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Let m(z, ϑ) be a criterion function convex in parameter ϑ for ev-
ery z. For a random sample Z1, . . . , Zn, the M-estimate ϑ̃ of ϑ min-
imizes the criterion function

∑n

j=1
n−1m(Zj , ϑ). Suppose side infor-

mation is available given by E(u(Z1)) = 0 for some square-integrable
function u. In this article, we are concerned with the use of side infor-
mation and propose to estimate ϑ by ϑ̂ which minimizes the criterion
function

∑n

j=1
πnjm(Zj , ϑ) with πnj = n−1(1+ ζ⊤n u(Zj))

−1 for some

random variable ζn determined by u(Zj)’s. We show ϑ̂ is asymptoti-
cally normal and more efficient than ϑ̃. As applications of the results,
we construct efficient estimates of quantitles, parameters in quantitle
regression and in the Cox proportational hazard (PH) regression. A
simulation study and real data application are performed to illus-
trate the use of side information in the Cox PH model to improve the
efficiency of maximum partial likelihood estimates.

1. Introduction. Owen [9, 10] introduced empirical likelihood to con-
struct confidence intervals in a nonparametric setting. Soon Qin and Lawless
[14] used it to construct point estimates and studied maximum empirical like-
lihood estimates (MELEs). They proved many properties for MELEs such as
MELEs are fully semiparametrically efficient in the sense of least dispersed
regular estimators [1, 15]. The empirical likelihood approach is particularly
convenient to incorporate side information. Just like parametric maximum
likelihood estimates, nevertheless, MELEs involve highly nonlinear equa-
tions. Thus it is not a trivial task to find MELEs. Peng and Schick [12] ex-
plored MELEs in the case of constraint functions that may be discontinuous
and/or depend on additional parameters and employed one-step estimates
to construct MELEs. Peng [11] has identified a class of easy maximum em-
pirical likelihood estimators, while the idea for determining the class was in
fact already used by Zhang [17, 18] in M-estimation and quantile processes
in the presence of auxiliary information. Hellerstein and Imbens [5] utilized
this idea for the least squares estimators in a linear regression model and
applied the results to analyze a real data. Relatively recently, Yuan et al. [16]
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explored this idea in U-statistics with side information. Tang and Leng [3]
utilized the idea to construct improved estimators of parameters in quantile
regression. Bravo [2] introduced a class of M-estimators based on generalized
empirical likelihood estimation (empirical likelihood is a special case) with
side information and showed that the resulting class of estimators is effi-
cient in the sense that it achieves the same asymptotic lower bound as that
of the efficient GMM estimator with the same side information. These au-
thors assumed that the available side information can be expressed in a finite
number of expectation equations and does not depend on the parameters
of interest. Under this setting Peng [11] demonstrated that these estimates
are the MELEs which are semiparametrically efficient and mathematically
simpler and computationally faster than the usual MELEs.

Let us now briefly detail the easy MELE. Let (Z ,S ) be a measurable
space, Q be a family of probability measures on S , and κ be a functional
from Q onto an open subset Θ of Rk. Let Z1, . . . , Zn be independent and
identically distributed (i.i.d.) copies of Z taking value in Z with an unknown
distribution Q belonging to the model Q. We are interested in statistical in-
ference about the characteristic θ = κ(Q) when side information is available.

Suppose w(z, ϑ) is a measurable function such that
∫

w(z, ϑ) dQ(z) = 0
for every ϑ ∈ Θ. To construct a confidence set for θ, Owen confronted the
maximization problem:

Rn(ϑ) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjw(Zj , ϑ) = 0
}

, ϑ ∈ Θ,

where Pn denotes the closed probability simplex in dimension n, i.e.,

Pn =
{

π = (π1, . . . , πn)
⊤ ∈ [0, 1]n :

n
∑

i=1

πi = 1
}

.

Qin and Lawless [14] tackled point estimation for θ and studied the maxi-
mum empirical likelihood estimator:

(1.1) θ̂n = argmax
ϑ∈Θ

Rn(ϑ).

Consider now w(z, ϑ) = (v⊤(z, ϑ), u⊤(z))⊤, z ∈ Z , ϑ ∈ Θ. Suppose side
information is available given by

(K) There is a measurable function u : Z → Rd such that
∫

u dQ = 0 and
Wu =

∫

u⊗2 dQ is positive definite.



EFFICIENT ESTIMATION IN CONVEX MINIMIZATION 3

Under (K), it is natural to look at the empirical likelihood

Rn = sup
{

n
∏

j=1

nπj : π ∈ Pn,

n
∑

j=1

πju(Zj) = 0
}

.

Following Owen, one uses Lagrange multipliers to derive the solution

(1.2) πnj =
1

n

1

1 + ζ⊤n u(Zj)
, j = 1, . . . , n,

where ζn satisfies the equation

(1.3)
1

n

n
∑

j=1

u(Zj)

1 + ζ⊤u(Zj)
= 0.

Now the easy MELE ϑ̂ of θ studied by [11] is any solution to the equation

(1.4)
n
∑

j=1

πnjv(Zj , ϑ) =
1

n

n
∑

j=1

v(Zj , ϑ)

1 + ζ⊤n u(Zj)
= 0.

This is the case of an improved estimator of θ of the zero estimator ϑ̃ to the
sample equation

1

n

n
∑

j=1

v(Zj , ϑ) = 0.

In this article, we extend the above method from estimating equations
to minimization problems. Let m : Z × Θ → Rd be a measurable function
such that

∫

m(z, κ(R)) dR(z) is finite for every R ∈ Q. Based on a random
sample Z1, . . . , Zn from Q, we are interested in estimating θ = κ(Q). A pop-
ular estimator of θ is the M-estimator which minimizes the sample criterion
function,

Mn(ϑ) =
1

n

n
∑

j=1

m(Zj , ϑ), ϑ ∈ Θ.

Thus a natural estimator of θ is the M-estimator which minimizes

Mn(ϑ) =
n
∑

j=1

πnjm(Zj , ϑ) =
1

n

n
∑

j=1

m(Zj , ϑ)

1 + ζ⊤n u(Zj)
, ϑ ∈ Θ,

where πnj ’s are the EL-weights given in (1.2).
As pointed in [11], easy MELEs are mathematically tractible. Here is an-

other application of the tractibility. Suppose m(z, ϑ) is convex in ϑ. Then
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we quickly claim that Mn(ϑ) is also convex as πnj , j = 1, . . . , n are probabil-
ity weights (at least for large sample size n). An further application of the
tractibility is the concavity of ℓ(t, b) in the Cox hazard regression model, see
(2.8). We can now use those nice properties of estimates defined by convex
minimization which are well studied in the literature (see e.g. Hjort and
Pollard [6]) to derive the asymptotic behaviors of the estimator defined as
the minimizer of Mn(ϑ) .

We shall refer the preceding Mn(ϑ) to as the empirical likelihood (EL)-
weighted criterion function. We shall apply the EL-weight method to derive
efficient estimates for quantitles and parameters in quantile regression mod-
els when there is side information. We shall also use the method in the Cox
proportional hazards regression to improve efficiency. It is well known that
the maximum partial likelihood estimator is semiparametrically effcient in
the proportional hazards model, see e.g. [1]. However, the result holds under
the assumption that only information on time to event (possibly censored)
and treatment assignment are available. In clinical-trial data, as remarked
in [7], not only are survival and censoring times collected but also side in-
formation on variables that may be important prognostic factors which are
correlated with time to event. The EL-weight method provides a convenient
way to make use of side information to obtain improved estimators of pa-
rameters. We have run a small simulation in Section 3 to demonstrate the
improvement.

The rest of this paper is organized as follows. In section 2, we show con-
sistency and asymptotic normality for estimators defined by EL-weighted
convex minimization. As applications, we derive the MELEs for quantiles
and parameters in quantile regression and the Cox PH model. A small simu-
lation and real data application are reported in Section 3. Section 4 contains
some of the proofs and a useful theorem.

2. The main results. In this section, we consider estimators defined by
the minimizers of EL-weighted convex criterion functions. We shall use the
convexity property to establish the asymptotic properties of the estimators.

As discussed in the Introduction, the EL-weighted version Mn(ϑ) is con-
vex (hence continuous). The convexity not only greatly simplifies the the-
oretical investigation of the estimator, but also reduces the computational
burden. Here we present an asymptotic theory in the framework of Theo-
rem 2.2 in [6]. It must be noted that the asymptotic normality results of
the EL-weighted estimators hold under similar conditions to those for the
asymptotic normality of the usual M-estimators. The proof is delayed to the
Appendix.
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Theorem 2.1. Let m(z, ϑ) be convex in ϑ. Assume there exists some
function D from Z to Rk satisfying (K) with Wu =

∫

D⊗2 dQ such that

(2.1) m(z, θ + t)−m(z, θ) = D⊤(z)t+R(z, t), z ∈ Z , t ∈ R
k

for some measurable function R(z, t) with Var(R(Z, t)) = o(‖t‖2), and that

(2.2) E (m(Z, θ + t)−m(Z, θ)) = E (R(Z, t)) = 1/2t⊤Ht+ o(‖t‖2), t → 0

for some positive definite matrix H. Then the estimator θ̂n which minimizes
Mn(ϑ) over Θ is

√
n-consistent for θ and satisfies the stochastic expansion,

θ̂n = θ −H−1 1

n

n
∑

j=1

(

D(Zj)− C(D)W−1
u u(Zj)

)

+ op(n
−1/2).

Hence
√
n(θ̂n−θ) =⇒ N (0,Σ) where Σ = H−1(K−C(D)W−1

u C(D)⊤)H−⊤.

Quantiles. Let Z1, Z2, . . . be i.i.d. random variables from a continuous
density f positive in its support. The sample p-th quantile qn is the value
which minimizes the criterion function Mn(ϑ) = n−1

∑n
j=1mp(Zj , ϑ), where

mp(z, t) is the popular check function given by

(2.3) mp(z, t) = p
(

(z − t)+ − z+)
)

+ (1− p)
(

(t− z)+ − (−z)+
)

, z, t ∈ R,

where x+ = max(x, 0) denotes the positive part of x. It is convex in t (hence
continuous) and bounded by |t|, so that it is always integrable. Its expected
value is minimized by t = F−1(p) := q, the p-th quantile. One easily verifies

E (mp(Z, t)−mp(Z, q)) = 1/2f(q)(t− q)2 + o(|t− q|2);

that (2.2) holds with R(z, t) = (q + t− z)1[q < z ≤ q + t] such that

E(R(Z, t)) = 1/2t2f(q) + o(|t|2), E(R(Z, t)2) = o(|t|2);

and that (2.1) holds with

D(z) = (1− p)1[z ≤ q]− p1[z > q] = 1[z ≤ q]− p.

Suppose side information is available via E(u(Z)) = 0. By Theorem 2.1,
the EL-weighted estimator q̂n which minimizes the EL-weighted criterion
function Mn(ϑ) =

∑n
j=1 πnjmp(Zj , ϑ) is

√
n-consistent for q and satisfies

the stochastic expansion,

q̂n = q − 1

n

n
∑

j=1

1[Zj ≤ q]− p− C1W
−1
u u(Zj)

f(q)
+ op(n

−1/2),
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where C1 = E(1[Z ≤ q]u(Z)⊤). Thus
√
n(q̂n − q) =⇒ N (0, σ2), where

σ2 = (p(1 − p) − C1W
−1
u C⊤

1
)/f(q)2. This result was already obtained in

[12, 17, 18]. What we have shown here is that q̂n is in fact the MELE for
q. In particular, if no side information is available, then q̂n boils down to
the usual sample quantile qn, so the sample quantile is the MELE for the
population quantile.

Quantile regression. Bassett and Koenker [? ] considered the linear
quantile regression model in which the response Y and covariate X satisfies

(2.4) F−1
X (p) = β⊤X,

where p ∈ (0, 1), β is a parameter, and F−1
x is the inverse function of the

conditional distribution function Fx(y) = P (Y ≤ y|X = x) of Y given
X = x. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of Z := (X,Y ). When
side information is available via E(u(Z)) = 0, by the principle of maximum
empirical likelihood, the EL-weighted estimator β̂n of β is defined by

(2.5) β̂n = argmin
b∈B

n
∑

j=1

πnjmp(Yj , b
⊤Xj),

where mp is the convex function given in (2.3) and B is some compact subset
of Rk. Clearly the above sum is convex in b (hence continuous). We will need
the following regularity conditions to establish the asymptotic properties of
the estimator.

(Q1) The conditional distribution function Fx(y) of Y given X = x is abso-
lutely continuous with continuous density fx(y) such that it is bounded
away from both zero and infinity for almost every x ∈ Rk.

(Q2) The matrix E(fX(q(X))XX⊤) is finite and positive definite, where
q(x) = F−1

x (p).

By applying Theorem 2.1, we obtain the following asymptotic result with
the proof delayed to the Appendix.

Theorem 2.2. Suppose (Q1)-(Q2) hold. Then the EL-weighted estima-
tor β̂n is

√
n-consistent for β and satisfies the stochastic expansion,

β̂n = β − 1

n

n
∑

j=1

H−1
(

D(Zj)− C(D)W−1
u u(Zj)

)

+ op(n
−1/2),

where D(z) = x(1[y ≤ β⊤x]−p) and H = E
(

X⊗2fX(β⊤X)
)

. Thus
√
n(β̂n−

β) =⇒ N (0,Σ), where Σ = H−1
(

K − C(D)W−1
u C(D)⊤

)

H−⊤ with K =
p(1− p)E(X⊗2).



EFFICIENT ESTIMATION IN CONVEX MINIMIZATION 7

Using Theorem 4.4 of [11], we can show β̂n is the MELE for β as stated
below with the proof delayed to the Appendix.

Theorem 2.3. Suppose the assumptions in Theorem 2.2 are met. In
addition, assume X is bounded and E

((

X⊤(1[Y ≤ β⊤X] − p), u(Z)⊤
)⊗2)

is positive definite. Then β̂n is the MELE for β in the model specified by the
check-function-defined minimization.

Quantile regression with side information was studied in [3] in a general
setup in which the side information u is allowed to contain unknown pa-
rameters. There examples were given where side information is expressed
via conditional moments, and the use of such information results in more
efficient estimators of the parameters. What we have shown here is that
the estimator is the MELE for the parameter in the model specified by
E(u(Z)) = 0 and the check function.

Cox regression. In this model, the hazard rate h(t) for the survival
time T of an individual with a p-dimensional covariate process Z(t) ∈ Z of
time t for some compact Z is expressed as

h(t) = h0(t) exp(b
⊤Z(t)), t ∈ [0, τ ], b ∈ B,

where h0 is an unspecified nonparametric baseline hazard function, B is some
subset of Rk, and τ is finite. Let U be a censoring time of a person. The
data can be summarized as n i.i.d. realizations (Xi, δi, Zi) of (X, δ, Z), where
Xi = min(Ti, Ui), representing the observed time of person i; δi = 1[Ti ≤ Ui],
indicating that the observed time is an event time not a censoring time. Let
the counting process Ni have mass δi at Ti, i.e. dNi(t) = 1[Ti ∈ [t, t+dt], δi =
1], and the at-risk process be Yi(t) = 1[Xi ≥ t}]. The at-risk process is left
continuous hence predictable. More discussions can be found in Fleming and
Harrington [4]. The usual MPLE β̃n of β is the value which maximizes the
log partial likelihood function:

(2.6) ln(b) =
n
∑

j=1

∫ τ

0
(b⊤Zj(t)− logSn(t, b)) dNj(t), b ∈ B,

where Sn(t, b) =
∑n

j=1 Yj(t) exp(b
⊤Zj(t)). Suppose additional information

is available about the underlying model via E(u(R)) = 0, where R =
(X, δ, r(Z), U) for some measurable function r(Z) of the covariate process
Z(t), t ∈ [0, τ ]. Here we shall focus on side information which does not vary
with the time t in order to avoid lengthy presentation. Also we allow side
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information possibly depends on the censoring variable U when its observa-
tions are available, see Example 2.1.

By the principle of maximum empirical likelihood, a natural estimator
β̂n of β is the value which maximizes the EL-weighted log partial likelihood
function:

(2.7) ℓn(b) =
n
∑

j=1

πnj

∫ τ

0
(b⊤Zj(t)− log Sn(t, b)) dNj(t), b ∈ B,

where Sn(t, b) =
∑n

j=1(nπnj)Yi(t) exp(b
⊤Zj(t)) is the EL-weighted version

of Sn(t, b). Here the EL-weights πnj are given in (1.2) with u(Zj) = u(Rj).
It is well known that ln(b) is concave. The proof uses the urn model, see e.g.
pages 148 – 151 in [4]. Using the same method, one can show ℓn(b) is also
concave. In fact, similar to the first equation in page 151 one has

(2.8) − ∂2ℓn(b)

∂b∂b⊤
=

∫ τ

0
V(t, b)

n
∑

j=1

πnj dNj(t),

where analoguous to (3.23) in [4] it is easy to prove

V(t, b) =

∑

j=1 nπnj(Zj(t)− E(b, t))⊗2Yj(t) exp(b
⊤Zj(t))

Sn(t, b)

with E(t, b) =
∑n

j=1 nπnjZj(t)Yj(t) exp(b
⊤Zj(t))/Sn(t, b). This immediately

yields the concavity of ℓn(b) at least for large n. Using the convex argument
of [6], we can prove the following Theorem 2.4 with the proof delayed to the

Appendix. Formally set I (Y, Z) =
∫ τ
0

[

Z(t)− e(t)
]

Y (t)eβ
⊤Z(t)h0(t) dt,

(2.9)
C(I (Y, Z)) = E(I (Y, Z)u(R)⊤),

si(t) = E
(

Zi(t)Y (t) exp(β⊤Z(t))
)

, i = 0, 1, 2, e = s1/s0,

where a0 = 1 and a2 = aa⊤ for a vector a.

Theorem 2.4. Assume h0(t) is a continuous baseline function. Assume
Y (t) is the at-risk process such that P (Y (τ) > 0) > 0. Suppose the co-
variate processes Zj(t), t ∈ [0, τ ] are predictable and uniformly bounded.
Suppose J =

∫ τ
0 (s2(t) − s0(t)

−1s1(t)
⊗2)h0(t) dt is positive definite. Then

β̂n is
√
n-consistent for β and

√
n(β̂n − β) =⇒ N (0,Σ), where Σ =

J−1 − J−1C(I (Y, Z))W−1
u C(I (Y, Z))⊤J−⊤.
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To give an estimate of Σ, introduce

Vn(t, b) =

∑

j=1(Zj(t)− E(t, b))⊗2Yj(t) exp(b
⊤Zj(t))

Sn(t, b)
,

where E(t, b) =
∑n

j=1 Zj(t)Yj(t) exp(b
⊤Zj(t))/Sn(t, b). A consistent esti-

mate of J in the literaure (e.g. Fleming and Harrington [4]) is given by

Ĵ =
1

n

n
∑

j=1

∫ τ

0
Vn(t, β̂n) dNj(t).

With a similar argument, a consistent estimate of C(I (Y, Z)) is

Ĉ =
1

n

n
∑

j=1

∫ τ

0

(

Zj(t)− E(t, β̂n)
)

dNj(t)u(Rj)
⊤.

Thus one immediately obtains a consistent estimate of Σ as follows:

Σ̂ = Ĵ−1 − Ĵ−1ĈŴ−1Ĉ⊤Ĵ−⊤,

where Ŵ = 1
n

∑n
j=1 u(Rj)u(Rj)

⊤.
Below and the simulation in Section 3 are examples about side information

in which the covariate processes are constant over time, i.e. Zj(t) = Zj , t ∈
[0, τ ].

Example 2.1. One important situation in censoring data is that the
censoring variable U is independent of the covariate variable Z. The inde-
pendence implies E(a(U) ⊗ b(Z)) = 0 for some known square-integrable
vector functions a, b with mean zero. While the usual partial likelihood does
not use this additional information, our EL-weighted partial likelihood can
use this information by taking u(u, z) = a(u) ⊗ b(z). Choices of a, b can be
obtained from basis functions as in the simulation in Section 3 for univariate
continuous distributions.

3. A small simulation. As noted in the Introduction, in censored sur-
vival data there is usually available some additional information about co-
variate variables. While the partial likelihood does not use this information,
the EL-weight method can use it to improve the efficiency of parameter es-
timates. To illustrate it, we run a small simulation based on a nice example
given in [7].

Notice that the logrank test is commonly used for assessing treatment
effects in survival analysis. It is well known that this test is equivalent to



10 F. TAN AND H. PENG

Table 1

Simulated mean squared errors (multiplied by n) of the MPLE β̃n & EL-weighted MPLE
β̂n of β for n = 150, repetitions 2000 and number r of constraints.

Censoring % 25 50

β r 1 2 3 4 5 1 2 3 4 5

0 β̃n 5.76 6.01 5.75 5.59 5.51 8.62 8.62 7.99 8.40 8.21

β̂n 3.89 4.10 3.99 4.03 4.08 6.55 6.45 6.30 6.57 6.24

.25 β̃n 5.84 6.01 5.56 5.96 5.55 8.77 8.63 8.78 8.28 8.65

β̂n 4.05 4.12 4.01 4.19 4.10 6.47 6.65 6.54 6.59 7.11

the partial likelihood score test for the null hypothesis b = 0 in the Cox
proportional hazards regression model, which postulates that the hazard
rate h(t) of the survival time T of an individual at time t and a {0, 1}-
valued covariate Z satisfy the relationship

h(t) = h0(t) exp(bZ), t ≥ 0,

where h0(t) is an unspecified nonparametric continuous baseline hazard func-
tion and b is a parameter. Let U be a censoring time of a person. As pointed
out in [7], in clinical trails, in addition to data on T , U and treatment as-
signment, auxiliary (side) information is also collected on variable W such as
age, gender and other health conditions that may be important prognostic
factors which are correlated with T . Due to randomization, it is plausible to
assume that the the randomization probability to treatment 1 is equal to a
known π, i.e. P (Z = 1) = π, and the treatment indicator Z is independent
of W . Independence of Z and W of course implies that

E
(

1[Z = i]ak(W )
)

= 0, i = 0, 1, k = 1, . . . , r,

for some measurable functions ak such that E(ak(W )) = 0 and E(ak(W )2) <
∞ for k = 1, . . . , r. Let us assume W is univariate and has a continuous dis-
tribution G. Then G(W ) is uniformly distributed over (0, 1) so we can choose
ak(w) =

√
2 cos(kπG(w)), the first r terms of the usual trigonometric ba-

sis. In this case, the side information can be expressed by taking u(z, w) =
(

z − π, ã⊤(w)1[z = 0], ã⊤(w)1[z = 1]
)⊤

where ã⊤ = (a1, . . . , ar), so that
E(u(Z,W )) = 0. The data available can be summarized as n realizations of
i.i.d. random vectors (Xi, δi, Zi,Wi) of (X, δ, Z,W ), where Xi = min(Ti, Ui)
and δi = 1[Ti ≤ Ui]. Suppose T and U are conditionally independent given
Z, and P (X ≥ τ) > 0 for some finite τ > 0. It then follows from Theo-
rem 2.4 below that the EL-weighted maximum partial likelihood estimator
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(MPLE) β̂n is
√
n-consistent for β and asymptotic normal with mean zero

and variance-covariance matrix Σ, i.e.,
√
n(β̂n − β) =⇒ N (0,Σ),

where Σ = J−1 − J−1C(I (Y, Z))⊗2J−⊤ with J−1 the asymptotic variance-
covariance matrix of the usual MPLE β̃n (assume it to be positive definite).
Clearly, the EL-weighted MPLE β̂n has a smaller variance-covariance matrix
M than the MPLE β̃n in the sense of positive definiteness of matrices.

Following [7], the data are generated as follows. First generate (V,W ) from
the bivariate normal with mean zero, variance one and correlation ρ = 0.7;
then generate Z from the Bernoulli distribution with probability of success
π = 0.5; and then generate T by T = − exp(βZ) log(1 − Φ(V )), where the
null values of β are β = 0 and β = 0.25, and Φ is the cumulative distribution
function (cdf) of the standard normal. This implies T has the exponential
distribution with rate exp(βZ) as its conditional distribution given Z, i.e.
T |Z ∼ Exp(exp(βZ)), so that it follows the proportional hazards regression
model h(t) = exp(βZ) with h0(t) ≡ 1. For the censoring time U , we generate
it from the conditional distribution given Z with density c exp(−cs)/(1 −
exp(−cτ)), s ∈ [0, τ ]. This is the truncated exponential distribution with
truncation τ = 10. Here c is chosen to take two values so that the censoring
percentages are approximately 25% and 50%. Table 1 reports the mean
squared errors (MSE’s) multiplied by n for sample size n = 150, repetitions
M = 2000, and the number of constraints r = 1, . . . , 5. It can be seen that
the MSE’s of the EL-weighted MPLE β̂n are about 20%-40% less than the
MSE’s of the usual MPLE β̃n.

4. Details of the proofs. In this section, we collect some of the proofs.
Let ‖A‖ denote the euclidean norm and ‖A‖o the operator (or spectral)

norm of a matrix A which are defined by

‖A‖2 = trace(A⊤A) =
∑

i,j

A2
ij , ‖A‖o = sup

‖u‖=1
‖Au‖ = sup

‖u‖=1
(u⊤A⊤Au)1/2.

Let Tn1, . . . , Tnn be m-dimensional random vectors. With these random vec-
tors we associate the empirical likelihood

Rn = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjTnj = 0
}

.

To study the asymptotic behavior of Rn we introduce

T ∗
n = max

1≤j≤n
‖Tnj‖, T̄n =

1

n

n
∑

j=1

Tnj , T
(ν)
n = sup

‖u‖=1

1

n

n
∑

j=1

(u⊤Tnj)
ν , ν = 3, 4,
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and let λn and Λn denote the smallest and largest eigen values of Sn,

Sn =
1

n

n
∑

j=1

TnjT
⊤
nj , λn = inf

‖u‖=1
u⊤Snu, Λn = sup

‖u‖=1
u⊤Snu.

We impose the following conditions on Tnj .

(A1) T ∗
n = op(n

1/2).
(A2) ‖T̄n‖ = Op(n

−1/2).
(A3) There is a sequence of positive definite m×m dispersion matrices W

such that
‖Sn −W‖o = op(1).

A sufficient condition for the preceding conditions is the square-integrability
which is quoted from Proposition 6.1 of [11].

Proposition 4.1. If u : Z → Rm fulfills (K), then Tnj = u(Zj), j =
1, . . . , n satisfy (A1) – (A3) with W = Wu = E(u(Z)⊗2).

The following is the first part of Theorem 6.1 of [11].

Theorem 4.1. If (A1)-(A3) hold, then there exists a unique ζn such
that

(4.1) 1 + ζ⊤n Tnj > 0,
1

n

n
∑

j=1

Tnj

1 + ζ⊤n Tnj
= 0,

(4.2) ‖ζn‖ ≤ ‖T̄n‖
λn − ‖T̄n‖T ∗

n

, ‖ζn − S−1
n T̄n‖2 ≤ 2

( 1

λn
+

Λn

9λ2
n

)

‖ζn‖4T (4)
n ,

and for arbitrary random vectors Rn1, . . . , Rnn of the same dimension,

(4.3)
∥

∥

∥

1

n

n
∑

j=1

( Rnj

1 + ζ⊤n Tnj
−Rnj+RnjT

⊤
njζn

)

∥

∥

∥

2
≤2‖ζn‖4T (4)

n

∥

∥

∥

1

n

n
∑

j=1

RnjR
⊤
nj

∥

∥

∥

o
.

Proof of Theorem 2.1. To begin with, it is not difficult to verify that
conditions (A1) – (A3) in Theorem 4.1 are met. Hence there exists a unique
ζn such that

1 + ζ⊤n u(Zj) > 0,
1

n

n
∑

j=1

u(Zj)

1 + ζ⊤n u(Zj)
= 0,
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on an event whose probability converges to one as n tends to infinity. Thus,
Mn(ϑ) is well defined on this event and defined to be an arbitrary number
on the complement of this event which has an vanishing probability as n
tends to infinity.

The asymptotic behaviors of the estimator θ̂n follows from the investi-
gation of the convex function ∆n(s) := n(Mn(θ + n−1/2s) − Mn(θ)). It is
minimized by

√
n(θ̂n − θ). Note first that (2.2) implies nE(R(Z, n−1/2s) =

1/2s⊤Hs+r1n(s), where r1n(s) = no(‖s‖2/n) = o(1) for every fixed s. Thus,
it follows from (2.1) that

(4.4) ∆n(s) = n1/2
n
∑

j=1

πnjD(Zj)
⊤s+ 1/2s⊤Hs+ r1n(s) + r2n(s),

where it is shown below that for every fixed s,

(4.5) r2n(s) = n
n
∑

j=1

πnj

(

R(Zj , n
−1/2s)− E(R(Zj , n

−1/2s))
)

= op(1).

Since both u and D satisfy (K1a), in view of Proposition 4.1, we can apply
Theorem 4.1 with Rnj = D(Zj) in inequality (4.3) to conclude

(4.6) D̄n :=
n
∑

j=1

πnjD(Zj) =
1

n

n
∑

j=1

(

D(Zj)− C(D)W−1u(Zj)
)

+ op(n
−1/2).

Substitution of (4.5) and (4.6) in (4.4) leads to

∆n(s) = n1/2
D̄
⊤
n s+ 1/2s⊤Hs+ op(1), s ∈ R

k.

The right side of the above equality is approximately a quadratic function in
s and has the unique minimizer ŝ = −H−1n1/2D⊤

n . This, (4.6) and the Basic
Corollary of [6] now yield the desired result, i.e. ŝ−√

n(θ̂n − θ) = op(1).
We are now left to prove (4.5). To this end, fixed s ∈ Rk, and apply

inequality (4.3) with Rnj = Rnj(s) := R(Zj , n
−1/2s) to get

(4.7) ‖ 1
n

n
∑

j=1

( Rnj(s)

1 + ζ⊤n u(Zj)
−Rnj(s)+Rnj(s)u(Zj)

⊤ζn
)

‖2 ≤ 2‖ζn‖4u(4)Vn(s)

where Vn(s) = n−1
∑n

j=1R(Zj , n
−1/2s)2. Notice that

E(R(Z, n−1s)2) = Var(R(Z, n−1s)) +
(

E(R(Z, n−1s))
)2

= o(n−1) +O(n−1) = O(n−1),
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where the second equality follows from the assumptions. Thus, by Markov
inequality, for A > 0,

P (nVn(s) > A) ≤ E(nVn(s))

A
≤ nE

(

R(Z, n−1/2s)2
)

A
≤ nO(n−1)

A
→ 0,

as A tends to infinity. Therefore Vn(s) = Op(n
−1). Besides from the first

inequality of (4.2) and Proposition 4.1 it follows

(4.8) ‖ζn‖4u(4)n = Op(‖ūn‖4)Op((u
∗
n)

2) = op(n
−1).

Thus the right side of (4.7) is op(n
−2), so that

r2n =

n
∑

j=1

(Rnj(s)− E(Rnj(s))−
n
∑

j=1

Rnj(s)u(Zj)
⊤ζn + op(1).

The second moment of the above first sum is equal to

nVar(R(Z, n−1/2s)) = no(‖s‖2/n) = o(1).

Write the second sum as nAn(s) + nBn(s), where

An(s) =
1

n

n
∑

j=1

(

Rnj(s)− E(Rnj(s))
)

u(Zj)
⊤ζn, Bn(s) = E(Rn1(s))ū

⊤
n ζn.

By Cauchy inequality,

‖An(s)‖2 ≤
1

n

n
∑

j=1

(

Rnj(s)− E(Rnj(s))
)2 ‖ζn‖2 ‖

1

n

n
∑

j=1

u(Zj)
⊗2‖

= o(n−1)O(n−1)O(1) = o(n−2),

so that An(s) = op(n
−1), while

‖Bn(s)‖ ≤ ‖E(Rn1(s))‖ ‖ūn‖ ‖ζn‖ = O(n−1)Op(n
−1/2)Op(n

−1/2) = Op(n
−2).

Combining the above yields that the second sum is op(1). This proves (4.5)
and completes the proof.

Proof of Theorem 2.2. We shall apply Theorem 2.1 to prove the
results. To start with, one verifies that (2.1) holds with

D(z) = x(1[y ≤ β⊤x]− p),
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where clearly E(D(Z)) = 0 and W = E(D(Z)⊗2) = p(1 − p)E(X⊗2) is
positive definite implied by (Q1) and (Q2). Denote Ex the conditional ex-
pectation given X = x, and ∆x(y, t) = mp(y, (β + t)⊤x) − mp(y, β

⊤x), so
that

(4.9) ∆x(y, t) = pax(y, t) + (1− p)bx(y, t),

where ax(y, t) = (y − (β + t)⊤x)+ − (y − β⊤x)+ and bx(y, t) = ((β + t)⊤x−
y)+ − (β⊤x− y)+. With the above notation we now write

Ex(R(Z, t)) = Ex(∆x(Y, t)) := −pAx(t) + (1− p)Bx(t),

where

Ax(t) = −
∫ ∞

(β+t)⊤x
(y − (β + t)⊤x)fx(y) dy +

∫ ∞

β⊤x
(y − β⊤x)fx(y) dy.

Bx(t) =

∫ (β+t)⊤x

−∞
((β + t)⊤x− y)fx(y) dy −

∫ β⊤x

−∞
(β⊤x− y)fx(y) dy,

Clearly,

Ax(t) =

∫ (β+t)⊤x

β⊤x
(y − β⊤x)fx(y) dy + t⊤x(1− Fx((β + t)⊤x)),

Bx(t) =

∫ (β+t)⊤x

β⊤x
(β⊤x− y)fx(y) dy + t⊤xFx((β + t)⊤x).

Hence,

Ex(R(Z, t)) = t⊤x
(

Fx((β + t)⊤x)− p
)

−
∫ (β+t)⊤x

β⊤x
(y − β⊤x)fx(y) dy.

By (Q1) and Taylor expansion, for every x, we have

Fx((β + t)⊤x)− p = f(β⊤x)t⊤x+ r1(t, x),

where r1(t, x) = o(‖t‖). It is shown below that

(4.10)

∫ (β+t)⊤x

β⊤x
(y − β⊤x)fx(y) dy = 1/2t⊤xx⊤tf(β⊤x) + r2(t, x),

where r2(t, x) = o(‖t‖2) for every x. Thus, in view of the boundedness of
fx(y) by (Q1) and the finite second moment of X implied by (Q2), we can
apply the dominated convergence theorem to conclude

(4.11) E(R(Z, t)) = E
(

EX(R(Z, t))
)

= 1/2t⊤Ht+ o(‖t‖2).
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This shows that (2.2) holds with H = E
(

(XX⊤)(fX(β⊤X))
)

. We now show

(4.12) Var(R(Z, t)) = o(‖t‖2), t → 0.

To this end, recall ∆x(y, t) in (4.9) and get

(4.13)
Var(R(Z, t)) = E

(

[∆X(Y, t)− E (∆X(Y, t))−D(Z)⊤t]2
)

:= L+ t⊤Kt− 2Mt, say,

where
L = E (∆X(Y, t)− E (∆X(Y, t)))2 ,

M = E
(

(∆X(Y, t)− E (∆X(Y, t)))D(Z)⊤
)

.

Note first that D(Z) has mean zero, so that

M = E
(

∆X(Y, t)D(Z)⊤
)

= E
(

X⊤∆X(Y, t)(1[Y ≤ β⊤X]− p)
)

= E
(

X⊤B(X)
)

, say,

where
B(x) = Ex

(

∆x(Y, t)(1[Y ≤ β⊤x]− p)
)

= Ex

(

∆x(Y, t)1[Y ≤ β⊤x]
)

− pEx

(

∆x(Y, t)
)

.

Since E
(

EX

(

∆X(Y, t)
))

= E (R(Z, t)), it follows from (4.11) that

(4.14) E
(

∆X(Y, t)
)

= 1/2t⊤Ht+ o(‖t‖2).

For t⊤x ≥ 0 and in view of (4.9),

(4.15) Ex

(

∆x(Y, t)1[Y ≤ β⊤x]
)

= (1− p)t⊤xFx(β
⊤x) = p(1− p)t⊤x,

whereas for t⊤x < 0, by (Q1) and apply Taylor expansion,

Ex

(

∆x(Y, t)1[Y ≤ β⊤x]
)

= p

∫ β⊤x

(β+t)⊤x
(y − (β + t)⊤x)f(y) dy

+ (1− p)(t⊤x)Fx((β + t)⊤x)− (1− p)

∫ β⊤x

(β+t)⊤x
(β⊤x− y)f(y) dy

= p(t⊤x)(Fx(β
⊤x)− Fx((β + t)⊤x)) + (1− p)(t⊤x)Fx((β + t)⊤x)

+

∫ β⊤x

(β+t)⊤x
(y − β⊤x)f(y) dy

= p(t⊤x)
(

fx(β
⊤x)(t⊤x) + o(t)

)

+ (1− p)(t⊤x)
(

Fx(β
⊤x)

+ fx(β
⊤x)(t⊤x) + o(t)

)

− 1/2t⊤xx⊤tfx(β
⊤x) + o(‖t‖2)

= 1/2t⊤xx⊤tfx(β
⊤x) + p(1− p)(t⊤x) + o(‖t‖2)

= p(1− p)(t⊤x) +O(‖t‖2).
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Using the same argument as in proving (4.11) and (4.14)-(4.15), one has

(4.16) M = p(1− p)t⊤E(XX⊤) +O(‖t‖2).

To compute L, recall (4.9) and write the second moment in L as

E
(

∆X(Y, t)2
)

=p2E(aX(Y, t)2) + (1− p)2E(bX(Y, t)2)

− 2p(1− p)E(aX(Y, t)bX(Y, t)).

Let us first deal with c(x) := Ex(ax(Y, t)bx(Y, t)). For t⊤x ≥ 0, by Taylor
formula and (Q1),

c(x) = −p(1− p)

∫ (β+t)⊤x

β⊤x
(y − β⊤x)((β + t)⊤x− y)fx(y) dy = o(‖t‖2).

It is easily seen that the above rate also holds for t⊤x < 0. Thus as argued
above, one derives

(4.17) E(aX(Y, t)bX(Y, t)) = o(‖t‖2).

Now that for t⊤x ≥ 0, by Taylor formula and (Q1), one has

Ex(ax(Y, t)
2) =

∫ (β+t)⊤x

β⊤x
(y − (β + t)⊤x)2fx(y) dy

+ (t⊤x)2(1− Fx((β + t)⊤x)) = (1− p)(t⊤x)2 + op(‖t‖2).

Similarly, for t⊤x < 0 the above also holds. Therefore,

(4.18) E(aX(Y, t)2) = (1− p)t⊤Ht+ op(‖t‖2).

With the same method, one proves

(4.19) E(bX(Y, t)2) = pt⊤Ht+ op(‖t‖2).

It thus follows from (4.17)-(4.19) that

E
(

∆X(Y, t)2
)

= p(1− p)t⊤Ht+ op(‖t‖2).

Hence, in view of (4.11), one arrives at

L = E
(

∆X(Y, t)2
)

−
(

E (∆X(Y, t))
)2

= p(1− p)t⊤Ht+ op(‖t‖2).

This, (4.13) and (4.16) immediately yield the desired (4.12).
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We are now left to prove (4.10). Let us write t = ru, where u is a unit
vector in the direction of t and r = ‖t‖. Using L’hospital’s rule the desired
(4.10) now follows from

lim
r→0

r−2
(

∫ (β+t)⊤x

β⊤x
(y − β⊤x)fx(y) dy − 1/2t⊤xx⊤tf(β⊤x)

)

= lim
r→0

r−2

∫ ru⊤x

0
s
(

fx(s+ β⊤x)− f(β⊤x)
)

ds

= lim
r→0

2−1r−1ru⊤x
(

fx(ru
⊤x+ β⊤x)− f(β⊤x)

)

= 0,

where the continuity of fx is used.

Proof of Theorem 2.3. Let β̃n be the estimator under model (2.4)
based on the check function approach. It is then the AGM-estimator of the
quantile estimating equation

v̄n(b) :=
1

n

n
∑

j=1

Xj(1[Yj ≤ b⊤Xj ]− p) = op(n
−1/2).

For AGM-estimators, see e.g. [1] or [11]. This equation has more than one
solutions because v̄n(b) is a step function. But all of the solutions will con-
verge to the unique solution of the equation v(b) := E(X(FX(b⊤X)−p)) = 0
under assumptions (Q1)-(Q2). In fact, it has a unique solution β as v′(β) =
E(XX⊤fX(β⊤X)) is positive definite. See [8] for more discussions. Note
that the EL-weighted AGM-estimator β̃n is the solution to the equation

v̄vn(b) :=
1

n

n
∑

j=1

Xj(1[Yj ≤ b⊤Xj ]− p)

1 + ζ⊤n u(Zj)
= op(n

−1/2).

Thus it suffices to prove that β̃n has the identitical asymptotic distribution
as β̂n defined by the EL-weighted minimization problem (2.5). This can be
done by applying Theorem 4.4 of [11], so we must verify its assumptions
which are the combination of the assumptions of Theorems 4.1– 4.3 in [11].
Clearly the assumptions of Theorem 4.3 are satisfied in view of the fact that
v̄n(b) is upper semi-continuous. We now verify that assumptions (4.1)– (4.3)
in Theorem 4.1 are met with v(z, b) = x(1[y ≤ b⊤x]−p), where z = (x⊤, y)⊤.
SinceX is square-integrable, it follows that (4.1) holds. To prove the uniform
convergence in (4.2), let us assume B =

{

t ∈ Rk : ‖t‖ ≤ R
}

for convenience.
For δ > 0, let Bδ(a) =

{

b ∈ Rk : ‖b− a‖ ≤ δ
}

denote the closed ball of radius
δ centered at a ∈ Rk. Let a1, . . . , am be points in B such that B ⊂ ∪m

i=1Bδ(ai).
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One can take these ai’s to be the elements of the grid {iδ/
√
k : i ∈ Zk} that

fall into B, in which case

(4.20) m = [(1 + 2
√
kR/δ)k].

Observe that for reals y1, y2 we have

|1[Y ≤ y2]− 1[Y ≤ y1]| ≤ 1[y1 ∧ y1 ≤ Y ≤ y1 ∨ y2].

For b in the ball Bδ(ai), there exist random vectors bij , Bij in the ball and
depending on Xj such that X⊤

j bij ≤ X⊤
j b ≤ X⊤

j Bij . Consequently,

(4.21) sup
b∈Bδ(ai)

|1[Yj ≤ X⊤
j b]− 1[Yj ≤ X⊤

j ai]| ≤ 1[mij ≤ Y ≤ Mij ],

where mij = X⊤
j ai ∧X⊤

j bij and Mij = X⊤
j ai ∨X⊤

j Bij . Clearly, Mij −mij ≤
‖Xj‖δ ≤ Cδ, where ‖Xj‖ ≤ C. By (Q1), fx(y) ≤ B for all x, y, hence

(4.22) E(1[mij ≤ Yj ≤ Mij ]) = E(FX(Mij)− FX(mij)) ≤ BCδ.

Denote Vn(b) = v̄n(b)− E(v̄n(b)). Then using the usual chaining method,

sup
b∈B

‖Vn(b)‖ ≤ max
i

‖Vn(ai)‖+max
i

sup
b∈B∩Bδ(ai)

‖Vn(b)− Vn(ai)‖.

Hence,

(4.23)

P
(

sup
b∈B

‖Vn(b)‖ > 4ǫ
)

≤ P
(

max
i

‖Vn(ai)‖ > 2ǫ
)

+ P
(

max
i

sup
b∈B∩Bδ(ai)

‖Vn(b)− Vn(ai)‖ > 2ǫ
)

.

Since Var(v(Z, ai)) ≤ E(v2(Z, ai)) ≤ C2, it follows from Bernstein’s inequal-
ity that for ǫ > 0,

(4.24) P (max
i

‖Vn(ai)‖ > 2ǫ) ≤ 2m exp
(

− 2nǫ2

C2 + Cǫ/3

)

.

Notice that for b ∈ Bδ(ai), E(‖v(Z, b)− v(Z, ai‖) ≤ BC2δ, hence

(4.25) ‖Vn(b)− Vn(ai)‖ ≤ ‖v̄n(b)− v̄n(ai)‖+BC2δ.

By (4.21),

‖v̄n(b)− v̄n(ai)‖ ≤ C
1

n

n
∑

j=1

1[mij ≤ Yj ≤ Mij ], b ∈ Bδ(ai).
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Now use (4.22) and apply again Bernstein’s inequality to get

(4.26)

P
(

C| 1
n

n
∑

j=1

1[mij ≤ Yj ≤ Mij ]− E(1[mij ≤ Yj ≤ Mij ])| > ǫ
)

≤ 2 exp
(

− nǫ2

2BC3δ + 2C2ǫ/3

)

.

Therefore, by (4.25), we derive

P
(

max
i

sup
b∈B∩Bδ(ai)

‖Vn(b)− Vn(ai)‖ > 4ǫ
)

(4.27)

≤
m
∑

i=1

P
(

sup
b∈B∩Bδ(ai)

‖v̄n(b)− v̄n(ai)‖ > 2ǫ
)

+m1[BC2δ > 2ǫ]

≤ 2m exp
(

− nǫ2

2BC3δ + 2C2ǫ/3

)

+m1[BC2δ > ǫ] +m1[BC2δ > 2ǫ],

where the second last term is resulted from the centering in (4.24). In view
of (4.23) and by (4.20), (4.24) and (4.27), we arrive at

(4.28) P
(

sup
b∈B

‖Vn(b)‖ > 4ǫ
)

→ 0

for every ǫ > 0 by choosing m = mn → ∞ such that log(mn)/n → 0. This
shows (4.2). To prove (4.3), notice that E(v(Z, β)) = 0 and by (Q1)-(Q2)
we obtain

E(v(Z, b)) = E(v(Z, b)− v(Z, β)) = E(X⊗2f(β⊤X)(b− β) + o(b− β).

Accordingly ‖E(v(Z, b))‖ = ‖E(X⊗2f(β⊤X)‖‖b−β‖+o(‖b−β‖) > 0 by the
positive definiteness for ‖b − β‖ > 0. This shows (4.3) in [11] hence proves
Theorem 4.1 in [11].

We are left to verify assumptions (5.1) and (5.2) of Theorem 4.2 in [11].
Note first that the boundedness of the conditional density fx(y), |X| ≤ C
and the dominated convergence theorem imply that E(v(Z, b)) is differen-
tiable with respect to b at b = β with nonsingular gradient E(X⊗2fX(X⊤β)).
To prove (5.1) in [11], recall the above Vn and decompose

(4.29)
√
n(Vn(b)− E(Vn(b))) = An(b) +Bn(b),

where An(b) = n−1/2
∑n

j=1 s(Zj , b) with

s(Zj , b) = Xj

(

1[Yj ≤ X⊤
j b]− 1[Yj ≤ X⊤

j β]− FXj
(X⊤

j b) + FXj
(X⊤

j β)
)

,
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and Bn(b) = B1n(b) +B2n(b)−B3n(b) with

B1n(b) = n−1/2
n
∑

j=1

Xj

(

FXj
(X⊤

j b)− FXj
(X⊤

j β)− fXj
(X⊤

j β)X⊤
j (b− β)

)

,

B2n(b) = n−1/2
n
∑

j=1

(

X⊗2
j fXj

(X⊤
j β)− E(X⊗2fX(X⊤β))

)

(b− β),

B3n(b) = n1/2E
(

X(FX(X⊤b)− FX(X⊤β))− fX(X⊤β)X⊤
)

(b− β).

Let ǫn ↓ 0. Since fx(y) is continuous and X⊤
j b is bounded, it follows from

the law of large numbers that

B12n := sup
‖b−β‖≤ǫn

‖ 1
n

n
∑

j=1

(

FXj
(X⊤

j b)− FXj
(X⊤

j β)− fXj
(X⊤

j β)
)

Xj‖ = op(1).

Denote τn(b) = 1 +
√
n‖b− β‖. Then √

n‖b− β‖/τn(b) ≤ 1 and

(4.30) sup
‖b−β‖≤ǫn

B1n(b)

τn(b)
= B12n sup

‖b−β‖≤ǫn

√
n(b− β)

τn(b)
= op(1).

Observe

B2n(b)

τn(b)
=

1

n

n
∑

j=1

(

X⊗2
j fXj

(X⊤
j β)− E(X⊗2fX(X⊤β))

)

√
n(b− β)

τn(b)
,

and use the law of large numbers to conclude,

(4.31) sup
‖b−β‖≤ǫn

B2n(b)

τn(b)
= op(1).

By the dominated convergence theorem, one similarly has

(4.32) sup
‖b−β‖≤ǫn

B3n(b)

τn(b)
= op(1).

Consequently the above (4.30) – (4.32) yield

(4.33) sup
‖b−β‖≤ǫn

Bn(b)

τn(b)
= op(1).

Let us now handle An(b). Note first that b runs over the ball centered at β
with radius ǫn, i.e. Bǫn(β). For any b ∈ Bǫn(β), by Bernstein’s inequality,

(4.34) P
(‖An(b)‖

τn(b)
> ǫ

)

≤ 2 exp
(

− ǫ2τ2n(b)

2σ2(b) + (4Cǫ/3)n−1/2τn(b)

)

,
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where σ2(b) = Var(s(Z, b)). To calculate this variance, set t(Z, b) = 1[Y ≤
X⊤b]− 1[Y ≤ X⊤β]. Then the conditional second moment given X is

EX(t2(Z, b)) = FX(X⊤b) + FX(X⊤β)− 2PX(Y ≤ X⊤b ∧X⊤β).

By assumption, one can apply the mean value theorem to conclude that
there is an η in between X⊤b and X⊤β such that µX(η) := EX(t(Z, b)) =
FX(X⊤b)− FX(X⊤β) = fX(η)X⊤(b− β). Thus,

PX(Y ≤ X⊤b ∧X⊤β) = FX(X⊤β) + 1[X⊤b < X⊤β](FX(X⊤b)− FX(X⊤β))

= FX(X⊤β) + 1[X⊤b < X⊤β]fX(η)X⊤(b− β).

Hence,

VarX(t(Z, b)) = (1− 21[X⊤b < X⊤β]
)

µX(η)− µ2
X(η).

Since fx(y) is continuous and X is bounded, it immediately follows that
µX(η) = fX(X⊤β)X⊤(b− β) + op(b− β) and µ2

X(η) = op(b− β) uniformly
in b ∈ Bǫn(β) (e.g. b 7→ µ2

X(η)/‖b − β‖ converges to zero in probability
uniformly in b ∈ Bǫn(β) as n → ∞), and hence the same uniformly holds for

VarX(t(Z, b)) = (1− 21[X⊤b < X⊤β]
)

fX(X⊤β)X⊤(b− β) + op(b− β).

Let G(b) = E
(

X⊗2(1− 21[X⊤b < X⊤β])fX(X⊤β)X⊤
)

. Then it holds uni-
formly in b ∈ Bǫn(β) as n tends to infinity that

(4.35) σ2(b) = E
(

X⊗2VarX(t(Z, b))
)

= G(b)(b− β) + o(b− β).

Next, we partition Bǫn(β) as above, so the above R is equal to the ǫn here.
In the present case, denote ρ = δ, l = m and bi = ai, i = 1, . . . , l, thus

(4.36) ln := l = [(1 + 2
√
kǫn/ρ)

k].

Similar to (4.21), for b in the ball Bρ(bi), there exist random vectors aij , Aij

in the ball and depending on Xj such that X⊤
j aij ≤ X⊤

j b ≤ X⊤
j Aij . Conse-

quently,

(4.37) sup
b∈Bρ(bi)

|1[Yj ≤ X⊤
j b]− 1[Yj ≤ X⊤

j bi]| ≤ 1[lij ≤ Yj ≤ Lij ],

where lij = X⊤
j bi ∧ X⊤

j aij and Lij = X⊤
j bi ∨ X⊤

j Aij . Clearly Lij − lij ≤
‖Xj‖ρ ≤ Cρ. Hence,

(4.38) E(1[lij ≤ Yj ≤ Lij ]) = E(FX(Lij)− FX(lij)) ≤ BCρ.
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Again using the usual chaining method, we push forward

(4.39)

P
(

sup
b∈Bǫn (β)

‖An(b)‖
τn(b)

> 4ǫ
)

≤ P
(

max
i

‖An(bi)‖
τn(bi)

> 2ǫ
)

+ P
(

max
i

sup
b∈Bρ(bi)

‖An(b)

τn(b)
− An(bi)

τn(bi)
‖ > 2ǫ

)

:= Cn +DEn, say.

Applying (4.34) to the bi : i = 1, . . . , ln, we obtain

Cn ≤
ln
∑

i=1

2 exp
(

− 2ǫ2τ2n(bi)

σ2(bi) + (2Cǫ/3)n−1/2τn(bi)

)

.

Notice that τn(b) ≥ 1, ‖√n(b− β)‖/τn(b) ≤ 1 and ‖G(b)‖ ≤ BC3. Hence it
follows from the uniform convergence in (4.35) that

σ2(bi)

τn(bi)
= G(bi)

bi − β

τn(bi)
+ op

(bi − β

τn(bi)

)

≤ n−1/2BC3 + o(n−1/2), i = 1, . . . , ln.

Accordingly,

(4.40) Cn ≤ ln exp
(

− 2ǫ2n1/2

BC3 + o(1) + 2Cǫ/3

)

.

Let us now write

An(b)

τn(b)
− An(bi)

τn(bi)
= An(bi)

( 1

τn(b)
− 1

τn(bi)

)

+
An(b)−An(bi)

τn(b)
.

For b ∈ Bρ(bi), since

sup
b∈Bδ(bi)

| 1

τn(b)
− 1

τn(bi)
| ≤

√
nρ

τn(bi)
, τn(b) ≥ 1,

we derive

(4.41)
DEn ≤

ln
∑

i=1

P
(‖An(bi)‖

τn(bi)
>

ǫ√
nρ

)

+

ln
∑

i=1

P
(

sup
b∈Bρ(bi)

‖An(b)−An(bi)‖>ǫ
)

:= Dn + En, say.

Use τn(bi) ≥ 1 and apply (4.34) to get

(4.42) Dn ≤ 2ln exp
( −ǫ2

2BC3nρ3 + o(nρ3) + (4Cǫ/3)ρ

)

.
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For b ∈ Bρ(bi), from (4.37) it follows

√
n‖An(b)−An(bi)‖ ≤ C

n
∑

j=1

(

1[lij ≤ Yj ≤ Lij ]− P (li1 ≤ Y1 ≤ Li1)
)

+ 2nCP (li1 ≤ Y1 ≤ Li1).

Thus, by (4.38) and (4.34), we obtain

(4.43) En ≤ ln exp
( −ǫ2

8BC4ρ+ (16C3ǫ/3)n−1/2

)

+ ln1[2
√
nBC2ρ > ǫ/2].

In view of (4.36), it is easy to verify that Cn +Dn +En = o(1) by choosing
ln = O(nk/2). This, (4.29), (4.33) and (4.39) immediately yield the desired
(5.1) in [11]. Finally, we shall prove the remaining uniform convergence in
(5.2) of Theorem 4.2 in [11]. This can be done pretty much the same way
as above. Here we give sketches. Note first that the desired (5.2) in [11] is
implied by the following stronger result

(4.44) sup
‖ϑ−θ‖≤ǫn

1

n

n
∑

j=1

|1[Yj ≤ X⊤
j b]− 1[Yj ≤ X⊤

j β]| = op(1).

Denote w(Zj , b) = |1[Yj ≤ X⊤
j b] − 1[Yj ≤ X⊤

j β]|, w̄(Zj , b) = w(Zj , b) −
E(w(Z, b)) and Wn(b) = n−1

∑n
j=1 w̄(Zj , b). Then analoguously one derives

(4.45) P
(

max
i

‖Wn(bi)‖ > 2ǫ
)

≤ 2ln exp
(

− 2nǫ2

BC5 + 2C2/3

)

.

Since ‖w̄(Zj , b)− w̄(Zj , bi)‖ ≤ 1[lij < Yj ≤ Lij ]−P (lij < Yj ≤ Lij)+2BCρ,
it follows

P
(

max
i

sup
b∈Bδ(bi)

‖Wn(b)−Wn(bi)‖ > 2ǫ
)

≤ 2ln exp
(

− nǫ2

2BC + 2/3

)

+ ln1[2BCρ > ǫ].

This and (4.45) yield the desired (4.44) by choosing ln = nk/2 and finish the
proof.

Before proving Theorem 2.4, we need the following result. Recall a n-
variate process {N1, . . . , Nn} is called a multivariate counting process if (i)
Each Ni, i = 1, . . . , n is a counting process, and (ii) No two component
processes jump at the same time. The following result generalizes Corolloary
3.4.1. of Fleming and Harrington [4] from i = 1 to i = n.
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Lemma 4.1. Let {N1, . . . , Nn} be a locally bounded multivariate counting
process. Let {Ft : t ≤ 0} be a right-continuous filtration such that for each i,
Mi = Ni−Ai is the corresponding local square-integrable martiginale with Ai

the compensator process, and Hi is a locally bounded Ft-predictable process.
Then for any stopping time T such that P (T < ∞) = 1, and any ǫ, η > 0,

P
(

sup
t≤T

(

n
∑

i=1

∫ t

0
Hi(s) dMi(s)

)2
≥ ǫ

)

≤ η

ǫ

+ P
(

n
∑

i=1

∫ T

0
H2

i (s) d〈Mi,Mi〉(s) ≥ η
)

Sketches of Proof. This can be proved similar to the proof of Corol-
loary 3.4.1. of Fleming and Harrington [4]. Let {τk : k = 1, 2, . . . } be a lo-
calizing sequence such that, for any k, Ni(· ∧ τk), Ai(· ∧ τk) and Hi(· ∧ τk)
for i = 1, . . . , n are processes bounded by k, and Mi(· ∧ τk) is a square-
integrable martingale. Let U =

∑n
i=1

∫

Hi dMi. Then it follows from their
Theorem 2.4.5 that U is a local square-integrable martingale and satisfies
E(U(t)) = 0 and Var(U(t)) =

∑n
i=1E(

∫ t
0 H

2
i d〈Mi,Mi〉). Using this and sim-

ilar to their proof of Corolloary 3.4.1. one can prove the result by replacing
their Xk and Yk with the following

Xk(t) =
(

n
∑

i=1

∫ t∧τk

0
Hi(x) dMi(s)

)2
, Yk(t) =

n
∑

i=1

∫ t∧τk

0
H2

i (x) d〈Mi,Mi〉(s).

Proof of Theorem 2.4. It follows from Proposition 4.1 that (K) implies
(A1) – (A3) in Theorem 4.1, hence there exists a unique ζn such that

1 + ζ⊤n uj > 0, j = 1, . . . , n,
1

n

n
∑

j=1

uj
1 + ζ⊤n uj

= 0,

(4.46) ‖ζn‖ ≤ ‖ūn‖
λn − ‖ūn‖u∗

, ‖ζn − S−1
n ūn‖2 ≤ c0‖ζn‖4u(4)n ,

on an event whose probability converges to one as n tends to infinity, where
c0 is a constant, Accordingly, ℓn(b) is well defined on this event (and defined
to be an arbitrary number on the complement of this event which has an
vanishing probability as n tends to infinity).

Since Z(t) is bounded (by c2 say), it follows that the si(t), i = 0, 1, 2
given in (2.9) are well defined and bounded for every t ∈ [0, τ ]. Note that
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P (Y (τ) > 0) > 0 implies inft∈[0,τ ] s0(t) > 0. Indeed, if it were 0 then it
follows from s0(t) ≥ exp(−c2‖β‖)P (X ≥ t) that P (X ≥ τ) = 0 which
contradicts P (Y (τ) > 0) > 0. Thus, the e(t) defined in (2.9) is bounded by
some c3. This, the boundedness of Z(t), the square-integrability of u(R) and
∫ τ
0 h0(t) dt < ∞ imply that C(I (Y, Z)) given in (2.8) is well defined and
finite.

Introduce the following two predictable processes

Z̄n(t, b) =
∑

j=1

pnj(t, b)Zj(t), Vn(t, b) =

n
∑

j=1

pnj(t, b)(Zj(t)− Z̄n(t, b))
⊗2,

where pnj(t, b) = Yj(t) exp(b
⊤Zj(t))/Sn(t, b). Write Z̄n(t) = Z̄n(t, β) and

Vn(t) = Vn(t, β). By the weak law of large numbers, we have

Sn(t, β)/n
p→ s0(t), Z̄n(t)

p→ e(t), Vn(t)
p→ V (t),

where V (t) = s0(t)
−1s2(t)− e(t)⊗2. By the standard argument (see e.g. [4]),

V (t) can be viewed as a variance-covariance matrix so that it is positive
definite. Introduce the EL-weighted versions of the above two processes:

Z̄n(t) =
∑

j=1

ppnj(t)Zj(t), Vn(t) =
n
∑

j=1

ppnj(t)(Zj(t)− Z̄n(t))
⊗2,

where ppnj(t) = (nπnj)Yj(t) exp(β
⊤Zj(t))/Sn(t, β). Clearly, they are also pre-

dictable. An application of Lemma A2 of [6] with wj = ppnj(t)Yj(t) exp(β
⊤Zj(t))

and aj = a⊤Zj(t) allows us to have an expansion for log Sn(t, β + a) with
a ∈ Rk. The result is

(4.47) log Sn(t, β + a)− log Sn(t, β) = a⊤Z̄n(t) + 1/2a⊤Vn(t)a+ rn(t, a),

where the remainder rn(t, a) has the property

(4.48) |rn(t, a)| ≤ 4/3|a|3 max
1≤j≤n

‖Zj(t)− Z̄n(t)‖3.

The limit behavior of β̂n can be derived from the study of the following ℓ∗n.
To this end, we use (4.47) to obtain its two-term Taylor expansion,

ℓ∗n(a) := n
(

ℓn(β + n−1/2a)− ℓn(β)
)

=
n
∑

j=1

nπnj

∫ τ

0

(

n−1/2a⊤(Zj(t)− Z̄n(t))

− 1/2n−1a⊤Vn(t)a− rn(t, n
−1/2a)

)

dNj(t)

:= a⊤Un − 1/2a⊤J∗na− rn(a),



EFFICIENT ESTIMATION IN CONVEX MINIMIZATION 27

where

Un = n1/2
n
∑

j=1

πnj

∫ τ

0
(Zj(t)− Z̄n(t)) dNj(t),

J
∗
n =

n
∑

j=1

πnj

∫ τ

0
Vn(t) dNj(t), rn(a) =

n
∑

j=1

nπnj

∫ τ

0
rn(t, n

−1/2a) dNj(t).

One observes that ℓ∗n(a) is maximized at â =
√
n(β̂n − β). Since Wu =

E(u(R)u(R)⊤) is positive definite and Sn = n−1
∑n

j=1 u(Rj)u(Rj)
⊤ p→ Wu,

it follows that λmin(Sn) = λn ≥ λ0 for some constant λ0 > 0. Noticing (K)
implies u∗n‖ζn‖ = op(1), hence the first inequality in (4.46) implies nπnj ≤

1
λ0−u∗

n‖ζn‖
≤ c1 for some constant c1 > 0. Since Zj(t), j = 1, 2, . . . are

uniformly bounded processes (bounded by c2), it follows, in view of (4.48),
that

|rn(a)| ≤ c1

n
∑

j=1

∫ τ

0
4/3|a|3(2c2)3n−3/2 dNj(t) = O(n−1/2).

Therefore rn(a) = op(1) for every finite a. Recall that it is shown in the
Introduction that ℓn hence ℓ∗n is convex. Using the convex argument (e.g.
Hjort and Pollard (1993)), the desired result now follows from

(4.49) Un =⇒ N (0,Σ1), and

(4.50) J
∗
n

p→ J =

∫ τ

0
J(t)h0(t) dt,

which are shown below. Here Σ1 = J − C(I (Z, Y ))W−1
u C(I (Z, Y ))⊤ and

J(t) = s0(t)V (t) = s2(t) − s1(t)
⊗2/s0(t). Note first that by Proposition 4.1

and (4.3) we have

(4.51)

n
∑

j=1

πnj

∫ τ

0
Zj(t)dNj(t) =

1

n

n
∑

j=1

∫ τ

0
Zj(t) dNj(t)

− 1

n

n
∑

j=1

∫ τ

0
Zj(t) dNj(t)u

⊤
j ζn + rn,

where rn is the remainder term whose square is bounded by the right hand
side of (4.3). Hence by (4.8),

(4.52) ‖rn‖2 ≤ op(n
−1)‖ 1

n

n
∑

j=1

∫ τ

0
Zj dNj‖2 = op(n

−1).
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Denote the i-the component of Zj by Zj,i for i = 1, . . . , k. By Lemma 4.1,
for any η > 0, ǫ > 0 we have

P
(∥

∥

∥

1

n

n
∑

j=1

∫ τ

0
Zj(t) dMj(t)

∥

∥

∥

2
≥ ǫ

)

≤
k

∑

i=1

P
(( 1

n

n
∑

j=1

∫ τ

0
Zj,i(t) dMj(t)

)2
≥ ǫ/k

)

≤ k2η

ǫ
+

k
∑

i=1

P
( 1

n2

n
∑

j=1

∫ τ

0
Z2
j,i(t) d〈Mj ,Mj〉(t) ≥ η

)

.

By taking η = ǫ2 and in view of the uniform boundedness of Zj(t), the last
sum tends to zero as n goes to infinity, hence letting ǫ → 0 gives

1

n

n
∑

j=1

∫ τ

0
Zj(t) dMj(t) = op(1).

Analogously,

1

n

n
∑

j=1

∫ τ

0
Zj(t) dMj(t)⊗ uj = op(1),

where ⊗ is the Kronecker product. Thus using the decomposition dNj =
dMj + dAj and the law of large number we derive

1

n

n
∑

j=1

∫ τ

0
Zj(t) dNj(t)⊗ uj =

1

n

n
∑

j=1

∫ τ

0
Zj(t) dAj(t)⊗ uj + op(1)

= E
(

∫ τ

0
Z(t)Y (t) exp(β⊤Z(t))h0(t) dt⊗ u(R)

)

+ op(1).

This, (4.51), (4.52), the two inequalities in (4.2), (A1) and (4.8) yield

(4.53)

n
∑

j=1

πnj

∫ τ

0
Zj(t)dNj(t) =

1

n

n
∑

j=1

∫ τ

0
Zj(t) dNj(t)

− E
(

∫ τ

0
Z(t)Y (t) exp(β⊤Z(t))h0(t) dtu(R)⊤

)

W−1
u ūn + op(n

−1/2).

Analogously, it follows from Proposition 4.1 and Theorem 4.1 that

(4.54) Sn(t, β) = Sn(t, β) +Op(n
1/2), and

(4.55) Z̄n(t) = Z̄n(t) +Op(n
−1/2),
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uniformly in t ∈ [0, τ ]. Thus, recalling (2.8) and observing that Rnj =
∫ τ
0 Z̄n(t) dNj(t) is square-integrable, we apply (4.3) to get

(4.56)

n
∑

j=1

πnj

∫ τ

0
Z̄n(t) dNj(t) =

∫ τ

0
Z̄n(t)

dN̄n(t)

n

− 1

n

n
∑

j=1

∫ τ

0
Z̄n(t) dNj(t)u

⊤
j ζn + rn,

where the remainder satisfies

rn = ‖ζn‖4u(4)n ‖
(

n−1

∫ τ

0
Z̄n(t) dN̄n(t)

)⊗2‖ = op(n
−1/2).

It is easily seen that

(4.57) Z̄n(t) = e(t) + op(1).

By the second inequality of (4.46), (4.49)-(4.53) and (4.56)-(4.57), we achieve

Un = n−1/2
n
∑

j=1

∫ τ

0
(Zj(t)− Z̄n(t)) dNj(t)− C(I (Y, Z))W−1

u n1/2ūn + op(1).

It is a standard result that the first term on the right side of the above
display converges in distribution of N (0, J), see e.g. Theorem 8.2.1. of
Fleming and Harrington [4], while the second term converges in distribution
N (0, C(I (Z, Y ))W−1

u C(I (Z, Y ))⊤). Since the second term is (asymptoti-
cally) the projection of the first term onto the closed linear subspace spanned
by u1, . . . , um, it follows Un satisfies (4.49). We are now left to prove (4.50).
Analogous to (4.54), one obtains

n
∑

j=1

ppnjZj(t)
⊗2 =

n
∑

j=1

pnjZj(t)
⊗2 +Op(n

−1/2), and

Vn(t) =

n
∑

j=1

ppnjZj(t)
⊗2 − Z̄n(t)

⊗2 = Vn(t) + op(1).

Accordingly,

J
∗
n =

n
∑

j=1

πnj

∫ τ

0
Vn(t) dNj(t) + op(1) = n−1

∫ τ

0
Vn(t)dN̄n(t) + op(1) = J + op(1),

where the last equality uses (i) of [6]. This proves (4.50) and completes the
proof.
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