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Abstract

Knots in a free-knot spline model are treated as parameters and can be threshold

values such as changepoints. Motivated by quadratic splines which only possess con-

tinuous first order derivatives, this article investigates the asymptotic properties of

a general semiparametric multiplicative hazard model when the relative risk is ex-

pressed as a first order continuously differentiable parametric function. It is shown

that the logarithm of the partial likelihood function of the model is locally concave

under suitable conditions. Using the convexity lemma [Andersen and Gill [1], Pol-

lard [2]], it is proved that the maximum partial likelihood estimators of parameters

uniquely exist in a neighborhood of the true values of parameter and are consistent

and asymptotically normal. The developed theory is applied to derive the asymptotic

normality of the maximum partial likelihood estimators of parameters in a free-knot

quadratic spline model.

Key words and phrases : Asymptotic normality, convexity lemma, Cox model, free-

knot spline, relative risk



1 Introduction and Assumptions

In a general semiparametric multiplicative hazard model, the hazard rate or intensity

of failure h(t) for the survival time of an individual with a covariate process Z(t) ∈ Rq

of time t satisfies

h(t) = h0(t)rθ
(
t, Z(t)

)
, t ≥ 0, (1)

where rθ(t, z) is a parametric function of θ ∈⊂ Rp, and h0 is a completely unspecified

nonparametric baseline hazard function on [0,∞).

In this article, we are interested in the asymptotic behaviors of the maximum par-

tial likelihood estimator (MPLE) of θ when rθ(t, z) possesses continuous first order

derivative with respect to θ for every t, z. As an application of the developed theory,

we derive the consistency and asymptotic normality of MPLE’s of parameters when

the logarithm of the relative risk is expressed as a free-knot spline polynomial (trun-

cated polynomial or B-spline) of order three or above. Knots in a free-knot spline

polynomial are considered as parameters, and a quadratic spline polynomial possesses

continuous first order derivative and a cubic spline polynomial has discontinuous sec-

ond order derivative at coalescing knots. Quadratic and cubic spline polynomial

functions are low-order polynomial splines; they allow the number of parameters to

remain low while ensuring a sufficient degree of smoothness, the continuity of the func-

tions and their gradients; they provide more flexibility to explain data than quadratic

or cubic polynomial functions.

Intensely studied over the past several decades, hazard regression (or relative risk

regression) has been fruitful in the analysis of survival data in parametric, semipara-

metric and nonparametric regression. Andersen and Gill (1982) [1] formulated the

Cox linear regression model in a setup of multivariate counting processes and proved

the consistency and asymptotic normality of MPLE’s. Relaxing the exponential re-

gression form in the popular Cox model to an arbitrary non-negative twice differen-
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tiable form, Prentice and Self (1983) [3] gave the asymptotic distribution theory for

Cox-type linear regression models under conditions generalizing those in Andersen

and Gill (1982) [1]. Borgan (1984) [4] studied MPLE’s for a general parametric

multiplicative intensity model and established the asymptotic results under a set of

regularity conditions including the usual existence and boundedness of third order

continuous differentiability of the relative risk. Here we assume first order continuous

differentiability of the relative risk and prove the consistency and asymptotic normal-

ity of MPLE’s. The proof of the latter is based on the convexity lemma [Andersen

and Gill (1983) [1]; Pollard (1991) [2]; Fleming and Harrington (1991) [5]; Lemma 1

below]. Our assumptions are weaker than those in Borgan (1984) [4] and Prentice

and Self (1983) [3] and, in fact, are minimal.

The key ingredient in our proofs is the local concavity of the log- partial likelihood

function. We show in this article that the log- partial likelihood function is locally

concave in probability (short for locally concave or simply concave, see Subsection

2.1) for an arbitrary non-negative first order continuously differentiable relative risk

function rθ(t, z). This is of course due to the unique structure of the log- partial

likelihood functions. For the usual Cox model, where log rθ(t, z) is a linear function of

parameter θ, it is well known in the literature that the log- partial likelihood function

is globally concave (see page 1106, Andersen and Gill (1983) [1]). Interestingly, the

global concavity also holds when log rθ(t, z) is a quadratic function of θ, see (4) and

the discussions therein. The global concavity of the log- partial likelihood function

is reduced to the local concavity when the usual exponential regression form rθ(z) =

exp(θ>z) in the Cox model is relaxed to a non-negative second order continuously

differentiable regression form rθ(z) = r(θ>z) (see page 809, Prentice and Self (1983)

[3]). For nonparametric relative risk regression in a generalized Cox model, using

Frèchet derivatives, O’Sullivan showed that the logarithm of the partial likelihood and

2



its limit are concave in some Sobolev space (see pages 130-131, O’Sullivan (1993) [6]

or Remark 2 below). Thus the log- partial likelihood function in a semiparametric

multiplicative hazard model is always concave for an arbitrary relative risk either

nonparametric or parametric (continuously differentiable). Indeed, Hjort and Pollard

[7] also established the concavity in their Lemma A2 in an alternative form.

Goetghebeur and Pocock (1995) [8] proposed a family of double quadratic models

in which the relationship between a risk factor and disease outcome was expressed

as two independent quadratic curves joined at a low point to be estimated. As

Tan (2007) [9] pointed out, this is indeed a free-knot quadratic spline model with

knots in covariates. For a log- relative risk expressed as a quadratic spline function,

under the neighborhood restriction that there are no observations in a neighborhood

of the true value of parameter, the second order derivative of the partial likelihood

function is continuous. Under this restriction, Goetghebeur and Pocock (1995) [8]

derived the asymptotic results of the MPLE’s. When observations are allowed in the

neighborhood of the true knot value, the log- partial likelihood function possesses

continuous first order derivative, but does not have second order derivative. Our

developed theory fills this gap and gives the consistency and asymptotic normality of

the MPLE’s.

Free-knot polynomial splines, taking the advantage of the freedom of knots, can

approximate wider classes of smooth functions to higher order than fixed-knot poly-

nomial splines. Free-knot spline functions can be used to model either the regression

coefficient process or the covariate process, both of time. Knots can represent thresh-

old values such as changepoints (e.g. the nadir of BMI). Spline partial likelihood

functions can be computed using S-Plus package [10]. Recently, free-knot splines in

regression have gained momentum in statistical inference, see e.g. [Mao and Zhao

(2003) [11]; Molinari, et al. (2001) [12]; Giorgi, et al. (2003) [13]; Molinari, et al.
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(2004) [14]].

In order to facilitate our theoretical analysis, we set gθ(t, Z(t)) = log rθ(t, Z(t))

to relate the general multiplicative intensity model to the usual exponential form

in the popular Cox model. We shall work with gθ upon which the assumptions

shall be imposed. This does not cause any loss of generality. Throughout we shall

assume that for every (θ, t, z), gθ(t, z) has continuous first order derivative ġθ(t, z)

w.r.t. θ which is locally bounded and predictable w.r.t. the filtrations, unless other-

wise explicitly stated. The most commonly used functional form of gθ is perhaps the

linear model gθ(t, Z(t)) = θ(t)>Z(t), where θ(t) is a coefficient process of time. This

of course includes the popularly used Cox (1972) [15] proportional hazards model

gθ(t, Z(t)) = θ>Z(t), where the coefficient θ is not time dependent. Our formulation

may accommodate many other different parameterizations, see more discussions in

Section 2.2.

We start now with a brief summary of the counting process framework for the

case of independent and identically distributed observations. We have n independent

individuals which are continuously monitored over time t ≥ 0. For each subject,

there is a process (Ni(t), Yi(t), Zi(t)) for t ≥ 0. Here Ni(t) is a counting process

recording events (such as deaths, hospital visits and so on) to occur up to time t,

Yi(t) takes binary values 1 and 0 depending on whether or not the subject is under

observation immediately prior to time t, and Zi(t) is a q-dimensional covariate process.

As in Gill (1984) and Fleming and Harrington (1991), we assume throughout the

following conditions (i)-(iii) hold. (i) (N1, ..., Nn) is a multivariate counting process.

(ii) For each i, Mi = Ni −Ai is a local martingale w.r.t. a right-continuous filtration

{Ft : t ≥ 0} which represents the statistical information accruing over time, where Ai

is the continuous compensator Ai =
∫
Yi(s) exp(gθ0(s, Zi(s)))h0(s)ds with gθ being a

predictable process and θ0 denoting the true but unknown value of parameter. (iii)
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Each of the at-risk process Yi and covariate process Zi are predictable w.r.t. the

filtration {Ft : t ≥ 0}.

Let Sn be the operator defined by

Sn(t, g)[h] =
1

n

n∑
i=1

h
(
t, Zi(t)

)
Yi(t) exp

(
g(t, Zi(t))

)
,

where g is a scalar function and h is a scalar, vector or matrix function. Set S
(0)
n (θ, t) =

Sn(t, gθ)[ı], where ı is the identity map; S
(1)
n (θ, t) = Sn(t, gθ)[ġθ]; S

(2)
n (θ, t) = Sn(t, gθ)[ġ

⊗2
θ ],

where B⊗2 = BB> for a matrix B. In what follows we denote A,M,N , etc. i.i.d.

copies of Ai,Mi, Ni, etc. respectively. Following Andersen and Gill (1982), we intro-

duce the following regularity assumption.

Assumption

(I) There exists finite time τ such that
∫ τ

0
h0(t)dt <∞.

(II) For a compact neighborhood Θ0 of θ0, there exists a scalar s(0), a vector s(1)

and a matrix s(2) on Θ0 × [0, τ ] such that for j = 0, 1, 2,

sup
t∈[0,τ ], θ∈Θ0

‖S(j)
n (θ, t)− s(j)(θ, t)‖ P−→ 0, (2)

where ‖B‖ ≡ max {|Bij| : ∀i, j} is a matrix norm.

(III) Define e ≡ s(1)/s(0) and v ≡ s(2)/s(0) − e⊗2. Then for θ ∈ Θ0 and t ∈ [0, τ ],

∂
∂θ
s(0)(θ, t) = s(1)(θ, t).

(IV) For j = 0, 1, 2, the functions s(j)(θ, t) are bounded; the function families

s(j)(·, t), t ∈ [0, τ ] are equicontinuous at θ = θ0; and s(0)(θ, t) is bounded

away from zero on Θ0 × [0, τ ].

(V) The matrix Σ(θ0, τ) =
∫ τ

0
v(θ0, t)s

(0)(θ0, t)h0(t) dt is positive definite.
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(VI) There exists δ > 0 such that as n tends to infinity,

n−1/2 sup
1≤i≤n, 0≤t≤τ

‖ġθ0(t, Zi(t))‖Yi(t)1{gθ0 (t,Zi(t))>−δ‖ġθ0 (t,Zi(t))‖}
P−→ 0.

Note that (VI) is a Lindeberg negligibility condition and trivially holds if covari-

ates are bounded while (I)-(V) are regularity assumptions similar to those found in

standard asymptotic likelihood theory.

Let T and U be the failure and censoring time of a person and Z be a covariate as-

sociated with the person. Suppose that the data can be summarized as n realizations

of i.i.d. random vectors (Xi, δi, Zi) for i = 1, ..., n, where Xi ≡ min(Ti, Ui), represent-

ing the observed time of person i; δi ≡ 1{Ti≤Ui}, indicating that the observed time is

a death time not a censoring time. Let the counting process be Ni(t) ≡ 1{Xi≤t,δi=1},

and the at-risk process be Yi(t) ≡ 1{Xi≥t}. The following result can be considered as

a sufficient condition for Assumption and the proof can be obtained analogous to

the proof of Theorem 8.4.1 [Fleming and Harrington (1991) [5]] or Proposition 1 [Tan

(2007) [9]].

Proposition 1. Suppose that for i = 1, ..., n, the covariate Zi is constant in time

and takes value in a compact set Z of Rq; the failure time Ti and the censoring Ui

are conditionally independent given the covariate Zi; and P{Yi(τ) > 0} > 0 for some

τ > 0. Suppose that gθ(Z) has continuous first order derivative for Z ∈ Z and θ in a

compact neighborhood Θ of θ0. Then Assumption holds with the exception of (V).

The rest of the article is organized as follows. The main results are given in Section

2; Section 2.1 presents concavity, consistency and asymptotic normality; Section 2.2

discusses the applications of the results to free-knot spline polynomial models. In

Section 3, we show concavity. In Section 4, we prove asymptotic normality of MPLE’s.
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2 The Main Results

In the first part of this section, we give the local concavity of the log- partial likeli-

hood function, followed by consistency and asymptotic normality of MPLEs. In the

second part, we apply the developed theory to derive the asymptotics of MPLE’s of

parameters in free-knot spline polynomial models.

2.1 Concavity, Consistency and Asymptotic Normality

As usual, the partial likelihood function can be expressed as

PLn(θ) =
n∏
i=1

{
exp [gθ(Ti, Zi(Ti))]

Σj∈Ri exp [gθ(Ti, Zj(Ti))]

}δi
,

where δi is the indicator that the failure of individual i is observed and Ri is the set

of those at risk at the time of the ith failure. The logarithm of the partial likelihood

function can be written in an integral of a counting process,

ln(θ) = logPLn(θ) =
n∑
i=1

∫ τ

0

[
gθ(t, Zi(t))− logS(0)

n (θ, t)
]
dNi(t).

Our first result is that ln(θ) is concave in probability in the sense that the probability

of the event that ln(θ) is concave converges to one as the sample size n tends to

infinity. This is stated below with the proof delayed to Section 3.

Theorem 1. (Concavity) Suppose that Assumption (I)–(V) hold. Assume that

there exist a neighborhood Θ0 of θ0 and a bounded matrix function s(3) on Θ3
0 × [0, τ ]

such that

sup
t∈[0,τ ], ∀θi∈Θ0

‖Sn(t, gθ1)[ġθ2 ġ
>
θ3

]− s(3)(θ1, θ2, θ3, t)‖
P−→ 0, (3)

and that the family of matrix functions s(3)(·, ·, ·, t), t ∈ [0, τ ] is equicontinuous at

(θ0, θ0, θ0). Then there exists a neighborhood Θ of the true value θ0 of parameter such

that ln(θ) is concave in Θ in probability.
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Remark 1. The uniform convergence in (3) implies the uniform convergence in As-

sumption (II) for s(2)(θ, t) = s(3)(θ, θ, θ, t). Examining the proof of Proposition 1,

one can see that (3) holds if the assumptions in Proposition 1 are met.

When the log- relative risk is linear, i.e., gθ(t, Z(t)) = θ>Z(t), the concavity of the

log-partial likelihood function is a well known fact, see e.g. page 1106, Andersen and

Gill (1983) [1]. From Prentice and Self (1983) [3]) (page 809), we observe that the

global concavity of the log- partial likelihood function is reduced to the local concavity

when the usual exponential regression form is relaxed to an arbitrary non-negative

twice continuously differentiable function. Theorem 1 extends the concavity to a much

larger class of smooth functions, functions of continuous first order derivatives. The

concavity of the log- partial likelihood function, in fact, also holds for nonparametric

relative risks.

Remark 2. O’Sullivan (1993) [6] investigated nonparametric estimation in the Cox

model, where the logarithm of the log- relative risk is expressed as a nonparametric

function of the covariate process,

h(t) = h0(t) exp[θ(Z(t))], t ≥ 0,

where θ is a nonparametric function from some bounded open simply connected set in

Rq to reals R. Using Fréchet derivatives, O’Sullivan showed that the logarithm of the

partial likelihood ln(θ) and its limit l(θ) are concave in θ in some Sobolev space. For

details, see pages 130-131, O’Sullivan (1993).

A special but common case is that θ 7→ gθ(t, z) has continuous second order deriva-

tive for every (t, z). In this case, the log- partial likelihood function has continuous

second order derivative w.r.t. θ, which is a matrix given by

∂2 log PLn(θ)

∂θ∂θ>
=

n∑
i=1

∫ τ

0

[
g̈θ(t, Zi(t)) +

(S(1)
n (θ, t)

S
(0)
n (θ, t)

)⊗2

− S
(2)
n (θ, t)

S
(0)
n (θ, t)

−
∑n

j=1 g̈θ(t, Zj(t))Yj(t) exp(gθ(t, Zj(t)))

S
(0)
n (θ, t)

]
dNi(t).
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As usual, in terms of the urn model, the above stochastic integral can be written as

− 1

n

∂2 log PLn(θ)

∂θ∂θ>
=

1

n

n∑
j=1

∫ τ

0

Vn(θ, t)dNi(t)

− 1

n

n∑
j=1

∫ τ

0

{
g̈θ(t, Zi(t))− EIθ,t[g̈θ(t, ZI(t))]

}
dNi(t), (4)

where EIθ1,x[g̈θ2(t, ZI(t))] =
∑n

i=1 g̈θ2(t, Zi(t))pi(θ1, x), θ1, θ2 ∈ Θ denotes the expecta-

tion calculated under the discrete distribution

pi(θ1, x) ≡ Yi(x) exp(gθ1(x, Zi(x)))∑n
j=1 Yj(x) exp(gθ1(x, Zj(x)))

, i = 1, ..., n, (5)

which can be viewed as the probability that, at time point x, index i is selected from

an urn containing all the n indices. Defined this way, the selected index I is a random

variable and ġθ(t, ZI(t)), as a vector function of I, is a random vector. Consequently,

Vn(θ, x) =
S

(2)
n (θ, x)

S
(0)
n (θ, x)

−
[S(1)

n (θ, x)

S
(0)
n (θ, x)

]⊗2

= EIθ,x[ġθ(x, ZI(x))⊗2]−
(
EIθ,x[ġθ(x, ZI(x))]

)⊗2

= VarIθ,x [ġθ(x, ZI(x))]

is the urn model variance matrix of ġθ(x, ZI(x)) at time point x.

Observe that the second term on the right hand side in (4) is identically zero

if gθ is a linear or quadratic function of θ. It is this fact that results in the global

concavity of the log- partial likelihood function. The linear case corresponds to the

usual Cox model in which the logarithm of the relative risk is a linear function of

the parameter. Interestingly, we have found that the global concavity also holds

for a quadratic relative risk function of the parameter. In Section 3, we show that

this term converges to zero in probability as Θ shrinks to θ0 and n tends to infinity

under suitable conditions. Since the first term is positive definite, it follows that the

log-partial likelihood is concave. We present this result below as a corollary with

an independent proof given in Section 3. It may serve as a quick intuition for the

concavity of the log- partial likelihood.
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Corollary 1. Suppose Assumption (I)-(V) hold. Suppose that θ 7→ gθ(t, z) pos-

sesses continuous second order derivative g̈θ(t, z) for every (t, z). Assume there exist

a neighborhood Θ0 of θ0 and a bounded matrix function s2 on Θ2
0 × [0, τ ] such that

sup
θ1,θ2∈Θ0, t∈[0,τ ]

‖Sn(t, gθ1)[g̈θ2 ]− s2(θ1, θ2, t)‖
P−→ 0, (6)

for which the family of matrix functions s2(·, ·, x), x ∈ [0, τ ] is equicontinuous at

(θ0, θ0). Furthermore,

sup
θ∈Θ0

E
{∫ τ

0

‖g̈θ(x, Z(x))‖2dA(x)

}
<∞. (7)

Then there exists a neighborhood Θ of the true value θ0 of parameter such that the

log- partial likelihood function ln(θ) is concave in θ ∈ Θ in probability.

Examining the proof of Proposition 1, it can be seen that (6) holds under the

assumptions in Proposition 1. As a consequence of the concavity of the log- partial

likelihood function and with the aid of Lemma 1 below, we can prove the consistency

of the MPLE analogous to the proof of Theorem 8.3.1 [Fleming and Harrington

(1991) [5]] or Theorem 1 [Tan (2007) [9]].

Theorem 2. (Consistency) Assume that the assumptions in Theorem 1 hold. Suppose

there exist a neighborhood Θ of θ0 and scalar functions mj on Θ× [0, τ ] such that

sup
x∈[0, τ ], θ∈Θ0

‖Sn(x, gθ)[g
j
θ]−mj(θ, x)‖ P−→ 0, j = 1, 2. (8)

Suppose

∂

∂θ

∫ τ

0

ss(x, gθ0)[gθ]h0(x) dx
∣∣∣
θ=θ0

=
∂

∂θ

∫ τ

0

log(s(0)(θ, x))s(0)(θ0, x)h0(x) dx
∣∣∣
θ=θ0

, (9)

where ss is the operator defined by ss(t, g)[h] = E
(
h(t, Z(t))Y (t) exp(g(t, Z(t)))

)
for a

scalar function h. Then the MPLE θ̂n is consistent for θ0, i.e., θ̂n
p→ θ0.

Remark 3. One can verify that (8) is satisfied under the assumptions of Proposi-

tion 1, while (9) is met if differentiation and integration on both sides can be swapped.
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As usual, the score function Un(θ) can be expressed as a stochastic integral,

Un(θ) ≡ ∂ln(θ)

∂θ
=

n∑
i=1

∫ ∞
0

[
ġθ(t, Zi(t))−

S
(1)
n (θ, t)

S
(0)
n (θ, t)

]
dNi(t).

Since dAi(t) = Yi(t) exp(gθ0(t, Zi(t)))h0(t)dt, it follows

n∑
i=1

∫ ∞
0

[
ġθ0(t, Zi(t))−

S
(1)
n (θ0, t)

S
(0)
n (θ0, t)

]
dAi(t)

=

∫ ∞
0

nS(1)
n (θ0, t)h0(t) dt−

∫ ∞
0

S
(1)
n (θ0, t)

S
(0)
n (θ0, t)

nS(0)
n (θ0, t)h0(t) dt = 0, (10)

so that

Un(θ0) =
n∑
i=1

∫ ∞
0

[
ġθ0(t, Zi(t))−

S
(1)
n (θ0, t)

S
(0)
n (θ0, t)

]
dMi(t)

is a martingale. Let the score process be defined by

Un(θ0, t) =
n∑
i=1

∫ t

0

[
ġθ0(x, Zi(x))− S

(1)
n (θ0, x)

S
(0)
n (θ0, x)

]
dMi(x).

For an arbitrary parametric log- relative risk gθ which possesses continuous first order

derivative, we can prove the asymptotic normality of the score process. The proof uses

the martingale central limit theorem and can be completed analogous to the proof of

Theorem 8.2.1 [Fleming and Harrington (1991) [5]] or Theorem 2 [Tan (2007) [9]].

Theorem 3. (Asymptotic Normality of the Score Process) Suppose that Assump-

tion is satisfied. Then the following hold.

(a) n−1/2Un(θ0, t) converges in distribution to a Gaussian process, where each com-

ponent of the Gaussian process has independent increments, the mean of the limiting

process is zero and the covariance matrix of the limiting process at time t is given by

Σ(θ0, t) =

∫ t

0

v(θ0, x)s(0)(θ0, x)h0(x) dx.

(b) If θ̂n is a consistent estimator of θ0, then the substitution estimator Σ(θ̂n, t) =

1
n

∑n
i=1

∫ t
0
Vn(θ̂n, x)dNi(x) of Σ(θ0, t) satisfies

sup
t∈[0,τ ]

∥∥∥ 1

n

n∑
i=1

∫ t

0

Vn(θ̂n, x) dNi(x)− Σ(θ0, x)
∥∥∥ P−→ 0, n→∞.
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We now present the asymptotic normality of the MPLE under the assumption

of first order continuous differentiability of gθ. Our proof uses Lemma 1, which is a

generalized version of the convexity lemma (Pollard (1991) [2]). As Pollard pointed

out, the convexity lemma allows to derive the limit distribution directly, without

preliminary consistency arguments, so that it simplifies the asymptotic theory for

estimators defined by minimization of a convex criterion function. To apply the

convexity lemma to our case, we have slightly relaxed the convexity assumption, see

Lemma 1. Here is the main result of this article with the proof delayed to Section 4.

Theorem 4. (Asymptotic Normality of MPLE) Suppose Assumption holds. As-

sume as θ tends to θ0,

E
{∫ τ

0

‖ġθ − ġθ0‖2(x, Z(x)) dA(x)

}
= o(1). (11)

Assume there allows a two-term Taylor expansion:

E[n−1ln(θ)] = E[n−1ln(θ0)]− (1/2)(θ − θ0)>Σ(θ0, τ)(θ − θ0) + op(‖θ − θ0‖2). (12)

If (3) holds, then θ̂n satisfies the stochastic expansion,

n1/2(θ̂n − θ0) = Σ−1(θ0, τ)n−1/2Un(θ0, τ) + op(1). (13)

Accordingly θ̂n is asymptotically normal with mean zero and variance-covariance ma-

trix Σ−1(θ0, τ), i.e., n1/2(θ̂n − θ0) =⇒ N (0,Σ−1(θ0, τ)).

2.2 Free-Knot Polynomial Spline Models

Nonlinear models are widely used in order for better understanding of various phenom-

ena in medical and industrial sciences and other areas. Our formulation of the general

parametric relative risk rθ(t, Z(t)) allows many different parameterizations. One ex-

ample of this is rθ(z) = (1+[θ>2 z]θ1)1/θ3 , θ = (θ1, θ2, θ3) ∈ (0,∞)×(−∞,∞)p×(0,∞).

This is a family of models given in Cox and Oakes (1984) [15] and can be used to

12



discriminate between the linear model rθ(z) = 1 + θ>2 z (θ1 = θ3 = 1) and log- linear

(Cox) model rθ(z) = exp(θ>2 z) (θ1 = θ3 → 0). Another example is the logistic model

rθ(z) = log(1 + exp(θ>z)). Prentice and Self (1983) [3] investigated the model of the

form rθ(z) = r(β>z), where r is a non-negative twice differentiable function. With our

developed theory, r is allowed to be a function of continuous first order derivative.

Many other examples can be found in Andersen, Borgan, Gill and Keiding (1993)

[16].

Here we shall derive the asymptotic normality of the MPLE when the log- relative

risk is expressed as a free-knot spline polynomial. Since free-knot cubic or higher or-

der spline polynomials possess continuous second order derivatives, it is not difficult

to derive the asymptotic normality of the MPLE’s, e.g., by an application of Theo-

rem 4. However, the asymptotic normality of the MPLE in a free-knot cubic spline

polynomial model does not follow from Borgan (1984) [4] since the latter assumed

continuous third order differentiability, while a cubic spline polynomial only possesses

continuous second order differentiability. In what follows we shall consider a free-knot

quadratic spline polynomial model with knots in q risk factors:

gθ(Z) =

q∑
i=1

(
β1izi + β2iz

2
i + β3i(zi − κ1i)

2
+ + ...+ β(mi+2)i(zi − κmii)2

+

)
,

where both regression coefficients and knots, θ> =
(
β1i, ..., β(mi+2)i, κ1i, ..., κmii

)q
i=1

,

are parameters of interest, Z> = (z1, ..., zq) are risk factors, and (z − κ)+ is the

positive part of z − κ (i.e., (z − κ)+ = z − κ if z − κ > 0 otherwise it equals zero).

For ease of exposition, it is without loss of generality to assume q = 1 (a single risk

factor). Let us denote the parameter by θ> = (β1, β2, β3, κ), and the unknown true

value of parameter by θ>0 = (β10, β20, β30, κ0). Then a free-knot truncated quadratic

spline polynomial with one free-knot is

gθ(z) = β1z + β2z
2 + β3(z − κ)2

+, z ∈ R. (14)
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Here the intercept is excluded since it can be absorbed in the baseline hazard function.

This has first order derivative give by

ġθ(z) =
(
z, z2, (z − κ)2

+, −2β3(z − κ)+

)>
. (15)

Clearly ġθ(z) is continuous in θ, but the second order partial derivative of gθ(Z) w.r.t.

κ does not exist at knot κ = z. Under the assumption that there is a neighborhood of

the true knot value in which there are no observations lie, Goetghebeur and Pocock

(1995) [8] and Tan (2007) [9] proved the asymptotic normality of the MPLE of the

parameter θ. The former conjectured that the neighborhood restriction can be re-

laxed. Here we confirm their conjecture and prove the asymptotic normality of the

MPLE when gθ is a free-knot quadratic spline with the proof postponed to Section 4.

Theorem 5. (Asymptotic Normality of MPLE for a Free-knot Quadratic Spline

Model) Consider the free-knot quadratic spline polynomial model specified in (14).

Suppose the assumptions in Proposition 1 are satisfied. Assume that Q has a con-

tinuous density q with respect to the Lesbegue measure. Then the MPLE θ̂n satisfies

n1/2(θ̂n − θ0) =⇒ N (0,Σ−1(θ0, τ)) .

Truncated polynomial splines are computationally expensive, for example, to eval-

uate a truncated polynomial spline at a point near the right end, it is necessary to

evaluate all of the basis elements and compute the entire sum. B- splines overcome

this difficulty and each B- spline basis function is nonzero only on a relatively small

set. For knots κ1 < κ2 < ... < κk, a B-spline basis can be represented as

Bi(z) =
k∑
j=1

(θ1(κ) + θ2(κ)(z − κj) + θ3(κ)(z − κj)2
+),

where θi(κ), i = 1, 2, 3 are functions of the knot vector κ = (κ1, ..., κk) that are at

least twice continuously differentiable w.r.t. each knot. More details can be found in

14



Schumaker (1981) [17], in particular Theorem 4.9. Thus it is not difficult to obtain

an analog of Theorem 5 for B-splines and we shall omit the details.

We can lean on splines to express the departure from proportional hazards to non-

proportional hazards model. In the Cox model, one basic assumption is proportional

hazards. To check this model assumption, consider a non-proportional hazards model

with constant time in covariate z,

h(t) = h0(t) exp {(θ1 + θ2Gθ3(t))z} , (16)

where θ1 can be viewed as the intercept and Gθ3(t) reflects the the nature of time

dependency. Then the assumption of proportional hazards can be tested via hypoth-

esis θ2 = 0. This formulation also accommodates linear or quadratic decline in the

log- relative risk, changepoint, and crossing hazards situations. Knots are the change-

points. O’Quigley and Natarajan (2004) assumed Gθ(t) = 1[t ≤ θ] − 1[t > θ] to

express a sudden change in effect at some unknown time point, where θ is an un-

known changepoint in time. This is, in fact, a free-knot constant spline model and is

discontinuous at the changepoint θ. When real situations require continuity in both

the model and its derivative, one choice is a free-knot quadratic spline polynomial

model, which is the simplest model in the sense that even though linear spline poly-

nomials are simpler than quadratic splines, linear splines do not have derivatives at

the knots. A free-knot quadratic spline with constant time in covariate z and knots

in time is of the form

gθ(t, z) = (β0 + β1(t− κ) + β2(t− κ)2
+)z, (17)

where θ = (β0, β1, β2, κ)> is the parameter of interest. The first order derivative is

ġθ(t, z) =
∂gθ
∂θ

(t, z) =
(
1, t− κ, (t− κ)2

+, −2β2(t− κ)+

)>
z, (18)

which is a continuous function. The second order derivative of gθ(t, z) w.r.t. κ does

not exist. Specifically, the fourth component, ġθ,4 = −2β2(t − κ)+ of gθ(t, z), is
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not differentiable w.r.t. to κ. Analogous to Theorem 5, we can derive the asymp-

totic normality of the MPLE with some additional work in establishing an analog of

Proposition 1, and we shall omit the details.

3 Proofs of Concavity

Under the assumption of continuous first order differentiability of a semiparametric

parametric model, we cannot use the usual second order derivative (matrix) to prove

concavity. In this section, we employ Gâteaux-differential to prove the concavity of

the log-partial likelihood function, that is, we show that the Gâteaux-differential of

the log-partial likelihood function is monotonically decreasing. In the end, we prove

the corollary.

Proof of Theorem 1. Fix t ∈ [0, τ ], let

Xn(θ, t) =
1

n

n∑
i=1

∫ t

0

[
(gθ − gθ0)(x, Zi(x))− log

(
S(0)
n (θ, x)/S(0)

n (θ0, x)
)]
dNi(x).

Clearly Xn(θ, τ) = n−1(ln(θ)− ln(θ0)). The derivative is given by

Ẋn(θ, t) =
∂Xn(θ, t)

∂θ
=

1

n

n∑
i=1

∫ t

0

[
ġθ(x, Zi(x))− S

(1)
n (θ, x)

S
(0)
n (θ, x)

]
dNi(x).

For θ1, θ2 ∈ Θ, we write

Ẋn(θ1, t)− Ẋn(θ2, t) =
1

n

n∑
i=1

∫ t

0

[ġθ1(x, Zi(x))− ġθ2(x, Zi(x))] dNi(x)

−
∫ t

0

[S(1)
n (θ1, x)

S
(0)
n (θ1, x)

− S
(1)
n (θ2, x)

S
(0)
n (θ2, x)

]dN̄(x)

n
.

Break the last integrand,

∆(θ1, θ2, x) ≡ S
(1)
n (θ1, x)

S
(0)
n (θ1, x)

− S
(1)
n (θ2, x)

S
(0)
n (θ2, x)

=
S

(1)
n (θ1, x)− S(1)

n (θ2, x)

S
(0)
n (θ1, x)

+
S

(1)
n (θ2, x)

S
(0)
n (θ2, x)

S
(0)
n (θ2, x)− S(0)

n (θ1, x)

S
(0)
n (θ1, x)

,
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and write

S(1)
n (θ1, x)− S(1)

n (θ2, x) =
1

n

n∑
i=1

[ġθ1 − ġθ2 ](x, Zi(x))Yi(x) exp(gθ1(x, Zi(x)))

+
1

n

n∑
j=1

ġθ2(x, Zi(x))Yi(x) [exp(gθ1(x, Zi(x)))− exp(gθ2(x, Zi(x)))] ,

so that

S
(1)
n (θ1, x)− S(1)

n (θ2, x)

S
(0)
n (θ1, x)

= EIθ1,x [(ġθ1 − ġθ2)(x, ZI(x))]

+
1

nS
(0)
n (θ1, x)

n∑
i=1

ġθ2(x, Zi(x))Yi(x) [exp(gθ1(x, Zi(x)))− exp(gθ2(x, Zi(x)))] .

Hence we have

∆(θ1, θ2, x) = VarIθ1,x [ġθ2(x, ZI(x))] (θ1 − θ2) + EIθ1,x [(ġθ1 − ġθ2)(x, ZI(x))]

+an(θ1, θ2, x) + bn(θ1, θ2, x), (19)

where an(θ1, θ2, x) = a1n(θ1, θ2, x)/S
(0)
n (θ1, x)− EIθ1,x

[
ġ⊗2
θ2

(x, ZI(x))
]

(θ1 − θ2),

an1(θ1, θ2, x) =
1

n

n∑
i=1

ġθ2(x, Zi(x))Yi(x) [exp(gθ1(x, Zi(x)))− exp(gθ2(x, Zi(x)))] ,

bn(θ1, θ2, x) =
S

(1)
n (θ2, x)

S
(0)
n (θ2, x)

S
(0)
n (θ2, x)− S(0)

n (θ1, x)

S
(0)
n (θ1, x)

−
(
EIθ1,x [ġθ2(x, ZI(x))]

)⊗2
(θ2 − θ1).

By the Taylor formula, there is θ∗ lying between θ1 and θ2 and possibly depending on

n such that

an1(θ1, θ2, x) =
1

n

n∑
i=1

[ġθ2 ġ
>
θ∗ ](x, Zi(x))Yi(x) exp(gθ∗(x, Zi(x)))(θ1 − θ2)

= Sn(t, gθ∗)[ġθ2 ġ
>
θ∗ ](θ1 − θ2).

Accordingly,

an(θ1, θ2, x) =
(
Sn(x, gθ∗)[ġθ2 ġ

>
θ∗ ]− Sn(x, gθ1)[ġθ2 ġ

>
θ2

]
)
/S(0)

n (θ1, x)(θ1 − θ2).
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Hence it follows from Assumption (II)-(IV) and (3) that an(θ1, θ2, x) = (θ1−θ2)op(1).

Similarly bn(θ1, θ2, x) = (θ1 − θ2)op(1), both uniformly in x ∈ [0, τ ]. Consequently,

Ẋn(θ1, t)− Ẋn(θ2, t) = −
∫ t

0

VarIθ1,x [ġθ2(x, ZI(x))]
dN̄(x)

n
(θ1 − θ2)

−
∫ t

0

(an + bn)(θ1, θ2, x)
dN̄(x)

n
+ dn(θ1, θ2, x)

= −
∫ t

0

VarIθ1,x [ġθ2(x, ZI(x))]
dN̄(x)

n
(θ1 − θ2) + dn(θ1, θ2) + op(θ1 − θ2),

where

dn(θ1, θ2) =
1

n

n∑
i=1

∫ t

0

[
(ġθ1 − ġθ2)(x, Zi(x))− EIθ1,x[(ġθ1 − ġθ2)(x, ZI(x))]

]
dNi(x).

To dN = dM − dA there corresponds the decomposition dn(θ1, θ2) = dn,1(θ1, θ2) −

dn,2(θ1, θ2). By Lenglart’s inequality (see e.g. Theorem 3.4.1, Fleming and Harrington

(2005) [5]),

dn,1(θ1, θ2) =
1

n

n∑
i=1

∫ t

0

[(ġθ1 − ġθ2)(x, Zi(x))− EIθ1,x[(ġθ1−ġθ2)(x, ZI(x))]]dMi(x)
P−→ 0.

With dAi(x) = Yi(x) exp(gθ0(t, Zi(t)))h0(x) dx, we get

dn,2(θ1, θ2) =
1

n

n∑
i=1

∫ t

0

(ġθ1 − ġθ2)(x, Zi(x))Yi(x)egθ0 (x,Zi(x))h0(x) dx

− 1

n

n∑
i=1

∫ t

0

(ġθ1 − ġθ2)(x, Zi(x))Yi(x)egθ1 (x,Zi(x))S
(0)
n (θ0, x)

S
(0)
n (θ1, x)

h0(x) dx

=
1

n

n∑
i=1

∫ t

0

(ġθ1 − ġθ2)(x, Zi(x))Yi(x)
[
egθ0 (x,Zi(x)) − egθ1 (x,Zi(x))

]
h0(x)dx

− 1

n

n∑
i=1

∫ t

0

(ġθ1 − ġθ2)(x, Zi(x))Yi(x)egθ1 (x,Zi(x))

[
S

(0)
n (θ0, x)

S
(0)
n (θ1, x)

− 1

]
h0(x) dx

= (θ1 − θ2)op(1), as θ1, θ2 → θ0. (20)

To claim the last equality (20), we first note that (3) implies that for θ1, θ2 ∈ Θ,

uniformly in t ∈ [0, τ ],

E {(ġθ1 − ġθ2)(t, Z(t))Y (t)[exp(gθ1(t, Z(t)))− exp(gθ2(t, Z(t)))]} = o(‖θ1−θ2‖). (21)
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This, the law of large numbers, (I)-(IV) and (3) yield (20). Thus dn(θ1, θ2) = (θ1 −

θ2)op(1). Combining the above, we conclude

(θ1 − θ2)>
[
Ẋn(θ1, t)− Ẋn(θ2, t)

]
≤ 0, θ1, θ2 ∈ Θ,

as n is sufficiently large and the neighborhood Θ of θ0 is small. This implies, by Propo-

sition 5.5 of Ekeland and Temam (1976) [18], that Xn(θ, τ) hence ln(θ) is concave in

θ ∈ Θ for large n and small neighborhood Θ of θ0. 2

Proof of Corollary 1. We only need to prove that the second term in (4)

converges to zero in probability as Θ shrinks to θ0 and n tends to infinity. To this

end, we break it as follows,∥∥∥ 1

n

n∑
i=1

∫ τ

0

{
g̈θ(x, Zi(x))− EIθ,x[g̈θ(x, ZI(x))]

}
dNi(x)

∥∥∥
≤
∥∥∥ 1

n

n∑
i=1

∫ τ

0

{
g̈θ(x, Zi(x))− g̈θ0(x, Zi(x))

−EIθ,x[g̈θ(x, ZI(x))] + EIθ0,x[g̈θ0(x, ZI(x))]
}
dNi(x)

∥∥∥ (22)

+
∥∥∥ 1

n

n∑
i=1

∫ τ

0

{
g̈θ0(t, Zi(t))− EIθ0,x[g̈θ0(x, ZI(x))]

}
dNi(x)

∥∥∥. (23)

Thus, the desired zero limit is implied by both (22) and (23) converge to zero in

probability. The proof of (23) is simple. Using dN = dM + dA, it is implied by the

following two limits:

1

n

n∑
i=1

∫ τ

0

{
g̈θ0(x, Zi(x))− EIθ0,x[g̈θ0(x, ZI(x))]

}
dMi(x)

P−→ 0, (24)

and

1

n

n∑
i=1

∫ τ

0

{
g̈θ0(x, Zi(x))− EIθ0,x[g̈θ0(x, ZI(x))]

}
dAi(x)

P−→ 0.

Clearly the latter holds since it is equal to∫ τ

0

{ n∑
i=1

g̈θ0(x, Zi(x))pi(θ0, x)− EIθ0,x[g̈θ0(x, ZI(x))]
}
S(0)
n (θ0, x)h0(x)dx = 0.
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Applying Lenglart’s inequality [Theorem 3.4.1, Fleming and Harrington (1991) [5]]

to every entry of (24), we have for ε > 0 and η > 0,

P
{
| 1
n

n∑
i=1

∫ τ

0

[
g̈θ0(x, Zi(x))− EIθ0,x[g̈θ0(x, ZI(x))]

]
j,k
dMi(x)|2 ≥ ε

}
≤ η

ε
+ P

{
n−2

n∑
i=1

∫ τ

0

[
g̈θ0(x, Zi(x))− EIθ0,x[g̈θ0(x, ZI(x))]

]2

j,k
dAi(x) ≥ η

}
≤ η

ε
+ P

{
n−2

n∑
i=1

∫ τ

0

[
g̈θ0(x, Zi(x))

]2

j,k
dAi(x) ≥ η

}
.

By the law of large numbers, it follows from (7) that the last probability is zero when

n is sufficiently large for any η > 0. Therefore by taking η = ε2 we obtain (24) as ε

tends to zero. Bound (22) by the sum of the following two expressions:

‖ 1

n

n∑
i=1

∫ τ

0

{g̈θ(x, Zi(x))− g̈θ0(x, Zi(x))} dNi(x)‖ ≡ D, (25)

and

‖
∫ τ

0

{
EIθ,x[g̈θ(x, ZI(x))]− EIθ0,x[g̈θ0(x, ZI(x))]

} dN̄(x)

n
‖. (26)

Using dN = dM + dA, we have D ≤ D1 + D2, where D1, D2 are obtained from D

with N replaced by M and A respectively. Analogously for ε > 0 and η > 0,

P([D1]jk ≥ ε) = P
{
| 1
n

n∑
i=1

∫ τ

0

[
g̈θ(x, Zi(x))− g̈θ0(x, Zi(x))

]
j,k
dMi(x)|2 ≥ ε

}
≤ η

ε
+ P

{
n−2

n∑
i=1

∫ τ

0

[
g̈θ(x, Zi(x))− g̈θ0(x, Zi(x))

]2

j,k
dAi(x) ≥ η

}
≤ η

ε
+ P

{
n−2

n∑
i=1

∫ τ

0

[
g̈θ(x, Zi(x))

]2

j,k
dAi(x) ≥ η/4

}
+P
{
n−2

n∑
i=1

∫ τ

0

[
g̈θ0(x, Zi(x))

]2

j,k
dAi(x) ≥ η/4

}
.

Again by the law of large number, it follows from (7) that the last two probabilities

converge to zero as n tends to infinity. By taking η = ε2 we show D1 converges to
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zero in probability as ε tends to zero. By Assumption (I) and the equicontinuity of

s2 in (6),

D2 = ‖ 1

n

n∑
i=1

∫ τ

0

{g̈θ(x, Zi(x))− g̈θ0(x, Zi(x))} dAi(x)‖

≤
∫ τ

0

‖Sn(x, gθ0)[g̈θ]− s2(θ0, θ, x)‖h0(x) dx

+

∫ τ

0

‖Sn(x, gθ0)[g̈θ0 ]− s2(θ0, θ0, x)‖h0(x) dx

+

∫ τ

0

‖s2(θ0, θ, x)− s2(θ0, θ0, x)‖h0(x) dx

P−→ 0.

Therefore D
p→ 0 as Θ shrinks to θ0 and n tends to infinity. Let Sn,2(θ, x) =

Sn(x, gθ)[g̈θ]. Then the integrand in (26) can be broken as

EIθ,x[g̈θ(x, ZI(x))]− EIθ0,x[g̈θ0(x, ZI(x))] =
Sn,2(θ, x)

S
(0)
n (θ, x)

− Sn,2(θ0, x)

S
(0)
n (θ0, x)

=
Sn,2(θ, x)− Sn,2(θ0, x)

S
(0)
n (θ, x)

− Sn,2(θ0, x)[S
(0)
n (θ, x)− S(0)

n (θ0, x)]

S
(0)
n (θ0, x)S

(0)
n (θ, x)

≡ Bn(θ, x)− Cn(θ, x), say.

Since S
(0)
n (θ, x) is bounded away from zero (by 1/η > 0 say) for large n, it follows∥∥∥∫ τ

0

Bn(θ, x)
dN̄(x)

n

∥∥∥ ≤ η

n
N̄(τ) sup

x∈[0,τ ]

‖Sn,2(θ, x)− Sn,2(θ0, x)‖.

The boundedness in probability of 1
n
N̄(τ) and condition (6) imply that the above is

negligible in probability as Θ shrinks to θ0 and n tends to infinity. A similar argument

verifies ∥∥∥∫ τ

0

Cn(θ, x)
dN̄(x)

n

∥∥∥
also becomes negligible in probability as Θ shrinks to θ0 and n tends to infinity.

Combining the above shows that (26) and hence (22) is negligible in probability

again as Θ shrinks to θ0 and n tends to infinity. Thus we have shown the negligibility

of both (22) and (23).
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It has been shown the last line in (4) converges to zero in probability for all θ ∈ Θ

when n→∞ and Θ shrinks to θ0. Since Vn(θ, x) is the urn model variance-covariance

matrix of ġθ(x, ZI(x)) at time point x, it is positive definite and− 1
n

∑n
i=1

∫ τ
0
Vn(θ, x)dNi(x)

is negative definite. This and Assumption (V) imply that Xn(θ, τ) is a concave func-

tion of θ when n is large and θ ∈ Θ with small neighborhood Θ of θ0. 2

4 Proofs of Asymptotic Normality

In this Section, we first prove the convexity lemma which slightly relaxes the convex-

ity assumption of the existing result (Andersen and Gill(1982)[1]; Pollard (1991)[2];

Lemma 8.3.1, Fleming and Harrington (1991) [5]). Using this lemma and the char-

acterization of minimizers, we prove the asymptotic normality of MPLE’s. As an

application of the obtained results, we show the asymptotic normality of MPLE’s in

a free-knot quadratic spline polynomial model.

Lemma 1. Let {λn(θ) : θ ∈ Θ} be a sequence of random functions defined on a con-

vex, open subset Θ of Rd. Suppose that there exists a sequence {Cn} of measurable

sets with P (Cn)→ 1 such that each λn(θ) is convex on Cn for every θ ∈ Θ. Suppose

λ(·) is a real-valued function on Θ for which λn(θ) → λ(θ) in probability for each

θ ∈ Θ. Then the following hold.

(1) For each compact subset K of Θ, supθ∈K |λn(θ)− λ(θ)| P−→ 0. The function λ(·)

is necessarily convex in Θ.

(2) If λn has a unique maximum at θn and λ has one at θ0, then θn
p→ θ0 as n→∞.

Proof. Fix ε > 0. The proof proceeds the same as Pollard [2], but the last two

limits in his proof are replaced with

P
(

sup
θ∈K

(λn(θ)− λ(θ)) > 2ε, Cn
)
→ 0, P

(
inf
θ∈K

(λn(θ)− λ(θ)) < −3(d+ 1)ε, Cn
)
→ 0,
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which clearly hold by assumption. Therefore,

P
(

sup
θ∈K

(λn(θ)− λ(θ)) > 2ε
)
→ 0, P

(
inf
θ∈K

(λn(θ)− λ(θ)) < −3(d+ 1)ε
)
→ 0.

These yield the desired uniform convergence. 2

Proof of Theorem 4: Recall Xn(θ, t) in the proof of Theorem 1, and let Xn(θ) =

Xn(θ, τ) and Bn(θ) = Bn(θ, τ), where

Bn(θ, t) =
1

n

n∑
i=1

∫ t

0

[
(gθ − gθ0)(x, Zi(x))− log

(
S(0)
n (θ, x)/S(0)

n (θ0, x)
)]
dAi(x).

Then Xn(θ)− An(θ) is a martingale. The derivatives of Xn(θ) and Bn(θ) are

Ẋn(θ) =
1

n

n∑
i=1

∫ τ

0

(
ġθ(x, Zi(x))−

(
S(1)
n (θ, x)/S(0)

n (θ, x)
))
dNi(x),

Ḃn(θ) =
1

n

n∑
i=1

∫ τ

0

(
ġθ(x, Zi(x))−

(
S(1)
n (θ, x)/S(0)

n (θ, x)
))
dAi(x).

For α ∈ Rp, let αn = n−1/2α and Dn(α) = n
(
Xn(θ0 + αn) − α>n Ẋn(θ0)

)
. The

asymptotic behaviors of the MPLE can be derived from the investigation of Dn(α).

Since Cn(α) ≡ Xn(θ0 + αn)− Bn(θ0 + αn)− α>n [Ẋn(θ0)− Ḃn(θ0)] is a martingale, it

follows

Var {nCn(α)} = nE
(∫ τ

0

c2
n(x, Z1(x)) dA1(x)

)
, (27)

where cn(x, z) = cn1(x, z) − cn2(x, z) with cn1(x, z) = (gθ0+αn − gθ0 − α>n ġθ0)(x, z)

and cn2(x, z) = log[S
(0)
n (θ0 + αn, x)/S

(0)
n (θ0, x)] − α>n [S

(1)
n (θ0, x)/S

(0)
n (θ0, x)]. Using

c2
n ≤ 2c2

n1 + 2c2
n2, we bound Var {nCn(α)} ≤ 2Vn1(α) + 2Vn2(α), where

Vni(α) = nE
(∫ τ

0

c2
ni(x, Z1(x)) dA1(x)

)
, i = 1, 2.

Then it follows from (11) and the Taylor expansion that Vn1 → 0 as n→∞. By As-

sumption (I), the uniform convergence in (II), the equicontinuity and the positivity

of s(0) in (IV), and the Taylor expansion at α = 0, it can be seen that Vn2(α) → 0,

so that Var {nCn(α)} → 0 as n→∞. Using again (11), it can be shown analogously
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that Var
{
n[Bn(θ0 +αn)−α>n Ḃn(θ0)]} → 0. Therefore, we conclude Var

{
Dn(α)

}
→ 0

as n→∞. This last limit immediately yields as n tends to infinity,

Dn(α)− E(Dn(α))
P−→ 0, α ∈ Rp. (28)

Noticing that E(Ẋn(θ0)) = 0 by (10) and Xn(θ) = n−1(ln(θ) − ln(θ0)), the two-term

Taylor expansion (12) now yields

Dn(α) = −1

2
α>Σ(θ0, τ)α + op(1), α ∈ Rp (29)

for large n. Since −Xn(θ) is convex in θ in a small neighborhood Θ of θ0, it follows

from Lemma 1 that for arbitrary M > 0 and large n,

sup
‖α‖≤M

∣∣∣n{Xn(θ0 + n−1/2α)− n−1/2α>Ẋn(θ0)
}

+
1

2
α>Σ(θ0, τ)α

∣∣∣ = op(1). (30)

Let X̃n(α) = Xn(θ0+n−1/2α) and α̂n = arg maxα∈Rp X̃n(α), so that α̂n = n1/2(θ̂n−θ0).

Then for any random variable γ bounded in probability, the above equality implies

X̃n(γ) = γ>n−1/2Un(θ0)− 1

2
γ>Σ(θ0, τ)γ + op(1). (31)

This shows that X̃n(γ) can be approximated by a quadratic function in γ, which is

uniquely maximized by γ̂n = Σ−1(θ0, τ)n−1/2Un(θ0). The maximized value of X̃n(γ)

is approximately X̃n(γ̂n) = 1
2
γ̂>n Σ(θ0, τ)γ̂n. This together with the replacement of

n−1/2Un(θ0) by Σ(θ0, τ)γ̂n in (31) gives

X̃n(γ) = X̃n(γ̂n)− 1

2
(γ̂n − γ)>Σ(θ0, τ)(γ̂n − γ) + op(1) (32)

for any random γ bounded in probability. Now using the concavity of X̃n(·) in a

small neighborhood of the origin and the characterization of the maximizer, one can

show γ̂n − α̂n
p→ 0 as n → ∞ as in Pollard (1991) [2]. Specifically, fix ε > 0. If

‖α̂n − γ̂n‖ > ε, then there exists γ̂∗n on the line segment joining α̂n and γ̂n such that

γ̂∗n − γ̂n = ευn, where υn is a unit vector. From this equality and the boundedness of
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γ̂n in probability it immediately follows that γ̂∗n is bounded in probability, so that we

can substitute γ = γ̂∗n in (32) to obtain

X̃n(γ̂∗n) = X̃n(γ̂n)− 1

2
ε2υ>n Σ(θ0, τ)υn + op(1). (33)

Since X̃n(·) is concave and X̃n(α̂n) ≥ X̃n(γ̂n), it follows that X̃n(γ̂∗n) ≥ X̃n(γ̂n).

Accordingly, the preceding display implies

1

2
ε2υ>n Σ(θ0, τ)υn + op(1) ≤ 0.

This shows that P(‖α̂n − γ̂n‖ > ε) ≤ P(1
2
ε2υ>n Σ(θ0, τ)υn + op(1) ≤ 0)→ 0 as n tends

to infinity. Hence α̂n = γ̂n + op(1) and the desired (13) follows. 2

Proof of Theorem 5: We shall prove the theorem by verifying the assumptions

in Theorem 4. First, we verify Assumption by Proposition 1 and (3) by Remark 1.

As discussed in Subsection 2.2, a free-knot truncated quadratic polynomial spline

gθ(z) = β1z + β2z
2 + β3(z − κ)+ has continuous first order derivative given by

ġθ(z) =
(
z, z2, (z − κ)2

+,−2β3(z − κ)+

)>
at θ0, where θ = (β1, β1, β3, κ)>. By assumption, Z is bounded, say |Z| ≤ B for

some B > 0. This, the continuity of ġθ at θ0 and an application of the dominated

convergence theorem yield (11). Therefore we are left to verify the two-term expansion

(12). Recall in the proof of Theorem 4, for fixed α ∈ R4 we denote Dn(α) = n
(
Xn(θ0+

n−1/2α)− α>n Ẋn(θ0)
)

with αn = θ0 + n−1/2α and Xn(θ) = n−1(ln(θ)− ln(θ0)). Since

E(Ẋn(θ0)) = 0 by (10), the desired (12) can be derived from

E[Dn(α)] = −1

2
α>Σ(θ0, τ)α + op(1), n→∞. (34)

To show this, we first prove

∂2

∂α∂α>
E[Dn(α)]

∣∣
α=0

= −Σ(θ0, τ) + op(1). (35)
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By the dominated convergence theorem, the following derivative can pass the expec-

tation, so that

∂

∂θ
E
{∫ τ

0

{
gθ(Z) dN(t)− log

[
S(0)
n (θ, t)/S(0)

n (θ0, t)
]
n−1dN̄(t)

}} ∣∣∣
θ=θ0

= E
{∫ τ

0

{
ġθ(Z) dA(t)−

[
S(1)
n (θ, t)/S(0)

n (θ, t)
]
n−1dĀ(t)

} ∣∣
θ=θ0

}
.

Next we consider further differentiation of the above expectation. Notice that the

first three components of ġθ(z) possess continuous partial derivatives while the fourth

component is not differentiable w.r.t. κ at z. Let ġθ,4(z) denote the fourth com-

ponent of ġθ(z), so that ġθ,4(z) = −2β3(z − κ)+. Then the fourth component of

E
∫ τ

0
ġθ(Z) dA(t) can be expressed as

E
∫ τ

0

ġθ,4(Z) dA(t) = E
{∫ τ

0

Y (t)h0(t) dt

∫ B

κ

−2β3(z − κ) exp(gθ0(z))q(z) dz

}
,

where q is the density of Q. Since q is continuous, it follows that the right side of the

preceding equality is differentiable w.r.t. κ at κ0 with the partial derivative

∂

∂κ
E
{∫ τ

0

ġθ,4(Z) dA(t)

} ∣∣∣ = E
{∫ τ

0

Y (t)h0(t) dt

∫ B

κ

2β3 exp(gθ0(z))q(z) dz

}
(36)

Thus E
{∫

gθ(Z) dN(t)
}

has second order derivative at θ0. Analogously, one can show

that s(1)(θ, t) is differentiable w.r.t. θ at θ0. In particular, the fourth component of

s(1)(θ, t) can be written as

E
{∫ B

−B
ġθ,4(z)Y (t) exp(gθ(z)) dQ(z)

}
= E

{∫ B

κ

−2β3(z − κ)Y (t) exp(gθ(z)) dQ(z)

}
.

This is differentiable w.r.t. κ at κ0 with the partial derivative equal to

E
{
ġ2
θ,4(Z)Y (t) exp(gθ(Z))

}
+ E

{∫ B

κ

2β3Y (t) exp(gθ(z)) dQ(z)

}
. (37)

After some algebra, we get

∂

∂θ>
s(1)(θ0, t) = E {∆(Z, θ0)Y (t) exp(gθ0(Z))}+E

{
ġθ0(Z)⊗2Y (t) exp(gθ0(Z))

}
, (38)
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where ∆(z, θ) is a 4 × 4 matrix with entries ∆i,j(z, θ) = 0 except ∆3,4(z, θ) =

∆4,3(z, θ) = −2(z − κ)+ and ∆4,4(z, θ) = 2β31[κ,B](z). Similarly, we derive

∂2

∂θ∂θ>
E
{∫ τ

0

gθ(Z) dN(t)

} ∣∣∣
θ=θ0

= E
{∫ τ

0

∆(Z, θ0)Y (t) exp(gθ0(Z))h0(t) dt

}
. (39)

In view of Proposition 1, (II), (38) and (39), we obtain

∂2

∂θ∂θ>
E
{∫ τ

0

gθ(Z) dN(t)− log
[
S(0)
n (θ, t)/S(0)

n (θ0, t)
]
n−1dN̄(t)

} ∣∣∣
θ=θ0

=
∂

∂θ>
E
{∫ τ

0

(
ġθ(Z)− s(1)

s(0)
(θ, t)

)
dA(t)

} ∣∣∣
θ=θ0

+ op(1)

= −
∫ τ

0

v(θ0, t)s
(0)(θ0, t)h0(t) dt+ op(1) = −Σ(θ0, τ) + op(1) (40)

for large n. This shows (35). Expanding E[Dn(α)] at α = 0 in a second order Taylor

formula and noticing E[Dn(0)] = 0 and (∂/∂α)E[Dn(α)]|α=0 = 0, we arrive at

E[Dn(α)] =
1

2
α>

∂2

∂α∂α>
E[Dn(α)]

∣∣∣
α=0

α + rn,

where rn is the remainder. Since the distribution function Q has a continuous density

q, both (36) and (37) are continuous functions at θ = θ0. Therefore, it follows from

(40) that rn = op(1). This shows (34). We now apply Theorem 4 to complete the

proof. 2
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