 | 331 336 .359 | .569
LN 10% | 260 263 278 | .384 392 402 | 386 .390 409 | .813
S5% [ 287 279 303 | 328 327 370 | 324 331 358 | 462
<z 1% | 253 258 277 | 335 340 369 | 331 .334 364 | .580
10% | 247 247 258 | 396 406 425 | 398 391 424 | .840
5% | 5345 559 572 | 637 632 656 | .633 .656 .670 | .888
N 1% | .522 514 556 | .656 .674 708 | .661 .688 .705 | .964
MG 10% | 455 449 477 | 692 685 715 | .695 .681 .724 | 985
5% | 527 534 558 | 653 638 .676 | .636 .650 .684 | .905
<z 1% | 478 476 504 | 664 663 697 | .649 665 .687 | .955
10% | 412 416 430 | .680 .671 718 | .676 .664 .695 | .959
Truncation 30%
S5% [ 753 749 802 ] 980 983 1.02 ] 971 1.01 1.02 ] 1.01
N 1% | 705 689 726 | 970 974 1.01 | 967 980 1.01 | .971
GA 10% | .664 .684 708 | 995 1.01 1.06 | 991 1.03 1.03 | 1.00
S5% [ 701 712 730 | 978 983 1.01 | .980 .989 .999 | .990
<z 1% | 658 .673 .694 | 1.00 1.01 1.02 | 991 1.00 1.02 | 1.01
10% | 612 619 .638 | 989 983 1.00 | 987 994 1.03 | .998
5% | 295 301 330 | 340 334 373 | 344 342 384 | 422
N 1% | 269 266 295 | 326 332 356 | .323 341 356 | .500
LN 10% | 263 264 280 | 391 .394 416 | 393 391 414 | .741
B5% [ 290 291 309 | 348 344 390 | 350 344 376 | 434
<z 1% | 258 257 276 | 331 342 364 | 337 340 362 | 515
10% | 247 251 263 | 403 .399 426 | 395 398 423 | .747
5% | 5360 546 580 | 646 645 659 | 652 .651 .666 | .866
N 1% | .504 510 .532 | .659 .657 .698 | .667 .656 .692 | .886
MG 10% | 456 466 481 | .685 .681 .733 | .685 .677 709 | .945
B5% [ 524 535 546 | 655 650 .642 | 652 .658 .670 | .861
<z 1% | 468 481 500 | .660 .663 .688 | .663 .670 .689 | .926
10% | 421 420 439 | 693 .692 710 | .675 .693 .724 | .939
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Table 5: Same as Table 4 except that the residual & was approximated based on a uniform pre-subsample X of size
ro :n = 10%.

x [ e Jrin] 7 1 o [ T2 T o | T2 1 o [ Lev
Truncation 10%
S5% | 843 814 868 | 985 1.01 1.06 | 1.00 1.01 1.03 | 1.02
N 1% | 730 724 781 | 1.00 984 1.05 | 975 996 1.04 | .994
GA 10% | 649 651 699 | 1.02 986 1.04 | 996 1.01 1.05 | 1.00
5% | .808 798 846 | 988 1.01 1.04 | 1.02 1.02 1.05 | 1.02
< 1% | .690 .694 715 | 982 992 1.02 | .977 990 1.03 | 1.00
10% | 593 .603 .631 | .991 1.01 1.05 | 984 1.02 1.03 | .986
S5% | 288 287 311 | 320 324 365 | 322 325 353 | 474
N 1% | 268 269 298 | 336 .335 365 | 338 342 364 | .585
LN 10% | 279 281 295 | 391 387 415 | 401 399 417 | .834
B5% [ 256 266 286 | 318 316 349 | 312 320 341 | 455
< 1% | 249 255 277 | 339 340 355 | 335 326 .349 | 572
10% | 253 258 270 | .382 391 407 | 383 390 409 | .828
b5% | 555 554 587 | 636 .643 665 | .628 .638 .673 | .879
N 1% | .527 533 547 | 660 669 708 | .676 .681 .690 | .944
MG 10% | 460 466 491 | 714 701 743 | .697 707 .745 | 1.02
5% | 531 516 549 | 630 633 652 | .632 640 .661 | .888
<z 1% | 471 483 501 | .650 .652 .674 | .643 639 .679 | .922
10% | 422 420 442 | 670 .673 .691 | .666 .676 709 | .972
Truncation 30%
S5% | 772 781 828 | 1.01 989 1.01 | 1.00 1.01 1.04 | 1.00
N 1% | .694 718 743 | 978 1.01 1.02 | 972 978 1.04 | 1.00
GA 10% | .683 .686 .706 | 1.02 1.01 1.03 | 1.03 1.00 1.04 | 1.01
S5% [ 722 714 739 [ 983 996 1.03 | 985 1.01 1.03 | .996
< 1% | 652 666 .691 | 996 988 1.04 | 993 990 1.02 | 1.01
10% | .614 613 .623 | 987 998 1.02 | 982 995 1.03 | .998
S5% | 288 294 309 | 328 333 368 | .329 337 366 | 413
N 1% | 263 264 283 | 321 346 364 | 336 338 368 | .510
LN 10% | 279 275 297 | 396 398 419 | 383 395 416 | .732
B5% [ 258 270 294 | 332 336 365 | 332 331 362 | .408
<z 1% | 240 236 260 | .325 328 .376 | .328 326 .355 | 493
10% | 258 258 275 | 394 406 429 | 395 400 420 | .753
S5% | 555 557 576 | 644 656 677 | .656 .645 675 | .862
N 1% | 517 510 548 | 677 675 .689 | 688 .675 .691 | .925
MG 10% | 469 477 491 | 703 .706 716 | .694 696 711 | 977
S5% [ 515 5322 546 | 627 640 665 | .655 633 .667 | .846
<z 1% | 486 483 508 | .664 .663 .703 | .663 671 .684 | .943
10% | 438 438 458 | .717 701 746 | .701 713 729 | 972
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Table 6: The Scoring Algorithm in Fig. 2 was used, i.e. same as Table 5 except that the sampling distributions were
also approximated by replacing (X T X)~! by (X7 X3) 1.

X [ 5 [ r:n [ o T ™o [ T2 8t 1) [ T2 L8] ™o [ Lev
Truncation 10%
5% | 834 844 869 | 999 1.01 1.06 | 1.01 1.01 1.05 | .986
N 1% | 740 749 777 | 965 1.01 1.03 | 977 1.03 1.05 | 1.01
GA 10% | .663 .670 .709 | 1.03 1.02 1.04 | 1.02 1.01 1.04 | 1.02
5% [ 7764 779 813 | 976 1.01 1.02 | 970 995 1.02 | .981
< 1% | .680 .688 734 | 987 978 1.02 | .994 969 1.01 | .986
10% | .604 .605 .641 | 987 982 1.05 | 1.01 1.02 1.03 | 1.02
S5% [ 288 280 313 | 340 335 364 | 338 331 357 | 485
N 1% | 274 262 280 | .358 344 360 | .338 337 351 | .612
LN 10% | 292 285 301 | 409 404 424 | 394 403 413 | .858
B5% [ 284 275 308 | 357 348 369 | 341 335 370 | .486
<z 1% | 242 242 258 | 338 334 359 | 332 319 .343 | .588
10% | 259 254 262 | 394 385 402 | 381 387 394 | .852
S5% [ 555 550 591 | 619 639 670 | .632 .630 .667 | .889
N 1% | .534 539 556 | 687 .686 712 | 682 676 713 | 979
MG 10% | 458 454 475 | 668 .686 .705 | .664 688 .713 | 973
S5% | 528 537 560 | .635 641 702 | .639 643 669 | 919
<z 1% | 481 497 509 | 657 .662 .681 | .653 .659 .690 | .930
10% | 419 420 442 | 684 672 713 | 676 .687 712 | .980
Truncation 30%
S5% | 782 776 800 | 999 1.02 1.06 | 1.00 1.01 1.03 | .990
N 1% | 726 735 747 | 971 1.01 1.03 | 992 1.02 1.03 | 1.00
GA 10% | .676 .691 715 | 1.03 1.03 1.03 | 1.01 1.03 1.03 | 1.01
S5% [ 719 7716 746 | 978 1.00 1.01 | 976 996 1.01 | .975
<z 1% | 655 .670 711 | 992 982 1.01 | 992 978 1.01 | .987
10% | 615 617 .642 | 991 985 1.04 | 1.00 1.01 1.01 1.01
S5% [ 302 285 303 | 357 349 379 | 342 337 358 | 438
N 1% | 274 276 291 | 355 357 382 | 342 345 358 | .544
LN 10% | 288 .289 303 | 414 412 431 | 410 404 420 | .780
S5% [ 287 279 302 | 368 352 383 | 359 343 377 | 438
<z 1% | 244 244 253 | 346 342 364 | 335 331 .343 | .528
10% | 260 250 268 | .395 399 407 | 392 394 401 | .773
5% | 5347 547 574 | 629 643 676 | .652 632 .665 | .866
N 1% | .528 529 536 | 677 .683 713 | .681 677 704 | .940
MG 10% | 462 455 483 | 679 .695 689 | 674 .676 731 | 936
B5% | 528 523 556 | .634 642 674 | .647 639 662 | .879
<z 1% | 474 471 497 | 656 676 .672 | .657 .664 .682 | .887
10% | 422 429 446 | 675 665 712 | 679 .683 722 | .939

Table 7: The running times (in seconds) of the Scoring Algorithm in Fig. 2 and the LSE for sample sizes n and
subsample sizes r with x ~ GA and € ~ .47(0, 1).

The Scoring Algorithm LSE
n\r 0.05n  0.10n  0.20n  0.30n  0.40n  0.50n n
6+ 10° | 11.807 12.576 18.671 23276 29.296 30.050 | 36.344
6 * 10° 0.882 0.981 1.502 1.896 2.266 2.784 3.809
6 10* 0.116 0.134  0.161 0.175 0.173 0.201 0.234
6 * 10° 0.012 0.013 0.017 0.018 0.030  0.029 0.027
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