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ABSTRACT

The uniform and the nonuniform sampling—the Leverage-Scores (Lev) sampling— are frequently used
in the development of fast algorithms. Both approaches, however, are not effective in extracting
important information in data. In this article, we propose the A-optimal Subsampling Approach, and
give the A-optimal distributions in a generalized linear model (GLM) by minimizing the sum of the
component variances of the subsampling estimator. As the A-optimal distributions have the same
running time as the full-data estimator, we generalize the Scoring Algorithm in Zhang, et al.(2023) in
a linear model to GLM using the iterative weighted least squares. The paper presents a comprehensive
evaluation of our approach through numerical studies. Our results in simulated and real data indicate
that our approach substantially outperforms the uniform and the Lev sampling and the Algorithm
significantly reduces the computational time.

Keywords A-optimality - Big Data - Generalized Linear Models - Negative Binomial Regression - Poisson Regression -
Zero-inflated Poisson Regression

1 Introduction

Big Data are on a massive scale with regard to volume, velocity, variety, and veracity that exceed both the capacity
of the conventional software tools and operating systems and the physical spaces of computers, see e.g. Wang, et al.
(2015); Fan, et al. (2013). Massive data pose two computational bottlenecks: (1) the data exceed a computer’s memory,
and (2) the computing task requires too long time to finish. The two bottlenecks can be simultaneously addressed by
Jjudiciously choosing a sub-data as a surrogate for the full data and completing the data analysis. This is the goal that
this article will pursue.

While the often used Divide-and-Conquer approach readily breaks the memory limit, the Subsampling approach not only
breaks the limit but speed up computing as well as possesses other useful statistical properties. Due to its mathematical
simplicity and computational ease, the uniform sampling is often used in subsampling for intensive computing and for
development of fast randomized algorithms and in re-sampling for Monte Carlo and bootstrap, see Mahoney (2011).
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The uniform sampling, however, is not effective in extracting information, see a simulation study in Zhang, et al.(2023).
In this article, non-uniform sampling distributions will be sought by the criterion of A-optimality, that is, by minimizing
the trace of the asymptotic variance-covariance matrix (equivalently, the sum of the component variances) of the
subsampling estimator.

Wang, et al.(2018) constructed optimal subsampling for large logistic regression. Zhang, et al.(2023) studied the A-
optimal Subsampling in a Big Data linear regression model. They gave three types of A-optimal sampling distributions,
studied the relationship to the leverage-scores-based distribution, discussed truncation and proposed the Scoring
Algorithm for fast computation. They proved the almost sure convergence of the subsampling estimator and conducted
extensive simulations and real data applications. Our results generalize theirs to GLM.

Mathematicians, computer scientists and statisticians have already made important progress in this area. Drineas,
et al.(2006a) constructed fast Monte Carlo algorithms to approximate matrix multiplication. Drineas, et al.(2006b)
presented a sampling algorithm for the least squares fit problem and studied its algorithmic properties. A key feature of
the above algorithms is the non-uniform sampling. Ma and Sun (2014) and Ma, ef al.(2015) used the leverage scores as
non-uniform importance sampling distributions for Big Data linear regression. Xu, et al.(2016) studied subsampled
newton methods with non-uniform sampling. Wang, et al.(2019) developed information-based subdata selection for
large linear regression. Liang, et al.(2013) proposed a resampling-based stochastic approximation for large geostatistical
data. Kleiner, ef al.(2014) gave a scalable bootstrap for massive data. See also the monograph by Mahoney (2011) on
nonuniform random subsampling for matrix based machine learning.

Count data are observations of the number of occurrences of a behavior in a fixed period of time. Count data are
common, for example, hospital visits, blog comments, car/bike renters, and questionnaire respondents. The analysis of
count data is an important task in social sciences and economics. Linear regression is not an appropriate technique for
count data, as it fails to take into account the limited number of possible values of the count response variable. Standard
regression methods include Poisson, Overdispersed Poisson, Negative Binomial, and Zero-Inflated Poisson regressions,
as well as truncated methods and the quasi-likelihood approach.

Poisson regression and Negative Binomial regression are often used in the analysis of count data. It is motivated by the
usual consideration for regression analysis, meanwhile, seek to protect and exploit the nonnegative and integer-valued
characteristic of the outcome as much as possible. The scope of count data is very wide, including sociology, marketing,
demographic economics, accident insurance, manufacturing defects, etc. The analysis of count data has drawn a lot of
attention and been an influential part in statistical modeling.

Poisson regression requires distributional assumptions, which restricts its use in reality because real count data usually
exhibit over-dispersion, an inflated number of zeros, an absence of certain counts, censoring counts, and missing counts.
Overdisperson can be addressed by generalizing Poisson models to, for instance, quasi-Poisson models. Another useful
approach is the Negative Binomial model. These models are related to the family of generalized linear models see, e.g.,
McCullagh and Nelder (1989) and Dobson (2002).

The above models can deal with over-dispersion rather well, but are not enough for modeling excess zeros. To address
this, researchers have developed methods for zero-inflated data by including another model component to capture zero
counts. This is done by a mixture model that combines a count component with a point mass at zero, see Cameron and
Trivedi (2005).

2 Count Data Regression

Let us start with a few models used in our analysis of simulated and real data.

Poisson Model Let Y have Poisson distribution with mean p, Poi(u), i.e., the probability mass function (pmf) is

Jooiys ) = e *p¥/yl, y=0,1,2,... (2.1

The mean and variance are equal, Var(Y) = u = E(Y). In real-life data, however, the equality is usually not met,
which is termed as overdisperson in the literature.

In the presence of overdispersion, the standard errors (SE) of the estimates in Poisson regression model are deflated,
leading to exaggerated test statistic values for parameters and false significant findings accordingly. Overdispersion can
often be tested by the usual goodness-of-fit statistic. In our real data analysis, we should perform such tests. An option
to handle overdispersion is
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Negative Binomial Model Let Y have Negative Binomial with mean 4 and overdispersion parameter o > 0, Nb(u, a),
i.e., the pmfis
I(y+1/a) 1 _
b (U == /o 1 Vy=0,1,2,... 2.2
fon (Y3 1, @) T(1/a)y! (I +ap) () (p+1/a))™", y =0,1,2, 2.2
Then E(Y) = pand Var(Y) = u + ap? satisfy Var(Y) > E(Y), and Var(Y) = E(Y) if and only if o = 0.

Quasi-likelihood Model Another popular option to handle overdispersion is the quasi-likelihood model. This has the
advantage of requiring only to specify the mean and variance but not a distribution for the response Y. Specifically, the
statistical inference is based on the quasi-likelihood equation,

Z Yi — z Tﬁ) 2.3)

where 1;(8) = E(Y;|x;) and V;(8, ¢) = Var(Y;|x;) are the mean and variance functions to be specified, and ¢ is an
overdisperson parameter,

The quasi-likelihood model has great flexibility and unifies several models in the sense that the maximum likelihood
estimate (MLE) of the models are spemal cases. Setting V; = y;, Eqt (2.3) gives the MLE of the Poisson model. Setting
Vi = ui(1 + ap;) with ¢ = a, eq is the estimating equation for the MLE of the Negative Binomial model.
Another frequent choice of the variance for overdispersion is V; = ¢u; with ¢ > 0. All the three cases can be unified
with the form of V; = p; + aul forp =1,2.

Zero-Inflated Poisson Model In many real count data, there is an excess of zero counts for which Poisson distribution
can not account. Consider a mixture model combining a degenerate distribution at O and a Poisson distribution,

fzip(y;.uap) :pfo(y)+(17p)fp01(ya.u)a y:0a1527"'5 (24)

where fo(y) = 1[y = 0] is the point mass at zero to account for structural zeros. Since

J2ip(0; 11, p) = p+ (1 — p) exp(—p),

it follows from 0 < f;,(0; p, p) < 1that 1/(1 — exp(u)) < p < 1. This shows that p can be negative. A positive p
represents the probability of structural zeros above the amount of zeros expected under Poisson distribution fpei. A
negative p means that the amount of zeros is below the expected under the Poisson, and this does not occur very often.

The MLE [3 can be obtained by solving the generalized estimating equation (GEE),

fpoi(yi; Mz‘) Yi — Mi(/@)
— fap(is pis p) - pi(B)

R (x) B)x; = 0. (2.5)

To estimate p, one can find another equation differentiating the log likelihood Wlth respect to p. For 51mphclty, we shall
estimate p by the sample percentage p of the structural zeros. Substituting p in (2.5)), we solve for 5

3 The A-optimal Subsampling In Big Data GLM

In a generalized linear regression model (GLM), the response variable Y; and covariate vector x; satisfy
Y; =h(x/B)+e, i=1,...,n, (3.1

where 3 € RP is an unknown parameter vector, A is the inverse of a link function g, and ¢;’s are independent random
errors with zero mean E(e;) = 0 and finite variance Var(e;) = V(u;(8,)) := Vi(8,) for some variance function V'
with the mean 11;(3) = E(Y;) = h(x; 3) of Y;. Here 3, denotes the true value of 3. If x;’s are random covariates, we
replace these assumptions with the conditional versions given x;’s.

The parameter 3 can be estimated by the solution £ to the generalized estimating equation (GEE),

~YiomB) xi ey T
; Vi(B) gé(ﬁ)_o’ 9:(8) = g'(x; B)- (3.2)

When n is of massive size (often accompanied with large p), it becomes a challenging task to compute the usual B
using the conventional computers and software tools We now take a random subsample (X*,Y*) of size r << n as

surrogate and construct a subsampling estimator 5 in Fig. (1 Ito approximate ,6'
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Figure 1: The Subsampling Estimator B:

1. Construct a distribution 7r on the data points (x;, Y;)’s, use it to draw a subsample (X*,Y*) of size r << n
and formulate the diagonal matrix W* = diag(1/r#*) with v the corresponding probability vector.

2. Calculate the subsampling estimator @j as a solution to the GEE,

LYy - 15(8) x;
2w B) 9

where 1% (8) = h(x} 8),V;(8) = V(115(8)) and ¢;*(8) = g (113 (8)).
Hi = Mi(ﬁo)’

Notation St =(8) = Vi — :(8), Vi(8) = Var(=i(8)), ©(8) = Diag(Vi(8)) > 0, g(m) = /(m), i =

Vi = Vi(By). 9i = 9:(Bo). €1 = Yi — pin © = Diag(Va). jui = i(B). & = Yi = jui. Vi = Vi(B). §i = 9:(B). and
3 = ¥(3). Denote by 7 the “standarization” of ) such as &; = (Y; —u;)/+/V;, and the “hat” version &; = (Y;—/1;)/ VTV,
Ofgl

In GLM, the hat matrix is defined as H(8) = '/2(8)X(X"2(8)X) 'XTX'/?(8). As H = H(f,) contains the

unknown parameter By, it can be estimated by the plug-in estimator H= H(,B) When ¥ is the identity matrix, H is
the hat matrix in a linear regression model. The hat matrix H in GLM possesses similar properties as the hat matrix
in linear regression models. Like in a linear model, the diagonal entries h; ; of H induce an importance sampling
distribution £ = (¢;) as follows:

=0, 34

&; O(hl"i, 1= 1,...,7’L, (33)
where b; o ¢; for all ¢ denotes b; = ¢;/ Y ; ¢j- Obviously, £; = h;; /p as in a linear regression model.

Under suitable conditions, the subsampling estimator B: is asymptotically normal,
Vi 2 (m)r(B - B) = N(0,1,), as. r— oo. 3.5)
where V() is the asymptotic variance-covariance matrix of B:, given by
Vo(r) = (XT8X)"1(2Y2X) TDiag(e%/rm)S/2X (X TEX) 7L (3.6)

Let A be a nonsingular ¢ X p matrix. The plug-in estimator AB: of the linear transformation A3 of 3 then has the
asymptotic variance-covariance matrix AV(7w)A . The criteria of A-optimality is to seek a sampling distribution 7
supported on the data points {(x;, Y;)} which minimizes the trace Tr(AV(mw)A ") of the matrix. Equivalently, the

criteria seeks 7 to minimize the sum of the variances of the components of AB: One has
1 llaifl*2
Fa(m) = Tr(AVy(m)AT) = =) =t 3.7
7a(m) = Tr(AVo(m)A ") D 3.7)

where a; = A(XTf)X)*lXA]l/ 2x;. Using Lagrange’s multiplier method, we derive

Theorem 1 Suppose that A is independent of 7. Assume that X " $X is invertible such that AXT f]X)*lil/Qxi #£0
and the diagonal entries h; ; of H satisfy h; ; # 1 fori = 1,...,n. Then there exists a unique A-optimal distribution
A = (frEA)) for AB: to approximate the best linear unbiased estimate A,fi of AB, which is given by
A o lagl| &l i=1,...,n. (3.8)

Let Hy, = (ha,;) = SV/2X(XTEX)"*X %2 o € R. Obviously, H; = H and Hy = 2'/2XXTX!/2. For
A= (XTZX)l_O‘/2, one obtains 7, = #A) The A-optimal distribution 7 0 = (72,;) for B: to approximate [3 is
the case of o = 2. Specifically,

APV = o o /P Al i=1,2,. 0. (3.9)
Another two A-optimal sampling distributions of possibly computational ease are

1/2

WOzochOH|57\_||V x|l [&], Fiiochiilél, i=1,...,n. (3.10)
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In our analysis of simulated and real data, the Poisson (Poi), the Negative Binomial (NB) and the Quasipoisson (QPoi)
models were used with the log-link g(1m) = log(m), so that ji; = exp(x, 8) and &; = (V; — [Li)/f/il/2 with V; equal to

fii(Poi), (14 &) (NB),  ai(QPoi), i=1,2,...,n, (3.11)
where ¢3 and ¢ are estimates of ¢ and « such as the empirical estimators using the full sample in our real data analysis.

A-optimal Sampling via Condltlomng Consider m1n1m1z1ng the trace norm of the conditional variance-covariance
matrix given X. Note that 74 (7) in ( . ) depends on 3, 74 (1) = 74 (B, ™). Let 7 (m) = E(7a (8, 7)|X). We
integrate out the standardized squared residuals in 74 (77) to get Var(éi) = 1, so that typically

2
Z ||a01|| Z IIazII . Fa(m), (3.12)

where ag; = A(XTEX) 121/ 2x;. Analogously, we minimize T(ﬂ') and obtain

Theorem 2 Assume the assumptions in Theorem Then there exists a unique A-optimal distribution 7 s for A,fi': to
approximate the BLUE A3 of the linear transformation A3, given by

M o layll, i=1,....n (3.13)
The A-optimal distribution 7 »opt = (7 ("’Opt)) for B: to approximate the estimator ,3 of 3 is now given by
7P = 7o Vhgas i=1,...,n. (3.14)
Two A-optimal distributions of possibly computational ease are
77'071‘ X hO,i,i = H‘A/Z»1/2X7;||7 7_7171‘ X hi,iv 1= 1, ey n. (315)

Truncation. Observe that li implies that the i-th data point (x;, Y;) must be drawn with probablhty 7r( ) proportional
to the ¢-th standardized residual |al\ Since each probability is inversely used in constructing 6 7 A must be truncated

from below in order to guarantee appropriate statistical properties for ,BT. Here we follow Zhang, ef al.(2023) and
truncate 7 o from below by L/n and define 7 A (1) by

M)  #ailfa>L/n] + (I/n)1[ra<L/n), i=1,2,.
where L is a threshold value, and typically 0 < L < 1. As pointed out by the above authors we may drop “unimportant
observations by taking [ = 0 for fast computing, otherwise [ = L. To determine the value of L, we must take it into
consideration the desired running time and the accuracy. Our extensive simulations and real data applications exhibited
that truncation led to only a slight loss of efficiency.

29

The Scoring Algorithm. Like a typical optimal sampling, the A-optimal sampling distributions 7rj, and 7w,k = 0,1, 2
have the same running time as the full data estimator 3. Here we generalize it to GLM the Scoring Alogrithm proposed
for the A-optimal Subsampling in a linear regression model by Zhang, et al.(2023).

One advantage of GLM is that the estimator B can be found by an iterative weighted least squares estimate IWLSE).
Specifically, we rewrite (3.2) in matrix form,

X'W(B)g(B)(Y — u(B)) =0, (3.16)
where p1(8) = (p11, -, in) " g, &(m) = Diag(gy, - - -, g;,)lm and W(B) = Diag(1/Vig?,...,1/V,g,’)|. Let
7,0) — XIB(O) + g(O) (Y — H(O))7
where ﬁ(o) is an initial value (which is automatically provided in the R package), W (%) = W(ﬂ(o)), g0 = g(ﬁ@)
and pu(0) = u(ﬂ(o)). The estimator 3 can now be obtained by a few iterations of the WLSE,
BY = (XTWOX)"IXTWZO), (3.17)
Since the computational bottleneck is to invert X T W)X, we shall approximate it by the subsampling matrix

(XETW((;J)*XE‘))’1 based on a computationally easy pre-subsample (X¢, y§) from the full data (X,Y). This is of
course implmented by the IWLSE. Denote the resulting estimate and the residual vector by

By = (X5 W X)X TWZ el =Y — X4y,
where (X1, y1) is the remaining observations in (X, y). Compute 3§ = Z(ﬁ;) and
H; , = (55)/7X0 (X5 55X5) "X ()2, a=0,1,2. (3.18)
Our extensive simulations and real data applications in Sections #H| exhibited that the Scoring Algorithm worked well.
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Figure 2: The Scoring Algorithm

1. Take a uniform pre-subsample (X§,yg) of size 7o << r << n from (X, y), and use it to compute Hj , and

€; and the sampling distribution 7r°.

2. Call Algorithm 1 in Fig. with the subsample size r and the A-optimal sampling distribution 7°.

4 A Large Simulation Study

In this section, we report some simulation results about the A-optimal Subsampling approach. The covariate X was
generated from one of the four multivariate distributions. (GA) The Gaussian N (0, ) with ; ; = 0.3/"=71; (MG) The
Mixture Gaussian %N(O, ¥)+ %N(O, 3%); (LN) The Log-normal LN (0, %Z); (T5) The student t with 5 degrees of
freedom T'5(0, %Z) The response Y; was generated from Poisson distribution and the Negative Binomial with the
variance structure Var(Y;) = p; + 547. We chose n = 50,000, p = 50, and By = (0.1, =0.1 X 1/}, /5y, 0.1 X 1(, 15).

For the Poisson and the Negative Binomial models, we used each of the /i-optimal distributions given in 1|lj
with the estimates in (3.11]) and the A-optimal ones in (3.14)-(3.15). A subsample of size r was then drawn, and the

3
subsampling estimator 3, calculated as in Fig. I} We computed the empirical mean squared errors for efficiency
comparison as follows:

B
1 . R
MSE:—E . —B|I?, B=1,000
Bb:1 ||187,b ﬁ” I ? Y

Ak
where 3, ;, is the estimator based on the bth subsample of size r.

Variabability of A-and A-optimality Reported in Fig. are the boxplots of the probabilities of six optimal sampling
distributions against covariate X generated from four distributions using Poisson and Negative Binomial regression

models. In each plot, all #*) were more spread out than all 7(*), but the median of 7(*) is slightly bigger than that of
~ (k) —
7w fork =0,1,2.

MSE Reported in Fig. -(@) are the plots of the logarithm of the MSE of B: against subsmaple r in Poisson and
Negative Binomial regression models, respectively. For the four datasets, the MSE values decreased with the increasing

r. Both #*) and #*) had smaller MSE than the uniform; the fi-sampling outperformed the A-sampling; #® was the
best among #)_ and 72 was the best among %)k =0,1,2.

Coverage Probability Reported on Fig. are the plots of the simulated percentages of the 95% confidence intervals
catching the true value of the coefficient 5 against subsample size  based on 2, 000 repetitions. The confidence
interval was calculated by Bir + ZO_975SE(B§7T) with SE (B;T) = \/Vs,. Fig. indicated that when subsample size
r was small, the coverage probabilities were lower than the nominal level 95%, and were closer to the nominal level
with the increasing r. Except for GA and LN, the coverage probabilities under #® and 7©® were closer to the nominal
level than the uniform.

MSE Ratio Reported on Tables (I)—(6) are the ratios of the MSE of the subsampling estimators using the optimal
sampling distributions to the MSE of that using the uniform. First, all the ratios in the Tables were less than one,

indicating all the optimal subsampling distributions outperformed the uniform. Second, k) outperformed 7 (*); and

#® was the superior to all others. Third, the simulated MSE ratios using the truncated #®) and 7*) resulted in only
slight loss of efficiency compared to those using the untruncated ones for £ = 0,1, 2. This property is useful in the
Analysis of Big Data as the loss of efficiency would be small when one drops those observations whose sampling
probabilities are smaller than certain threshold value for fast computation. Truncation is necessary in order to guarantee
the theoretical properties of the proposed procedure, see Zhang, et al.(2023).

Reported on Tables (7)—(8) are the MSE ratios where the Scoring Algorithm was used. We first chose a uniform
pre-subsample of size ro = 500; obtained an initial estimator ,@TD to approximate B ; then approximated the subsampling
probabilities and used them to draw subsamples; calculated the subsampling estimator ,@: in the end. One observes that
the Scoring Algorithm saved significant time while the loss of efficiency was marginal.

Running Time In order to evaluate the computational efficiency, we report the running times for computing ,@: by

using #® and 7@ in Tables @)—. The simulation was carried out using the R programming language. Those
values were computed on a desktop with Intel i5 processor and 8GB memory. We recorded the CPU times for 1000
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repetitions, then took the average of the times for fair comparison. We observe that 7(?) required more time than 7(?).
All the proposed methods had significant less computing times than using the full data. In Table (1 1)), we can see all the
proposed methods had similar number of iterations, indicating smaller subsample sizes did not necessarily increase the
iterations in using Newton’s method.

Figure 3: The boxplots of log(probabilities) of the A-optimal sampling distributions for the simulated data in the
Poisson model using the full-sample estimator 3 for n = 50, 000 and p = 50.
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Figure 4: Same as Fig|3|except for the Negative Binomial model.
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Figure 5: The plots of the logarithm of the MSE of the subsampling estimator B* using different sampling distributions
against subsample size r in the Poisson model using the full-sample estimator 3 for n = 50, 000 and p = 50.
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Figure 6: Same as Fig|5|except for the Negative Binomial model.
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Figure 7: Simulated percentages of the 95% confidence intervals catching the true coefficient 35 against r in the

Poisson model for pre-subsample size vy = 500, n = 50, 000 and p = 50 using #@, 72 and the uniform.
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Figure 8: Same as Fig|7|except for the Negative Binomial model.
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Table 1: Simulated MSE ratios of the subsampling estimator B* of the A-optimal sampling to the uniform in the
Poisson model using the full-sample estimator 3 for n = 50, 000 and p = 50.

r

500

1000

2500 5000

10000

25000

r/n

1%

2%

5% 10%

20%

50%

GA

e
#
#
7(2)
71
7(0)

0.6533
0.6554
0.6494
0.7715
0.7665
0.7592

0.5937
0.6064
0.6003
0.7705
0.7743
0.7753

0.5627 0.5434
0.5613  0.5461
0.5672  0.5480
0.7898 0.7888
0.7960  0.7939
0.7794  0.8120

0.5343
0.5322
0.5346
0.7972
0.7975
0.8020

0.5231
0.5170
0.5262
0.7897
0.8046
0.7979

MG

#@
#
#0)
7(2)
71
7(0)

0.3678
0.3502
0.3529
0.4230
0.4186
0.4098

0.3642
0.3502
0.3536
0.4521
0.4567
0.4436

0.3629 0.3558
0.3492  0.3478
0.3489  0.3465
0.4856 0.5137
0.4905 0.5166
0.4877 0.5193

0.3467
0.3504
0.3565
0.5268
0.5251
0.5393

0.3524
0.3588
0.3609
0.5451
0.5608
0.5466

LN

e
#
#0
7(2)
F ey
7(0)

0.5328
0.6002
0.6267
0.6602
0.7049
0.7348

0.5285
0.5776
0.5914
0.6842
0.7390
0.7644

0.4992  0.4573
0.5177  0.4989
0.5418  0.5250
0.7031  0.7120
0.7586  0.7811
0.7840 0.7679

0.4823
0.5560
0.5200
0.7010
0.8152
0.8163

0.4756
0.5549
0.5248
0.7114
0.8336
0.7998

TS

#@
A
#0)
7(2)
71
7(0)

0.3587
0.3469
0.3318
0.4013
0.3807
0.3622

0.3137
0.2987
0.2872
0.3695
0.3527
0.3351

0.2867 0.2714
0.2709  0.2608
0.2598  0.2578
0.3596 0.3636
0.3426  0.3562
0.3445 0.3629

0.2760
0.2678
0.2657
0.3861
0.3812
0.3867

0.2810
0.2784
0.2822
0.4229
0.4207
0.4240
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Table 2: Same as Table except for truncation 10%.

r

500

1000

2500 5000

10000

25000

r/n

1%

2%

5% 10%

20%

50%

GA

#@
#O
7+
7(2)
7
7(0)

0.6434
0.6271
0.6299
0.7730
0.7688
0.7701

0.5718
0.5811
0.5823
0.7662
0.7658
0.7726

0.5499  0.5325
0.5450  0.5389
0.5481 0.5410
0.7898  0.7965
0.8021 0.8032
0.7866 0.8121

0.5310
0.5265
0.5302
0.7980
0.7968
0.8122

0.5159
0.5199
0.5163
0.7960
0.8079
0.7935

MG

#@
#
#0)
7(2)
71
7(0)

0.3671
0.3525
0.3488
0.4236
0.4201
0.4111

0.3571
0.3527
0.3410
0.4483
0.4555
0.4473

0.3534  0.3444
0.3404  0.3464
0.3441 0.3527
0.4925 0.5070
0.4938  0.5070
0.4915 0.5202

0.3483
0.3534
0.3524
0.5306
0.5340
0.5354

0.3540
0.3633
0.3629
0.5486
0.5497
0.5510

LN

e
#
7+
7(2)
71
7(0)

0.5230
0.5865
0.5853
0.6571
0.6965
0.7126

0.5275
0.5411
0.5853
0.6894
0.7325
0.7565

0.4854  0.4466
0.5404  0.4924
0.5359  0.4973
0.6773  0.6833
0.7799 0.7791
0.8055 0.7710

0.4847
0.5453
0.5124
0.7002
0.8176
0.8076

0.4764
0.5439
0.5395
0.7404
0.8318
0.8029

T5

#@
#
#0)
7(2)
71
7(0)

0.3538
0.3394
0.3233
0.4081
0.3844
0.3613

0.3060
0.2900
0.2793
0.3721
0.3565
0.3356

0.2815 0.2722
0.2678  0.2595
0.2604  0.2587
0.3595 0.3680
0.3451  0.3600
0.3453  0.3667

0.2753
0.2650
0.2659
0.3872
0.3812
0.3885

0.2823
0.2817
0.2824
0.4241
0.4232
0.4258
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Table 3: Same as Table except for truncation 30%.

r

500

1000

2500 5000

10000

25000

r/n

1%

2%

5% 10%

20%

50%

GA

#@
#O
7+
7(2)
71
7(0)

0.6196
0.6198
0.6185
0.7816
0.7832
0.7774

0.5769
0.5752
0.5723
0.7805
0.7811
0.7823

0.5551 0.5372
0.5480  0.5435
0.5465 0.5486
0.8033  0.8041
0.8103  0.8055
0.7997 0.8125

0.5371
0.5381
0.5377
0.8077
0.8137
0.8140

0.5317
0.5373
0.5345
0.8126
0.8168
0.8043

#2)
#
#+O
7(2)
y ey
7(0)

0.3667
0.3515
0.3502
0.4309
0.4250
0.4102

0.3625
0.3556
0.3493
0.4629
0.4539
0.4484

MG
0.3568 0.3573
0.3491 0.3544
0.3488  0.3590
0.4868 0.5226
0.4985 0.5176
0.4977 0.5193

0.3536
0.3660
0.3515
0.5351
0.5354
0.5393

0.3633
0.3674
0.3611
0.5524
0.5630
0.5617

LN

#@
#
#0)
7(2)
71
7(0)

0.5193
0.5619
0.5596
0.6654
0.6989
0.7181

0.5118
0.5496
0.5675
0.6930
0.7329
0.7604

0.4905 0.4791
0.5325 0.5132
0.5274  0.5120
0.7116  0.7232
0.7832  0.7546
0.7909  0.7819

0.4721
0.5637
0.5204
0.7366
0.8173
0.8316

0.5021
0.5466
0.5371
0.7309
0.8252
0.8255

T5

+@
#
#0
7(2)
71
7(0)

0.3608
0.3460
0.3295
0.4121
0.3882
0.3676

0.3160
0.2966
0.2843
0.3778
0.3588
0.3374

0.2893  0.2763
0.2785  0.2700
0.2629  0.2658
0.3704 0.3645
0.3493  0.3602
0.3424  0.3639

0.2826
0.2724
0.2763
0.3875
0.3860
0.3911

0.2880
0.2864
0.2954
0.4239
0.4232
0.4198
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Table 4: Same as Tableexcept for the Negative Binomial model.

r

500

1000

2500 5000

10000

25000

r/n

1%

2%

5% 10%

20%

50%

GA

#@
#O
7+
7(2)
7
7(0)

0.3390
0.3315
0.3374
0.9850
0.9881
0.9992

0.3243
0.3259
0.3265
0.9747
0.9752
0.9739

0.3328 0.3319
0.3281 0.3359
0.3408 0.3374
0.9765 0.9699
0.9775 0.9747
0.9913  0.9955

0.3310
0.3372
0.3333
0.9668
0.9695
0.9978

0.3398
0.3358
0.3416
0.9738
0.9845
0.9757

MG

#@
#
#0)
7(2)
71
7(0)

0.2843
0.2863
0.2854
0.9295
0.9164
0.9347

0.2863
0.2819
0.2831
0.9020
0.8945
0.9163

0.2924  0.2974
0.2908  0.3030
0.2922  0.3004
0.9000 0.8748
0.9006 0.8936
0.9142  0.8970

0.3078
0.3040
0.3076
0.9118
0.9203
0.9152

0.3132
0.3107
0.3129
0.9040
0.9243
0.9229

LN

e
#
7+
7(2)
71
7(0)

0.3208
0.3447
0.3409
0.8698
0.9364
0.9197

0.2963
0.3214
0.3361
0.8666
0.9482
0.9289

0.2923 0.3214
0.3389  0.3364
0.3454  0.3474
0.8634 0.8762
0.9942  0.9643
0.9370  0.9564

0.3148
0.3584
0.3590
0.9167
0.9789
0.9849

0.3229
0.3603
0.3554
0.9062
0.9733
0.9673

T5

#@
#
#0)
7(2)
71
7(0)

0.3013
0.2979
0.3034
09115
0.9087
0.9107

0.2923
0.2933
0.2898
0.8764
0.8787
0.8861

0.2844  0.2955
0.2863  0.2956
0.2924 0.2944
0.8493  0.8565
0.8516  0.8658
0.8461 0.8546

0.2986
0.2983
0.2998
0.8599
0.8545
0.8730

0.3053
0.3027
0.3014
0.8543
0.8632
0.8752
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Table 5: Same as Table except for truncation 10%.

r

500

1000

2500 5000

10000

25000

r/n

1%

2%

5% 10%

20%

50%

GA

#@
#O
7+
7(2)
7
7(0)

0.3158
0.3158
0.3171
0.9836
0.9797
0.9693

0.3146
0.3184
0.3162
0.9777
0.9771
0.9804

0.3273  0.3301
0.3284  0.3253
0.3269  0.3308
0.9828  0.9807
0.9901  0.9670
0.9931 0.9763

0.3375
0.3370
0.3362
0.9761
0.9732
0.9792

0.3390
0.3366
0.3391
0.9685
0.9783
0.9720

MG

#@
#
#0)
7(2)
71
7(0)

0.2793
0.2756
0.2793
0.9420
0.9524
0.9404

0.2801
0.2722
0.2762
0.9153
0.9160
0.9213

0.2901  0.2987
0.2888  0.3009
0.2959  0.2989
0.9214  0.9208
0.9236  0.9062
0.9039  0.9301

0.3014
0.3048
0.3078
0.8974
0.8968
0.9096

0.3108
0.3099
0.3116
0.9136
0.9199
0.9147

LN

e
#
7+
7(2)
71
7(0)

0.2936
0.3125
0.3233
0.8520
0.8721
0.9088

0.2887
0.3169
0.3062
0.8418
0.9179
0.9586

0.2768  0.3003
0.3067 0.3230
0.3069 0.3233
0.8104 0.8698
0.8642 0.9182
0.8802  0.8937

0.3024
0.3348
0.3294
0.8743
0.9409
0.9499

0.3175
0.3719
0.3652
0.8878
0.9457
0.9804

T5

#@
#
#0)
7(2)
71
7(0)

0.2855
0.2871
0.2875
0.8808
0.8945
0.8965

0.2843
0.2817
0.2819
0.8615
0.8723
0.8792

0.2843  0.2881
0.2812  0.2910
0.2842  0.2903
0.8441 0.8464
0.8583  0.8475
0.8621 0.8601

0.2902
0.2969
0.2991
0.8579
0.8497
0.8516

0.3015
0.3014
0.2960
0.8484
0.8476
0.8470
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Table 6: Same as Table except for truncation 30%.

r

500

1000

2500 5000

10000

25000

r/n

1%

2%

5% 10%

20%

50%

GA

#@
#O
7+
7(2)
7
7(0)

0.3163
0.3091
0.3163
0.9869
0.9797
0.9671

0.3154
0.3200
0.3199
0.9854
0.9859
0.9795

0.3307 0.3333
0.3286 0.3334
0.3363  0.3349
0.9928  0.9835
0.9910  0.9656
0.9934  0.9739

0.3416
0.3417
0.3400
0.9831
0.9860
0.9882

0.3471
0.3435
0.3476
0.9716
0.9828
0.9734

MG

#@
#
#0)
7(2)
71
7(0)

0.2735
0.2715
0.2796
0.9551
0.9483
0.9340

0.2780
0.2762
0.2809
0.9141
0.9256
0.9295

0.2944  0.3023
0.2930  0.3069
0.2962  0.3068
0.9206  0.9370
0.9297 0.9127
0.9061  0.9305

0.3077
0.3116
0.3150
0.9004
0.9088
0.9129

0.3155
0.3143
0.3187
0.9148
0.9279
0.9191

LN

e
#
7+
7(2)
71
7(0)

0.2909
0.3255
0.3119
0.8524
0.8938
0.8918

0.2874
0.3129
0.3235
0.8349
0.8668
0.8835

0.2925 0.3050
0.3126 0.3418
0.3249  0.3390
0.8412  0.8808
09118 0.9429
0.9237 0.9518

0.2907
0.3258
0.3134
0.8313
0.8637
0.9301

0.3126
0.3435
0.3446
0.8860
0.9391
0.9241

T5

#@
#
#0)
7(2)
71
7(0)

0.2921
0.2880
0.2867
0.8796
0.8767
0.8964

0.2842
0.2847
0.2885
0.8935
0.8819
0.8898

0.2888  0.2932
0.2876  0.2957
0.2919 0.2911
0.8612  0.8459
0.8668 0.8484
0.8797 0.8615

0.2981
0.3039
0.2998
0.8582
0.8623
0.8484

0.3083
0.3047
0.3048
0.8555
0.8532
0.8537
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Table 7: Same as Table|l|except for using the Scoring Algorithm (instead of the full-sample B) with presample size

ro = 500.

r

500

1000

2500 5000

10000

25000

r/n

1%

2%

5% 10%

20%

50%

GA

#@
#
#0)
7(2)
71
7(0)

0.7778
0.7794
0.7792
0.7805
0.7930
0.7911

0.7375
0.7594
0.7657
0.7879
0.7888
0.7967

0.7749  0.8050
0.7781 0.7898
0.7750  0.8096
0.8036  0.8237
0.8188 0.8341
0.8293  0.8419

0.8276
0.8259
0.8413
0.8300
0.8271
0.8494

0.8499
0.8778
0.8725
0.8205
0.8174
0.8416

MG

#@
A
#O
7(2)
71
7(0)

0.4192
0.4339
0.4486
0.4270
0.4195
0.4254

0.4869
0.5021
0.5219
0.4712
0.4579
0.4603

0.5671  0.6089
0.5856  0.6567
0.5941 0.6723
0.4905 0.5279
0.5144  0.5157
0.4854 0.5371

0.7003
0.7313
0.7247
0.5555
0.5618
0.5735

0.7533
0.7869
0.7884
0.5557
0.5620
0.5805

LN

#@
#
#0)
7(2)
71
7(0)

0.6271
0.6990
0.7114
0.6606
0.6960
0.7329

0.6467
0.7057
0.7384
0.6884
0.7362
0.7824

0.6639  0.6623
0.6935 0.7226
0.7262  0.7301
0.7185 0.7238
0.7549 0.7833
0.8193  0.7992

0.7056
0.8034
0.8335
0.7160
0.8286
0.8546

0.7639
0.8218
0.8643
0.7500
0.8412
0.8145

T5

e
#
#
7(2)
71
7(0)

0.3184
0.3079
0.3260
0.3956
0.3744
0.3419

0.3077
0.2933
0.3087
0.3808
0.3483
0.3425

0.2828  0.2969
0.2964  0.2957
0.3022 0.3084
0.3626  0.3719
0.3500 0.3596
0.3521 0.3628

0.3139
0.3111
0.3240
0.3927
0.3853
0.3967

0.3291
0.3295
0.3419
0.4156
0.4209
0.4285
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Table 8: Same as Tableexcept for the Negative Binomial model.
7 500 1000 2500 5000 10000 25000
r/n 1% 2% 5% 10% 20% 50%
GA
#® 03814 03811 03822 0.3847 0.3840 0.3920
# 03837 03790 0.3835 0.3858 0.3867 0.4050
#© 03788 03841 03851 0.3821 03868 0.3954
7@ 1.0045 09018 0.9891 0.9718 0.9738 0.9896
M 09895 0.9757 0.9905 0.9849 0.9701 0.9860
7© 009831 0.9543 09872 0.9744 0.9925 0.9855
MG
#@ 03140 03386 03478 03578 03852 0.3800
#1 03232 03385 03438 03672 03859 0.3866
#© 03300 03405 03480 03670 0.3803 0.3801
7 09098 0.9207 0.8999 0.9189 0.9346 0.8895
71 09286 0.9233 0.9198 09253 09341 09117
7 09521 0.9209 0.9021 09141 0.9454 09161
LN
#® 03759 03577 03380 03625 0.3892 0.3796
#1)0.4049 03750 03696 0.3977 0.4197 0.4378
#© 03976 03793 03573 0.3858 0.4499 0.4148
72 08391 0.8651 0.8383 0.8846 0.9278 0.9738
7D 09403 0.9732 0.8511 0.9292 0.9367 0.9631
7 09426 09851 0.9166 0.9415 09132 0.9970
T5
#®) 03473 03404 03480 0.3473 03576 0.3747
#1 03521 03383 03498 0.3526 03601 0.3620
#(© 03462 03426 03473 03573 03622 03672
72 08952 0.8512 0.8679 0.8400 0.8387 0.8497
(1 08704 0.8551 0.8690 0.8528 0.8337 0.8557
7© 09097 0.8591 0.8697 0.8583 0.8465 0.8518

Table 9: The CPU times in seconds for computing B: using 7#(?) and 7(®) in the Poisson model with GA
data-generation using the Scoring Algorithm for pre-subsample size o = 500, n = 50, 000 and p = 50.
r 500 1000 1500 2000 2500 5000
r/n 1% 2% 3% 4% 5%  10%
72 4191 4205 4226 4241 4567 4.632
72 2313 2334 2356 2395 3.025 3.564
Full data CPU time 5.872 seconds

Table 10: The CPU times in seconds using Newton’s Algorithm for the full-sample sizes in the Poisson model with GA
data-generation for pre-sample size o = 500 and r = 2, 000.
n 10" 10° 10° 0.5x107
7@ 070 4.67 2630 98.06
72 064 350 1522 49.22
Full 0.76 6.59 58.26 299.18
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Table 11: The average of the iterations in Newton’s algorithm using the Poisson model with GA-data generation for
ro = 500 and various 7. The iterations for the full data are 8.4.

7@ w2 Uniform

r | Stepl Step2 | Stepl Step2
500 | 8.89  8.77 8.67  8.49 8.40
1000 | 875 856 | 856 823 8.80
1500 | 856 832 | 859 839 8.54
2000 | 855 8.01 858 853 8.34
2500 | 8.60 891 8.62  8.85 8.27

5 The A-optimal Subsampling for the Analysis of the Blog Feedback Data

In this section, we apply the Subsampling approach to analyzing the Blog Feedback data using the Poisson, the
Quasipoisson and the Zero-Inflated regression models. The sampling distributions were calculated using the Zero-
Inflated model in (2.3 with the estimates in (5.1]) and the discussion therein, and the Poisson and the Quasipoisson
models in (3.TT).

The data set is available from the UCI machine learning repository (URL: https://archive.ics.uci.edu/), and was collected
and processed from raw html of the blog posts. The goal is to predict the number of comments in the upcoming 24
hours relative to the base time. The base time was chosen from the past, and the blog posts selected were published
within 72 hours before the base time. The features were recorded at the base time based on the selected blog posts.

There are 52, 397 observations in the training data, and 7, 624 observations in the test data. We used the training data to
build the model, and the test data to calculate the prediction errors. There are 23 features, see Table @

The Poisson model is not appropriate for this data because of the observed overdispersion and inflated number of
zeros. The Quasipoisson model has the same parameter estimates as the Poisson model and does not accommodate
zero-inflation, it is thus not a good choice either. The Zero-inflated Poisson model allows inflated zeros and is an
appropriate choice.

As 64.05% of the values in the response variable are 0, we shall consider fitting the zero-inflated Poisson regression
model in (2.3)) for the data. The estimating equation of the model contains the parameter 0 < p < 1, which accounts
for the amount of positive structural zeros beyond the sampling zeros explained by the Poisson distribution f;,.;. In
the literature, p can be modeled as a function of the predictor variables, for example, via the logistic link. Here for
simplifying the estimating process, we shall estimate p first. Specifically, based on the interpretation of p and noting
that 64.05% is the proportion of zeros in the response variable while exp(y) is the probability of taking zero value in
the Poisson distribution, we estimate p by

p = 0.6405 — exp(—/1), 5.1
where /i is an estimator of 4. As'Y follows the Zero-Inflated model (2.5), we have
P(Y =0) =p+ (1 - p)exp(—p).
On the other hand, E(Y') = (1 — p)u. Thus p = E(Y)/(1 — p) and we get
po=P(Y =0) = p+ (L p)exp(~E(Y)/(1 - p)).

The empirical estimate of py is

po == 1Yi=0] = p+ (1= p)exp(=Y/(1 = p)).

SRS

As § = 6.765 and py = 0.6405, we get p ~ py = 0.6405. Alternatively, we can use (5.1)) to get / by plugging in
i1 = 214.9628, yielding the same value.

To compare the Poisson model and the Quasipoisson model with the Zero-Inflated Poisson model, we report the
full-sample estimates, the standard errors, the P-values for the three models in Table [I3] Many parameters in the
Quasipoisson model were not significant, while these parameters in the Zero-Inflated Poisson model were significant.

In Table , observe that the standard errors of the uniform method were bigger than those of #® method, the averageds
of the parameter estimates using the #® sampling were closer to the full-sample estimates than those using the uniform.
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For the uniform subsampling, the comparison between the theoretical and the empirical standard errors showed large
differences. This means the empirical performance of the uniform subsampling did not reach the theoretical values in

the presence of inflated zeros for » = 5000. The theoretical and the empirical standard errors of the 72 subsampling
indicated that the empirical performance is consistent with the theoretical results in presence of infalated zeros.

The comparison between the uniform and 73 subsampling suggested that for many variables the P-value using the
7@ subsampling were significant while that of the uniform subsampling were not. For example, the effects of Tc,
Cl24, Cf24, Tt, T124, Ttlt2, Mbt, Fbt, Sbt, Mpb, Tpb, THpb, Fpb, Spb, and Ppage were detected by using the 72
subsampling but were not detected by using the uniform. This means the proposed approach reduced the standard error
hence increased the power of the test for the regression coefficients.

Tables [I5HI6] are the ratios of the lengths of the confidence intervals and the coverage probabilities. In Table[I5] all the

values are smaller than 1, indicating that the lengths of 95% confidence intervals constructed by using 7@ subsampling
were significantly smaller than those of the uniform.

Table shows the MSE ratios of 7 (?) subsampling to the uniform. The values were smaller than 0.1, indicating that the
MSE of our optimal Subsampling approach was less than 10% percent of the MSE of using the uniform subsampling.

Table[I8]reports the averages of the sum of squared predicted errors, and Fig. [0 graphically represents Table [I8] one
observes that when r was small, the uniform subsampling produced very large prediction errors. The prediction errors

produced by using the 7@ subsampling were significantly smaller than those by using the uniform.

Table 12: 23 Features In the Blog Feedback Data

Tc Total number of comments before basetime

CI24 Number of comments in the 24 hours right before the basetime

Ctlt2 Number of comments in the time period between 1’1 and 12, where 1’1 denotes the date
time 48 hours before basetime, 72 denotes the date time 24 hours before basetime,

Cf24 Number of comments in 24 hours immediately after publication of the post but before basetime

Tt Total number of trackbacks before basetime,

T124 Number of trackbacks in the last 24 hours before the basettime

Ttlt2 Number of trackbacks between T1 and T2, where T1 is the time point 48 hours before basetime
and T2 the time point 24 hours before basetime

Tf24 Number of trackbacks in 24 hours immediately after publication of the post but before basetime

Ltime Length of time between the publication of the blog post and basetime

Lbp Length of the blog post

Mbt, Tbt, Wbt Indicators (0 or 1) for whether Monday to whether Saturday of the basetime,

THbt, Fbt, Sbt

Mpb, Tpb, Wpb | Indicators (0 or 1) for whether Monday to whether Saturday of the blog publication date

THpb, Fpb, Spb

Ppage Number of parent pages.
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Table 13: The estimates, standard errors, and P-values in Poisson, Quasipoisson, and Zero-Inflated Poisson models
using the full-sample n = 52, 397.

Poisson SE  P-value | Quasipoisson SE  P-value | ZIPoisson SE  P-value

Intcpt  2.70536  .01058 < .0001 270536 .08167 < .0001 3.42978 .01085 < .0001
Tc  .00371 .00004 < .0001 .00371 .00030 < .0001 .00312 .00004 < .0001
Cl24 .00282  .00004 < .0001 .00282  .00030 < .0001 .00276  .00004 < .0001
Ctlt2  .00013 .00005  .00373 .00013 .00036  .70717 .00025 .00005 < .0001
Cf24  -.00236  .00002 < .0001 -.00236 .00019 < .0001 -.00254 .00003 < .0001
Tt .18007  .00482 < .0001 18007 .03719 < .0001 15279 .00471 < .0001
TI24 -.09276  .00280 < .0001 -.09276  .02165 .00002 -09377 .00267 < .0001
Ttlt2  -.03809  .00313 < .0001 -.03809 .02412  .11438 -.04378 .00298 < .0001
Tf24  -.06000  .00456 < .0001 -.06000 .03520  .08830 -03660 .00445 < .0001
Ltime -.06277  .00014 < .0001 -.06277 .00107 < .0001 -.05235 .00015 < .0001
Lbp .00005 < .0001 < .0001 .00005 .00001 < .0001 .00004 .00001 < .0001
Mbt  .19249  .00912 < .0001 19249 .07040  .00626 09339 .00933 < .0001
Tbt  .07939  .01072 < .0001 07939 .08276  .33744 -06151 .01122 < .0001
Wbt .02238  .01104  .04267 02238 .08523 79289 -.13030 .01155 < .0001
THbt  .05547  .01067 < .0001 05547 .08238  .50077 -09195 .01108 < .0001
Fbt -.24868  .00977 < .0001 -.24868 .07542  .00098 -31279  .01002 < .0001
Sbt  -23916  .00794 < .0001 -.23916 .06128  .00010 -.22643  .00805 < .0001
Mpb 18675  .00992 < .0001 18675 .07658  .01474 15946 .01051 < .0001
Tpb 23210 .01107 < .0001 23210 .08547  .00662 22193 .01169 < .0001
Wpb 05575  .01158 < .0001 05575 .08935 53271 08395 .01204 < .0001
THpb 36164  .01134 < .0001 36164 .08755 .00004 29686 .01174 < .0001
Fpb 47488  .01037 < .0001 47488 .08004 < .0001 33577 .01060 < .0001
Spb  .19624  .00984 < .0001 19624 .07599  .00982 09328 .01011 < .0001
Ppage -.17265 .00389 < .0001 -.17265 .03005 < .0001 -.11498 .00363 < .0001

Table 14: The averages of the estimates, theoretical standard errors (Tse), empirical standard errors (Ese), and P-values
based on 1000 subsamples in the Zero-Inflated Poisson model with r¢ = 2500 and = 5000.

unif e
Estimate Tse Ese  P-value | Estimate Tse Ese  P-value
Intercept  3.31604 60943 56943 < .0001 | 3.39144 .08391 .07782 < .0001
Tc .00499 00463 .00271 .28070 .00318 .00036 .00029 < .0001
Cl24 .00298 .00246 .00172 22524 .00270 .00031 .00029 < .0001
Ctlt2  -.00006 .00275 .00212 .98193 .00024 .00037 .00034 51017
Cf24  -.00407 .00332 .00266 22057 -.00252 .00026 .00019 < .0001
Tt 13274 .60876 .32564 .82739 15511 .04384 .03117 .00040
TI24  -.08212 A2111 .12792 49776 -.09500 .01955 .02092 < .0001
Ttlt2  -.04429 13443 14660 74182 -.04496 .02124 .02190 .03431
T24  -.02871 62134 32695 96314 -.03759 .04335 .02892 38585
Ltime  -.05948 .00787 .00744 < .0001 -.05443 .00168 .00164 < .0001
Lbp .00003 .00001 .00001 .02618 .00004 .00001 .00001 < .0001
Mbt .15348 49478 47033 75641 13700 .06758 .06715 .04264
Tbt 01812 1.01089 .59248 98570 -.07086 .09689 .10023 46461
Wbt  -.15888 94287 .61652 .86618 -.15383  .10749 .10257 15239
THbt  -.11398 .85801 .59002 .89431 -.08562 .10579 .10892 41830
Fbt  -.25691 72860 .53337 72438 -.25842  .09592 11123 .00706
Sbt  -.25243 62211 43792 .68491 -.23805 .08079 .08066 .00321
Mpb 18671 73179  .49846 79861 22473 .07984  .10999 .00488
Tpb .36845 76743 57054 63115 30397  .10215 .11611 .00292
Wpb 23372 71303 59162 74307 12763 10816 .11870 23797
THpb 33222 64228 .61171 .60499 29644 10121  .12326 .00340
Fpb 49398 .60383 .56036 41331 40595  .08629 .09056 < .0001
Spb 24244 57235  .50639 67186 14735  .07293 .07362 .04333
Ppage  -.13385 10897 .12224 21934 -.11631 .03527 .03816 .00097
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Table 15: The length ratios of the 95% confidence intervals of the 7@ subsampling to the uniform in the Zero-Inflated
Poisson model with the pre-subsample size o = 2500.
r 1000 2500 5000 10000 25000 50000
Intercept .1950 .1368 .1441 .1499 1263  .1315
Tc .0901 .0976 .1069 .0953 .0930 .1012
CI24 .1452 .1532 .1792 .1583 .1571 .1568
Ctlt2 .1440 .1481 .1676 .1448 .1491 .1469
Cf24 .0599 .0633 .0720 .0767 .0736  .0837
Tt .0848 .0761 .0915 .0863 .0792 .0810
TI24 .1048 .1152 .1579 .1522 .1641 .1751
Telt2 1055 .1129 .1522 1498 .1555 .1645
T24 .0932 .0776 .0890 .0797 .0734 .0786
Ltime .2348 .2432 2191 2124 2308 .2093
Lbp .3005 .2605 .2890 .3476 .2928  .2687
Mbt 2015 .1284 .1478 .1625 .1280 .1324
Tbt .1950 .1338 .1526 .1611 .1092  .1218
Wbt 1829 .1543 1669 .1694 1312  .1289
THbt 2104 .1747 .1678 .1635 .1480 .1399
Fbt 2024 .1512 .1632 .1571 .1486 .1556
Sbt 2066 .1591 1737 .1632  .1438 .1602
Mpb .1602 .1746 .1666  .1742  .1548  .1285
Tpb 1756 .1622 1721 .1910 .1795 .1407
Wpb 1782 .1923 1725 .1979 .1810 .1415
THpb .1922 .1623 .1647 .1770 .1549 .1568
Fpb .1597 .1447 1662 .1782 .1426  .1423
Spb .1664 .1336 .1333  .1430 .1242 .1210
Ppage .2388 .2534 3325 2951 2876  .3433

Table 16: The simulated percentages of the 95% confidence intervals which caught the full sample MLE in the
Zero-Inflated Poisson model with the pre-subsample size vy = 2500.

r 1000 2500 5000 10000 25000 50000
Intercept  .9989 9989 .9919 9955 .9924 9917
Tc 9905 .9956 .9902 9979 9915 .9999
CI24 9998 9916 .9947 9941 9995 .9938
Ctlt2 9965 9986 .9989  .9940 .9923  .9928
Cf24 9981 9973 9977 9977 9971  .9958
Tt 9959 9942 9933 9991 .9941 .9922
T124 9901 .9936 .9951 9947 9998  .9979
Ttlt2 9916 .9998 9950 9916 .9928  .9961
Tf24 9994 9976 .9949 9986 .9920 9918
Ltime .9907 .9944 9922 9944 9917 .9984
Lbp 9903 .9998 9997 9936 .9934 .9948
Mbt  .9940 .9903 .9971 9932 9908  .9948
Tbt .9992 9998 .9972  .9922 9989 .9970
Wbt 9952 9916 9938  .9927 9926 .9979
THbt .9931 9918 .9905  .9914 .9947  .9930
Fbt 9983 9987 .9949 9962 .9934  .9955
Sbt  .9990 9978 9932 9949 9914  .9995
Mpb 9978 9986 9936 1.0000 .9999 9911
Tpb 9918 .9961 .9944 9987 9906 .9990
Wpb 9950 9900 .9919  .9922 9974 9951
THpb .9917 9958 .9945  .9945 9963 .9984
Fpb 9979 9986 .9932 9966 .9957 .9998
Spb 9988 .9929 9925 9994 9996  .9905
Ppage .9953 .9959 .9917  .9907 .9980  .9958
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Table 17: The MSE ratios of the 7% subsampling to the uniform in the Zero-Inflated Poisson regression model, with
the pre-subsample size ro = 2500.
T 1000 2500 5000 10000 25000 50000

7@ 00287 0.0360 0.0373 0.0396 0.05796 0.0823

Table 18: The averages of the sum of squared predicted errors in the Zero-Inflated Poisson regression model, with
pre-subsample size 7o = 2500, the sum of the squared prediction error is 1,407.4712 in the full sample.
r 1000 2500 5000 10000 25000 50000
uniform 52153313  2876.1691 2653.2441 2323.7320 1811.6740 1598.1760

7 1599.7506 1525.9297 1524.9536 1509.2128 1500.5681 1428.4280

Figure 9: The plot of the averaged predicted sum of squared errors in the Zero-Inflated Poisson model with ¢y = 2500.

5000
|

4000

PSES

3000
|

2000
|

T T T T T T
0 10000 20000 30000 40000 50000

References

[1] AVRON, H., MAYMOUNKOV, P. and TOLEDO, S. (2010). Blendenpik: Supercharging LAPACK’s least-squares
solver. SIAM Journal on Scientific Computing, 32: 1217-1236.

[2] CAMERON, C. AND TRIVEDI, P. (1998). Regression analysis of count data. Cambridge University Press, UK.

[3] DOBSON, A. AND BARNETT, A. (2002). An Introduction to Generalized Linear Models. CRC Press, Boca Raton,
FL.

[4] Drineas P., Kannan R. and Mahoney M.W. (2006a). Fast Monte Carlo algorithms for matrices I: Approximating
matrix multiplication. STAM Journal on Computing, 36: 132-157.

[5] Drineas P., Mahoney M.W. and Muthukrishnan S. (2006b). Sampling algorithms for 12 regression and applications.
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, Pages: 1127-1136.

[6] Drineas, P., Mahoney, M., Muthukrishnan, S. & Sarlos, T. (2011). Faster least squares approximation. Numerische
Mathematik, 117: 219-249.

[7] FaN, J., HAN, F. AND L1u, H. (2013). Challenges of big data analysis. arXiv:1308.1479.

[8] KLEINER, A., TALWALKAR, A., SARKAR, P. AND JORDAN, M. 1. (2014). A scalable bootstrap for massive data.
J. R. Stat. Soc. Series B Stat. Methodol. 76(4), 795-816.

[9] LIANG, F., CHENG, Y., SONG, Q., PARK, J., AND YANG, P. (2013). Stochastic approximation method for
analysis of large geostatistical data. J. Amer. Statist. Assoc. 108(501): 325-339.

25



A PREPRINT - OCTOBER 25, 2023

[10] MA, P. AND SUN, X. (2014). Leveraging for big data regression. Computational Statistics, 7 (1): 70-76.

[11] MA, P. , MAHONEY, M.W, AND YU, B. (2015). A statistical perspective on algorithmic leveraging. Journal of
Machine Learning Research, 16 (April): 861-911.

[12] MAHONEY, M. W. (2011). Randomized algorithms for matrices and data. arXiv:1104.5557v3 [cs.DS]
[13] MCCULLAGH, P. AND NELDER, J. (1984). Generalized Linear Models. Springer-Verlag, New York, NY.

[14] O’Sullivan, F. (1988). Fast computation of fully automated log-density and log-hazard estimators. SIAM Journal
of Scientic and Statistical Computation, 9: 363-379.

[15] WANG, H., YANG, M. and STUFKEN, J. (2019). Information-Based Optimal Subdata Selection for Big Data
Linear Regression. J. Amer. Statist. Assoc. 114 (525): 393-405.

[16] Wang, H., Zhu, R. and Ma, P. (2018). Optimal subsampling for large sample logistic regression. J. Amer. Statist.
Assoc. 113(522): 829-844.

[17] XU, P.,, YANG, J., ROOSTA-KHORASANI, F., RE, C. AND MAHONEY, M.W. (2016). Subsampled Newton
Methods with Non-uniform Sampling. arXiv:1607.00559.v2 [math.OC].

[18] Zhang, S., Tan, F. and Peng, H. (2023). Sample Size Determination for Multidimensional Parameters and A-
Optimal Subsampling in a Big Data Linear Regression Model. Preprint, Available athttp://math. iupui.edu/
~feitan/ZTP_SSD-23(002) .pdf

26


http://math.iupui.edu/~feitan/ZTP_SSD-23(002).pdf
http://math.iupui.edu/~feitan/ZTP_SSD-23(002).pdf

	Introduction
	Count Data Regression
	The A-optimal Subsampling In Big Data GLM
	A Large Simulation Study
	The A-optimal Subsampling for the Analysis of the Blog Feedback Data

