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Motivated by applications to goodness of fit U-statistic testing,
the jackknife empirical likelihood (Jing, et al. [14]) is justified with an
alternative approach and the Wilks theorems for vector U-statistics
are proved. This generalizes Owen’s empirical likelihood for vectors to
vector U statistics and includes the JEL for U-statistics with side in-
formation as a special case. The results are extended to allow for the
constraints to use estimated criteria functions and for the number
of constraints to grow with the sample size. The developed theory
is applied to derive the JEL tests or confidence sets for some use-
ful vector U-statistics associated with chisquare statistic, Cronbach’s
coefficient alpha, Pearson’s correlation, concordance correlation co-
efficient, Cohen’s kappa, Goodman & Kruskal’s Gamma, Kendall’s
τb, and interclass correlation; for a linear mixed effects model; for
a balanced random effects model; for models with overdisperson and
zero-inflated Poisson; for U-quantiles including Hodges-Lehmann me-
dian, Gini’s mean difference and Theil’s test; and for the simplicial
depth function. A small simulation is conducted to evaluate the tests.

1. Introduction. To construct tests and confidence sets in a nonpara-
metric setting, Owen [23–25] introduced the empirical likelihood approach.
As a likelihood approach of nonparametric nature, it combines the effective-
ness of likelihood and the reliability of nonparametrics. It does not require
specification of a distribution for data and is particularly convenient to in-
corporate side information. It gives confidence sets with data-driven shapes
and does not require estimation of variances. The empirical likelihood theory
has been successfully extended to various branches of statistics with tremen-
dous accomplishments. In this article, we shall develop the theory for vector
U statistics with side information and apply it to a number of important
examples from different topics in statistics.

Vector U-statistics are useful and each of many frequently used test statis-
tics can be written as a function of vector U-statistics, see e.g. Kowalski and
Tu [16], Lee [21] and Serfling [29]. See also the examples in Subsection 3.2.
Relatively recently, Jing et al. [14] developed an empirical likelihood theory
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for univariate U-statistics by exploiting the technique of jackknife pseudo
values. The usual empirical likelihood for a U-statistic involves in the nonlin-
earality of the probabilities πj , j = 1, . . . , n in the constraint equations that
defines the maximization problem for the empirical likelihood. This leads
to there being not available the usual explicit solutions for πj ’s, which dis-
courages the development of the theory. The jackknife technique circumvents
this discouragement. In the meantime, it correctly estimates the variance, so
that the Wilks type of theorems still hold and the advantages of the empir-
ical likelihood approach are retained. As in the case of empirical likelihood
for time series in Nordman and Lahiri [22], the independence or asymptotic
independence which justifies the definition of empirical likelihood as a prod-
uct of probabilities πj ’s is not directly available for a U-statistic of which
the summands are not independent but correlated. Jing et al. recognized
the asymptotic independence of the jackknife pseudo values of a univari-
ate U-statistic and defined the jackknife empirical likelihood (JEL) for the
U-statistic.

In justifying the asymptotic independence, Jing et al. cited a theorem
from Shi [31], who proved the asymptotic independence by an application
of the zero-one law for a sequence of exchangeable random variables. Shi’s
result is not easily available as it was published in Chinese, we here present
an alternative, somewhat straightforward, justification of the asymptotic
independence based on the Hoeffding decomposition for a U-statistic. Based
on this justification and the Hoeffding decomposition for a vector U-statistic,
we define the JEL for the vector U-statistic, which takes the JEL for a vector
U-statistic with the usual side information as a special case. See Section 2
for the details.

We proved the Wilks theorem for vector U-statistics with side informa-
tion, which is allowed to be given by either a finite number or a grow-
ing number of known or estimated constraints with an increasing sample
size. The latter is needed to handle naturally occurring nuisance parame-
ters in semiparametric models. We applied the developed results to obtain
the JEL-based tests and confidence sets with side information for a num-
ber of important examples from different areas of statistics. In Examples 1
and 2, we discussed the JEL tests for some useful vector U-statistics asso-
ciated with the chisquare statistic, Cronbach’s coefficient alpha, Pearson’s
correlation, concordance correlation coefficient, Cohen’s kappa, Goodman &
Kruskal’s Gamma, Kendall’s τb, and interclass correlation. In Example 3, we
obtained the JEL tests and confidence sets for linear mixed effects models
and variance component models. In particular, we have provided two JEL
tests about the random effects. In Example 4, the JEL tests about Binomial
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and Poisson under/overdisperson are constructed. In Example 5, the JEL
tests for U-quantiles with side information are described, including Hodges-
Lehmann median, Kendall’ tau, Gini’s mean difference and Theil’s test. In
Example 6, the JEL test about the simplicial depth with a growing num-
ber of constraints are discussed. In the context of Example 3, we offer an
example of a growing number of estimated constraints in Section 5.

As aforementioned, the empirical likelihood theory has been extended to
various branches of statistics. These include Bartlett correction (DiCiccio, et
al. [7]), generalized linear models (Kolaczyk [15]), heteroscedastic partially
linear models (Lu [19]), partially linear models (Shi and Lau [30]; Wang and
Jing [32]), parametric and semiparametric models in multiresponse regres-
sion (Chen and Van Keilegom [5]), right censored data (Li and Wang [17]),
U-statistics with side information (Yuan, et al. [33]), and stratified samples
with nonresponse (Fang, et al. [9]). Qin and Lawless [28] linked empirical
likelihood with finitely many estimating equations and investigated maxi-
mum empirical likelihood estimators. Chen, et al. [4] obtained asymptotic
normality for the number of constraints growing to infinity. Hjort, et al. [12]
and Peng and Schick [26, 27] generalized the empirical likelihood approach
to allow for the number of constraints to grow with the sample size and for
the constraints to use estimated criteria functions. Algorithms, calibration
and higher-order precision of the approach can be found in Hall and La Scala
[10], Emerson and Owen [8] and Liu and Chen [18] among others.

The rest of the paper is structured as follows: In Section 2, the JEL is
introduced with a justification based on the Hoeffding decomposition for
U-statistics. In Section 3, the Wilks theorems for vector U-statistics and
for U-statistics with growing number of constraints are proved. A number
of important examples are given. Section 4 reports a small simulation. The
asymptotic behaviors of the JEL with growing number of estimated con-
straints are studied in Section 5. The result is used to derive a joint con-
fidence set in a random effects model. In Section 6, we first introduce the
notation used throughout. Two general asymptotic results on the empirical
likelihood are then described. We close this section with a general asymp-
totic result on the JEL for U-statistics with side information. Some of the
proofs and a useful lemma are given in Section 7.

2. Jackknife empirical likelihood for vector U statistics. In this
section, we first recall some facts about U-statistics. The JEL for vector
U-statistics is then given with a justification.

Let (Ω,A ) be a measurable space and P be a probability measure on
this space. Let Z be a random element taking values in some measurable
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space (Z,S ) with distribution Q under P . Let Z1, . . . , Zn be independent
and identical copies of Z. Let h be a measurable function from Zm to R
which is argument-symmetric in its m arguments, that is, h(z1, . . . , zm) =
h(zπ1 , . . . , zπm

) for every z1, . . . , zm ∈ Z, where π1, . . . , πm is an arbitrary
permutation of integers 1, . . . ,m. A U-statistic with kernel h of order m is
defined as

Un := Unm(h) =

(

n

m

)−1
∑

1≤i1<...<im≤n

h(Zi1 , . . . , Zim), n ≥ 2.

Throughout we assume h is Qm-square integrable, that is, h ∈ L2(Q
m),

where L2(Q
m) =

{

f :
∫

f2 dQm <∞
}

. We shall abbreviate θ = E(h) :=
E(h(Z1, . . . , Zm)) =

∫

h dQm, Pnf = n−1
∑n

j=1 f(Zj) and Pf = E(f(Z)).
Then Un is an unbiased estimator of θ. Let hm = h and hc(z1, . . . , zc) =
E(h(z1, . . . , zc, Zc+1, . . . , Zm)) for c = 1, . . . ,m − 1. Then hc is a version of
the conditional expectation, that is,

hc(z1, . . . , zc) = E
(

h(Z1, . . . , Zm)|Z1 = z1, . . . , Zc = zc
)

.

Let δz be the point mass at z ∈ Z. We now define

h∗c(z1, . . . , zc) = (δz1 − P ) . . . (δzc − P )Pm−ch, c = 0, 1, . . . ,m.

Let f̃ = f − Pf denote the centered version of an integrable function f .
Obviously h∗1 = h̃1. With this notation the useful Hoeffding decomposition
can be stated as

(2.1) Un − θ =

m
∑

c=1

(

m

c

)

Unc(h
∗
c).

Let U
(−j)
n−1 denote the U-statistic of order m based on the n− 1 observations

Z1, . . ., Zj−1, Zj+1, . . . , Zn. The jackknife pseudo values of the U-statistic
Un(h) with kernel h are defined as

Vnj(h) = nUn(h)− (n− 1)U
(−j)
n−1 (h), j = 1, . . . , n.

For ease of notation, we sometimes drop h and write Vnj = Vnj(h) when
there is no ambiguity. From (2.1) it follows

(2.2) Vnj = θ +mh̃1(Zj) +Rnj , j = 1, . . . , n,

where Rnj is the remainder given by

(2.3) Rnj =
m
∑

c=2

(

m

c

)

(

nUnc(h
∗
c)− (n− 1)U

(−j)
(n−1)c(h

∗
c)
)

, j = 1, . . . , n.
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Using the Hoeffding decomposition (2.1) and the orthogonality property of
Unc(h

∗
c)’s, we can easily prove the following.

Lemma 2.1. The jackknife pseudo values Vnj of Un(h) satisfy

(2.4) E
(

(Vnj − θ −mh̃1(Zj))
2
)

= O(n−1), j = 1, . . . , n.

For a complete proof please see (6.7) and thereafter. Thus from (2.4) it
immediately follows

(2.5) Vnj = θ +mh̃1(Zj) +Op(n
−1/2), j = 1, . . . , n.

This shows that each jackknife pseudo value Vnj depends asymptotically on
Zj so that Vnj , j = 1, . . . , n are approximately independent for large values
of n. One nice property of the jackknife pseudo values Vnj ’s is they satisfy

(2.6) Un(h) =
1

n

n
∑

j=1

Vnj(h).

Thus a U-statistic can be expressed as the average of approximately inde-
pendent random variables (the jackknife pseudo values). Furthermore, if πj
is a probability mass placed at Zj , then approximately the same mass πj
is placed at the jackknife pseudo value Vnj for j = 1, . . . , n. Therefore, the
likelihood of the pseudo values Vnj ’s is approximately the product of these
πj ’s. Suppose there is available side information about Q given by

(2.7)

∫

g dQ = 0,

where g is a square-integrable function from Z to Rr. In view of E(Un) = θ
and (2.6), we are justified to introduce the JEL for the U-statistic Un(h)
with side information given by (2.7) as follows:

(2.8) Rn(h,g) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjVec
(

Ṽnj(h),g(Zj)
)

= 0
}

,

where Pn denotes the closed probability simplex in dimension n,

Pn =
{

π = (π1, . . . , πn)
⊤ ∈ [0, 1]n :

n
∑

i=1

πi = 1
}

.

Here r is the number of equalities which give the side information, and these
equalities are referred to as constraints.
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Remark 2.1. If we replace the jackknife pseudo values Ṽnj(h) bymh̃1(Zj)
in (2.8), then the resulted supremum is Rn(mh1,g), which is the usual em-
pirical likelihood. We now consider estimating mh̃1(Zj) by the jackknife
pseudo values Ṽnj(h) and work with the estimated constraints. The resulted
supremum is then (2.8). This is in the spirit of empirical likelihood with
estimated constraints of Hjort, et al. [12] and Peng and Schick [26, 27].

It must be mentioned that the preceding definition of JEL for U-statistics
with side information covers the case that the side information is given by
several U-statistics in view of the Hoeffding decompositions for U-statistics.
This is indeed the case of vector U-statistics. Specifically, let h(k) be a ker-
nel (i.e. argument-symmetric and square-integrable) from Zmk to R for k =
1, . . . , r. Let E

(

Unmk
(h(k))

)

= θk and Ṽnj(h
(k)) = Vnj(h

(k))− θk be the cen-

tered jackknife pseudo values of the U-statistic Unmk
(h(k)) of order mk with

kernel h(k). Let h = (h(1), . . . , h(mk))⊤,Un(h) = (Unm1(h
(1)), . . . , Unmr

(h(r)))⊤

and Ṽnj(h) = (Ṽnj(h
(1)), . . . , Ṽnj(h

(mk)))⊤. Based on the discussion, the
JEL for the vector U-statistic Un(h) is justified to be defined by

(2.9) Rn(h) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjṼnj(h) = 0
}

.

3. The Wilks theorems and examples. In this section, we first
present the Wilks theorems for vector U-statistics and for U-statistics with
side information described by a finite number of constraints, followed by the
JEL for a U-statistic with a growing number of constraints. Several impor-
tant examples are given in the end.

3.1. The Wilks theorems for vector U-statistics. Our first result gener-
alizes Owen’s vector empirical likelihood and Jing, et al.’s [14] JEL for uni-
variate U-statistics to vector U-statistics. It holds under the same condition
as required for the asymptotic normality of vector U-statistics. The proof is
delayed to the last section.

Theorem 3.1. Suppose the variance-covariance matrix Var(mh1(Z))
exists and is nonsingular. Then the JEL Rn(h) for a r-dimensional vector
U-statistic Un(h) defined in (2.9) converges in distribution the chisquare
distribution with r degrees of freedom, i.e.,

−2 logRn(h) ⇒ χ2(r).

A special case of Theorem 3.1 is when side information is given by the
usual equation (2.7). This is the JEL Rn(h,g) which generalizes (2.8) from
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a scalar kernel h to a vector kernel h. Recall the following definition of the
empirical likelihood ratio,

Rn(h,g) =
sup

{

∏n
j=1 πj : π ∈ Pn,

∑n
j=1 πjVec(Ṽnj(h),g(Zj))) = 0

}

sup
{

∏n
j=1 πj : π ∈ Pn

} .

In this case, we naturally concentrate on the subspace of probability mea-
sures Q constrained by (2.7) and look at the empirical likelihood ratio:

Rn(h,g) =
sup

{

∏n
j=1 πj : π ∈ Pn,

∑n
j=1 πjVec(Ṽnj(h),g(Zj))) = 0

}

sup
{

∏n
j=1 πj : π ∈ Pn,

∑n
j=1 πjg(Zj) = 0

} ,

as it is larger than Rn(h,g) i.e.

Rn(h,g) ≥ Rn(h,g).

Clearly the ratio Rn(h,g) can be expressed as

Rn(h,g) =
Rn(h,g)

Rn(g)
.

It also has an asymptotic Chisquare distribution as stated below.

Corollary 3.1. Let h be a vector kernel and m be a vector of positive
integers both in Rs. Assume g is a measurable function from Z to Rr such
that (2.7) holds. Suppose the variance-covariance matrix Cov(Vec(mh1,g)(Z))
exists and is nonsingular. Then

(3.1) − 2 logRn(h,g) ⇒ χ2(r + s).

Hence,

(3.2) − 2 logRn(h,g) = −2 logRn(h,g) + 2 logRn(g) ⇒ χ2(s).

Proof. As a special case of Theorem 3.1, we obtain (3.1), from which
and Cochran’s theorem we derive (3.2), following a standard proof in text-
books for the logarithm of a parametric likelihood ratio to be asymptotically
chisquare distributed.

We now study the JEL when the number r = rn of constraints grows to
infinity with the increasing sample size n. Recall g is a vector function of
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dimension rn. To stress the dependence on n we write gn = g. With (2.7)
as side information, the JEL for a U statistic is as follows:

Rn(h,gn) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjVec
(

Ṽnj(h),gn(Zj)
)

= 0
}

.

As in Subsection 3.1, one definesRn(h,gn) and has the relationshipRn(h,gn) =
Rn(h,gn)/Rn(gn). We are interested in establishing

(3.3)
−2 logRn(h,gn)− (rn + 1)

√

2(rn + 1)
⇒ N (0, 1)

as rn tends to infinity slowly with n under suitable conditions.

Remark 3.1. One can interpret (3.3) as −2 logRn(h,gn) approximately
chisquare-distributed with rn+1 degrees of freedom, whence−2 logRn(h,gn)
approximately chisquare-distributed with 1 degree of freedom.

To this goal, for a rn× rn symmetric matrix Mn denote by λmin(Mn) and
λmax(Mn) the smallest and largest eigen values of Mn, i.e.,

λmin(Mn) = inf
‖u‖=1

u⊤
Mnu and λmax(Mn) = sup

‖u‖=1
u⊤

Mnu,

where ‖ · ‖ denotes the euclidean norm. Following Peng and Schick [27], a
sequence of rn × rn dispersion matrices Mn is regular if

(R) 0 < inf
n
λmin(Mn) ≤ sup

n
λmax(Mn) <∞.

A sequence of measurable vector functions {vn} on Z is Lindeberg if for
every ǫ > 0,

∫

‖vn‖21[‖vn‖ > ǫ
√
n] dQ→ 0.

Useful properties for Lindeberg sequences can be found in Peng and Schick
[26, 27]. Here we quote three properties for our late use.

(L0) If {un} and {vn} are Lindeberg, so are {max(‖un‖, ‖vn‖)} and {un + vn}.
(L1) If {vn} is Lindeberg, then max1≤j≤n ‖vn(Zj)‖ = op(n

1/2).
(L2) If

∫

‖vn‖r dQ = o(nr/2−1) for some r > 2, then {vn} is Lindeberg.

For matrices A, C and M of compatible dimensions, we define the matrix
function W by

(3.4) W (A,C,M) =

(

A C
⊤

C M

)

.
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Set

(3.5) Cn =

∫

mh1gn dQ, Wn =

∫

g⊗2
n dQ,

where w⊗2 = ww⊤. As a special case of Theorem 5.1 below, the distribu-
tion of −2 logRn(h,gn) is approximately a chisquare with rn +1 degrees of
freedom as stated next. This generalizes Theorem 3.1 from a finite number
of constraints to a growing number. The proof is delayed to the last section.

Theorem 3.2. Suppose gn is a measurable function from Z to Rrn such
that

∫

gn dQ = 0. Suppose further the sequences rnh1 and rn‖gn‖ are Lin-
deberg such that W (Var(mh1(Z1)),Cn,Wn) satisfies (R). Then (3.3) holds
as both rn and n tend to infinity such that rn = o(n1/2).

3.2. Examples. Here we apply Theorems 3.1 – 3.2 to derive the JEL-
based tests and confidence sets for a number of frequently used test statistics.

Example 1. Goodman & Kruskal’s Gamma. Vector U-statistics are
common as each of many frequently used test statistics can yield a vec-
tor U-statistic, see e.g. Kowalski and Tu [16]. These U-statistics extend
the scope of the frequently used test statistics and provide additional use-
ful tests. The JEL for vector U-statistics with side information and their
asymptotic distributions can be obtained by using Theorem 3.1 or Corol-
lary 3.1. Let us illustrate this using Goodman & Kruskal’s Gamma. To
this end, let Zj = (Xj , Yj), j = 1, . . . , n be i.i.d. copies of a random vec-
tor Z = (X,Y ). The Goodman & Kruskal’s Gamma is defined as γ =
(P (C)− P (D))/(P (C) + P (D)), where C = {(X1 −X2)(Y1 − Y2) > 0} and
D = {(X1 −X2)(Y1 − Y2) < 0}. Associated with it a vector U-statisticUn(h)
of order 2 can be constructed with the kernel equal to

h(z1, z2) = Vec
(

1[(x1 − x2)(y1 − y2) > 0], 1[(x1 − x2)(y1 − y2) < 0]
)

.

Similar vector U-statistics can be constructed, for example, for Kendall’s
tau-b, Pearson’s correlation, Cohen’s kappa, interclass correlation, concor-
dance correlation coefficient, and Cronbach’s coefficient alpha. Useful vector
U-statistics can also be constructed from models for group comparison such
as ANOVA for modeling variances, random-factor ANOVA, ROC analysis,
and models for K-sample mean and variance. Another instance is given in
Example 2.

The JEL with side information given by (2.7) for the Gamma is

Rn(θ,g) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjVec
(

Vnj(h)− θ,g(Zj)
)

= 0
}

,
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whereVnj(h) are the jackknife pseudo values ofUn(h) and θ = (P (C), P (D))⊤.
As in Subsection 3.1, one definesRn(θ,g) and hasRn(θ,g) = Rn(θ,g)/Rn(g).
An example of g is g = Vec(g1, g2) with g1(x) = 1[x ≤ m10] − 1/2 and
g2(y) = 1[y ≤ m20]− 1/2, where m10 and m20 are the known medians of X
and Y respectively. Let h1(z) = E(h(z,Z2)). Then by Corollary 3.1 one has

P
(

− 2 logRn(θ0,g) = −2 logRn(θ0,g) + 2 logRn(g) > χ2
1−α(2)

)

→ α,

provided that the dispersion matrix W (Var(2h1(Z)),C,Var(g(Z))) is non-
singular, where C = E(h1(Z)⊗ g(Z)). This shows that 1[−2 logR(θ0,g) >
χ2
1−α(2)] is an asymptotic test of size α for testing the hypothesis H0 : θ =
θ0. It is noteworthy that the rejection of the null at the α level of significance
implies the null γ = γ0 = (θ10 − θ20)/(θ10 + θ20) must be rejected at the
same level.

Example 2. Testing independence between two categorical
outcomes. Let (U, V ) be a bivariate categorical r.v. whose marginals have
K,L levels indexed by rk, sl respectively. Let (Ui, Vi), i = 1, . . . , n be i.i.d.
copies of (U, V ). Based on the sample we are interested in testing the null
hypothesis that U and V are independent. Chisquare or Fisher’s exact tests
are commonly used. Here we shall use the JEL for vector U-statistics to give
an asymptotic test based on the vector U-statistic Un(h), see also p. 260 of
Kowalski and Tu [16]. To this end, set Z = (X⊤,Y⊤)⊤ where

X = (1[U = r1], . . . ,1[U = rK ])⊤, Y = (1[V = s1], . . . ,1[V = sL])
⊤.

Let Zi = Vec(Xi,Yi), i = 1, . . . , n be the corresponding i.i.d. copies of Z.
Independence is equivalent to the statement

(3.6) δ = E
(

2−1(X1 −X2)⊗ (Y1 −Y2)
)

= 0.

This suggests us to look at the JEL with side information given by (2.7) as
follows:

Rn(h,g) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjVec(Vnj ,g(Zj)) = 0
}

,

where Vnj are the jackknife pseudo values of the vector U-statistic Un(h)
of order 2 with the (K − 1)(L− 1)-dimensional kernel h given by

h(z1, z2) = 2−1(x1 − x2)[−K]⊗ (y1 − y2)[−L],

where x[−k] denotes the (K−1)-dimensional vector obtained from x with the
deletion of the k-th component. Also cf. (3.6). Similar to Subsection 3.1, one
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defines Rn(h,g) and claims Rn(h,g) = Rn(h,g)/Rn(g). In our simulation
study below, the side information is that the marginal distributions are
known:

(3.7) pk· = p
(0)
k· , pl· = p

(0)
·l , k = 1, . . . ,K, l = 1, . . . , L,

where p
(0)
k· , p

(0)
·l are known probabilities. In this case, g = Vec(g1,g2) with

(3.8)
g1(z) = Vec(1[U = r1,0]− p

(0)
1,· , . . . ,1[U = rK−1,0]− p

(0)
K−1,·),

g2(z) = Vec(1[V = s1,0]− p
(0)
·,1 , . . . ,1[V = sL−1,0]− p

(0)
·,L−1),

where rk,0, sl,0 are known numbers. Note that each of the two marginal
probabilities sums up to one so there are only (K − 1)(L − 1) independent
cell probabilities. Let h1(z) = E(h(z,Z2)), z ∈ RKL. Then by Corollary 3.1
under the null hypothesis of independence one has

−2 logRn(h,g) = −2 logRn(h,g) + 2 logRn(g) ⇒ χ2((K − 1)(L− 1)),

provided that the dispersion matrix Σ = Var(2h1(Z1)) is nonsingular. We
demonstrate in the last section that Σ is nonsingular if and only if all the
marginal probabilities are nonzero, i.e.

(3.9) pk· 6= 0, k = 1, . . . ,K and p·l 6= 0, l = 1, . . . , L,

where p = (plk)KL = E(XY⊤).

Example 3. Linear mixed effects models. In a longitudinal study
with n subjects and J assessment points, the response Yij , fixed effect xij ,
random effect ui, and random error ǫij satisfy

(3.10) Yij = x⊤
ijβ +w⊤

ijui + ǫij , j = 1, . . . , J, i = 1, . . . , n,

where zi = Vec(xi,wi) with xi = (xi1, . . . ,xiJ)
⊤ and wi = (wi1, . . . ,wiJ)

⊤

are n i.i.d. copies of z = Vec(x,w) and have finite second moments, the
ǫi = (ǫi1, . . . , ǫiJ)

⊤ are i.i.d. with mean zero and finite variance-covariance
matrix Σǫ = Var(ǫi) = Diag(σ21, . . . , σ

2
J), the ui are i.i.d. with finite variance-

covariance matrix Σu = Var(ui), and zi, ui and ǫi are independent. To
introduce the distribution-free U-statistics based- generalized estimating
equations (UGEE), set yi = (Yi1, . . . , YiJ)

⊤, θ = Vec(β,Σu,Σǫ), and f =
Vec(f1, f2), where

f1 = (f11, . . . , f1J)
⊤ with f1j(yi,yi′) = Yij + Yi′j ,

f2 = (f211, f212, . . . , f2(J−1)J , f2JJ)
⊤, f2jj′(yi,yi′) = (Yij − Yi′j)(Yij′ − Yi′j′).
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The conditional means µ = Vec(µ1,µ2) are easily calculated as follows:

µ1 = (µ11, . . . , µ1J)
⊤, µ2 = (µ211, µ212, . . . , µ2(J−1)J , µ2JJ)

⊤,

µ1j(θ; zi, zi′) = E(f1j(yi,yi′)|zi, zi′) = (xij + xi′j)
⊤β,

µ2jj′(θ; zi, zi′) = β
⊤(xij − xi′j)(xij′ − xi′j′)

⊤β

+ u⊤
ijΣuui′j + u⊤

ij′Σuui′j′ + 2σ2j1jj′ .

The UGEE for estimating θ is Un2(h(·;θ)) = 0 with the kernel h given by

h(t1, t2;θ) =
∂µ⊤

∂θ
(z1, z2;θ)(f(y1,y2)− µ(z1, z2;θ)),

where t = Vec(y, z). This suggests us to look at the JEL for the vector
U-statistic as follows:

Rn(θ) = sup
{

n
∏

i=1

nπi : π ∈ Pn,
n
∑

i=1

πiVni(h,θ) = 0
}

,

where Vni(h,θ) is the jackknife pseudo values of the vector U-statistics
Un2(h(·;θ)). Let h1(t;θ) = E(h(t1, t2;θ)|t1 = t). By Theorem 3.1, if
Var(h1(t;θ0)) is nonsingular then an asymptotic test of size α for the null
hypothesis of θ = θ0 is 1[−2 logRn(θ0) > χ2

1−α(dim(θ0))].
Joint confidence sets for variance components. As a special case

of the LMM (3.10), the balanced one-way random effects model is

(3.11) Yij = µ+ ui + ǫij , i = 1, . . . , n, j = 1, . . . , J(J ≥ 2),

where µ is the mean response, the ǫij ’s are i.i.d. with mean zero and variance
σ2ǫ = Var(ǫij), the ui’s are i.i.d. with mean zero and variance σ2u = Var(uj),
and ǫij ’s and ui’s are independent and have finite fourth moments.

The commonly used confidence regions for the variances heavily depend
on the assumption of normality of the model. Here we employ the JEL
to give confidence sets for the variances. It is well known that a random
variable X has a finite fourth moment then the minimum variance unbiased
estimator (MVUE) of the variance Var(X) is the U-statistic of order two
with the kernel equal to 2−1(X1 − X2)

2, where X1, X2 are i.i.d. copies of
X, see e.g. Heffernan [11]. We shall exploit the MVUE’s of variances in our
forthcoming study of confidence sets.

Following Arvesen [2], put

(3.12) Xi =

(

Yi·
(J − 1)−1

∑J
j=1(Yij − Yi·)2

)

, i = 1, . . . , n,
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where Ai· = J−1
∑J

j=1Aij denotes the average of Aij over j. Clearly X1, . . . ,

Xn are i.i.d. Set h = (h(1), h(2))⊤ where, with κ(Xi) = (J−1)−1
∑J

j=1(Yij−
Yi·)

2,

h(1)(Xi,Xi′) = 2−1(κ(Xi) + κ(Xi′)), h(2)(Xi,Xi′) = 2−1(Yi· − Yi′·)
2.

Then one readily calculates

(3.13) E(h(1)(X1,X2)) = σ2ǫ , E(h(2)(X1,X2)) = σ2 := σ2u + J−1σ2ǫ .

Therefore the vector U-statistic

Un(h) = Vec(Un(h
(1)), Un(h

(2)))

is an unbiased estimators of θ = (σ2ǫ , σ
2)⊤. The JEL for the vector U-statistic

Un(h) is then given by

Rn(θ) = sup
{

n
∏

i=1

nπi : π ∈ Pn,
n
∑

i=1

πi(Vni(h)− θ) = 0
}

, θ ∈ R+ ×R+,

where Vni(h) = Vec
(

Vni(h
(1)), Vni(h

(2))
)

is the vector whose components

are the jackknife pseudo values of the U-statistics Un(h
(1)) and Un(h

(2)) re-
spectively. By Theorem 3.1, if Var(h1(X)) is nonsingular then an asymptotic
joint confidence set for θ at the 1− α level of significance is given by

{

θ ∈ R+ ×R+ : −2 logRn(θ) ≤ χ2
1−α(2)

}

.

It is noteworthy that a confidence set for ϑ = (σ2ǫ , σ
2
u)

⊤ can be obtained by
the transformation ϑ1 = θ1, ϑ2 = θ2−θ1/J . Also, a confidence set for σ2u can
be obtained by J → ∞. The null hypothesis H0 : (σ

2
ǫ , σ

2
u) = (σ2ǫ0, σ

2
u0) must

be rejected if (σ2ǫ0, σ
2
u0 + J−1σ2ǫ0) does not belong to the above confidence

set. In particular, the null hypothesis H0 : σ
2
ǫ = σ2ǫ0, σ

2
u = 0 must be rejected

if (σ2ǫ0, J
−1σ2ǫ0) does not belong to the above confidence set.

It is easy to calculate

(3.14)
h
(1)
1 (x1) = E(h(1)(x1,X2)) = 2−1(κ(x1) + σ2ǫ ),

h
(2)
1 (x1) = E(h(2)(x1,X2)) = 2−1((y1· − µ)2 + σ2).

Testing the random effects. Let ψ = h(2) − J−1h(1). Clearly ψ is
argument-symmetric and from (3.13) it follows that

ψ(X1,X2) = 2−1
(

(Y1·−Y2·)2−J−1(κ(X1)+κ(X2))
)

, E(ψ(X1,X2)) = σ2u.
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This suggests to look at the JEL as follows:

Rn(σ
2
u) = sup

{

n
∏

i=1

nπi : π ∈ Pn,
n
∑

i=1

πi(Vni(ψ)− σ2u) = 0
}

, σ2u ∈ [0,∞),

where Vni(ψ) are the jackknife pseudo values of the U-statistic Un(ψ). Let
ψ1(x1) = E(ψ(x1,X2)). It follows from Theorem 3.1 that if σ2(ψ1) =
Var(ψ1(X)) is nonsingular then an asymptotic test of size α for the null
hypotheis H0 : σ2u = 0 is 1[−2 logRn(0) > χ2

1−α(1)]. By (3.14) one has
ψ1(X1) = 2−1

(

(Y1·−µ)2−J−1κ(X1)
)

−2−1σ2u. Thus with some algebra one
shows σ2(ψ1) > 4−1E(u41) ≥ 0 when J ≥ 3.

Example 4. Models for overdisperson. In a GEE model, the mean
µi of the response Yi is modeled as a function a covariate vectorXi as follows:

(3.15) g(µi) = X⊤
i β, i = 1, . . . , n,

where g is a link function and β is a parameter. Here Ti = Vec(Yi,Xi), i =
1, . . . , n is a random sample of T = Vec(Y,X). The parameter β can be
estimated as a solution to the GEE. Suppose the conditional variance of
each Yi given Xi is a function of the mean µi and some parameter α, i.e.,
Var(Yi|Xi) = V (µi,α). By simultaneously modeling the mean and variance,
more efficiency can be gained and other issues such as overdisperson can be
handled. To introduce the UGEE, set f = Vec(f1, f2) where

f1(y1, y2) = y1 + y2, f2(y1, y2) = (y1 − y2)
2, y1, y2 ∈ R.

Then it is easy to calculate h(µ1, µ2,α) = E(f(Y1, Y2)|X1,X2) with h =
Vec(h1, h2) where

h1(µ1, µ2,α) = µ1+µ2, h2(µ1, µ2,α) = V (µ1,α)+V (µ2,α)+ (µ1−µ2)
2.

The UGEE for estimating θ = Vec(β,α) is then given by

(3.16) Un(κ) =

(

n

2

)−1
∑

1≤i<j≤n

G(Xi,Xj ,α)
(

f(Yi, Yj)− h(µi, µj ,α)
)

= 0,

where G(x1,x2,α) is some argument-symmetric matrix function of x1,x2.
The choice of G is not unique and the consistency of the UGEE estimates is
independent of the selection of G. In most cases, we can choose G = DV−1,
where D = ∂h

∂θ
and V is some compatible matrix which may depend on some
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other parameter ν. Extensive discussions can be found in the literature about
distribution-free models. This suggests us to look at the JEL as follows:

(3.17) Rn(θ) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjVnj(θ) = 0
}

,

whereVnj(θ) are the jackknife pseudo values of the vector U-statisticUn(κ).
Let κ1(t) = E(κ(T1,T2;θ)|T1 = t). By Theorem 3.1, if Var(κ1(T)) is non-
singular then an asymptotic test of size α for the null hypothesis of θ = θ0
is 1[−2 logRn(θ0) > χ2

1−α(dim(θ0))].
Due to data clustering, overdisperson often occurs. This includes Binomial

under/overdisperson and Poisson under/overdisperson. The usual logistic or
Poisson log-linear models are not appropriate. In the Poisson log-linear, the
link g is the log function. If we take the conditional variance function to
be V (µi, λ) = λ2µi for some parameter λ. Then h2(µ1, µ2, λ) = λ2(µ1 +
µ2) + (µ1 − µ2)

2. We can test under- or overdisperson by considering the
hypotheses: Underdisperson: H0 : λ

2 = 1 vs H1 : λ
2 < 1 and Overdisperson:

H0 : λ
2 = 1 vs H1 : λ

2 > 1. Since the negative binomial model is a substitute
for the overdispersed Poisson data, we may take V (µi) = µi(1 + αµi), then
h2(µ1, µ2, α) = µ1+µ2+α(µ21+µ22)+ (µ1−µ2)

2. Clearly overdisperson can
be tested by looking at the hypothesis H0 : α = 0 versus H1 : α > 0.

For Binomial under/overdisperson, the usual choice for the link g is the
logistic, and the variance function can be chosen as V (µi, λ) = λ2µi(1− µi)
for some parameter λ. Then we can test under/overdisperson as in the above
Poisson model.

In the zero-inflated Poisson model, the distribution can be model as a
two-component mixture as follows:

(3.18) f(yi|Xi) = α(Ui)f0(yi) + (1− α(Ui))fP (yi|Vi), yi = 0, 1, . . . ,

where Ui,Vi are (possibly overlapped) subsets of Xi, f0 denotes a degen-
erate distribution at 0 to account for the structural zeros, fP is the Poisson
distribution to model the remaining observations and α a mixing propor-
tion of the model. The proportion α(Ui) and the mean µ(Vi) of Yi can be
modeled as follows:

logαi/(1− αi) = U⊤
i β1, log(µi) = V⊤

i β2,

where αi = α(Ui), µi = µ(Vi) and β = Vec(β1,β2). In this case, h1(µi, µj ,β) =
(1− αi)µi + (1− αj)µj and h2(yi, yj ,β) is equal to

µi(1− αi)(1 + αiµi) + µj(1− αj)(1 + αjµj) +
(

µi(1− αi)− µj(1− αj)
)2
.
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Example 5. U-quantiles. The theory of U-quantile provides a unified
treatment of several commonly used statistics, see Arcones [1]. Let κ : Zm 7→
R be a measurable argument-symmetric function. Associated with κ there
induces a distribution function H(t) = P

(

κ(Z1, . . . , Zm) ≤ t
)

, t ∈ R. The
MVUE of H(t) is the U-statistic of order m given by

Hn(t) := Hnm(t) =

(

n

m

)−1
∑

1≤i1<···<im≤n

1[κ(Zi1 , . . . , Zim) ≤ t], t ∈ R,

Following Arcones [1], the κ shall be referred to as the kernel (of the U-
quantile). The U-quantiles include the Hodges-Lehmann median estimator,
Gini’s mean difference, Theil’s estimator of the slope in a simple linear model
and Kendall’s tau. They correspond to the U-quantiles with p0 = 1/2 and
the kernels κ(z1, z2) = 2−1(z1 + z2), |z1 − z2|, (y1 − y2)/(x1 − x2) and (x1 −
x2)(y1 − y2) respectively.

As H(t) is a distribution function, its p-th quantile q is well defined by
q = inf {t : H(t) ≥ p} for p ∈ [0, 1]. We are interested in testing the null
hypothesis that the p-th quantile q is equal to some specified value q0 ∈ R
for a known value p0, i.e., H0 : q = q0. Suppose there is available additional
information about the underlying distribution given by (2.7). For example,
(i) Q has zero median and (ii) Q has zero mean. The former corresponds
to taking g(z) = sign(z), while the latter to g(z) = z. The JEL for the U-
statistic Hn(q0) with side information can be constructed as in Example 1.

Example 6. The simplicial depth function. Let X1, . . . , Xn be
i.i.d. with a distribution Q on Rm. Liu [21] introduced the simplicial depth
function D(x) of a point x ∈ Rm with respect to distribution Q as follows:

D(x) = P
(

x ∈ ∆(X1, . . . ,Xm+1)
)

, x ∈ Rm,

where ∆(X1, . . . , Xm+1) denotes the random simplex with vertices X1, . . . ,
Xm+1, i.e., the closed simplex with vertices X1, . . . , Xm+1. Note that D(x)
is the population simplicial depth of a point x and can be estimated by the
sample simplicial depth Dn(x) of point x given by the U-statistic

Dn(x) =

(

n

m+ 1

)−1
∑

1≤i1<...<im+1≤n

1[x ∈ ∆(Xi1 , . . . ,Xim+1)], x ∈ Rm.

The depth function can be used to define the multivariate median and to
give an ordering of data points in space from center outward. When addi-
tional information is available about the underlying distribution Q, tests or
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confidence sets based the usual sample depth do not utilize the information.
We can use the developed JEL theory for vector U-statistics to incorpo-
rate side information. For a fixed number of constraints, we can construct
the JEL with side information similar to Example 1. We now consider the
case of growing number of constraints. Often we have partial information
that the joint distribution, for example, two marginal distributions are in-
dependent or the marginal distribution is known. These are equivalent to
an infinite number of constraints. Let us now use the latter as an example
to illustrate our approach. Let the distribution of the first component X1 of
X = (X1, . . . , Xm)⊤ be known and equal to F10. This implies

(3.19)

∫

ak dF10 = 0, k = 1, 2, . . . ,

where ak is an orthonormal basis of L2,0(F10). Assume F10 is continuous.
This allows us to take ak = φk(F10), k = 1, 2, . . . , where φk is the trigono-
metric basis of L2,0(U ) with U the uniform distribution on [0, 1] given by

(3.20) φk(t) =
√
2 cos(kπt), t ∈ [0, 1], k = 1, 2, . . . .

This suggests us to look at the JEL with side information as follows:

Rn(D,F10) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πj(Vnj −D) = 0,

n
∑

j=1

πjφk(F10(X1j)) = 0, k = 1, . . . , rn

}

, D ∈ R+,

where X1j is the first component of the jth observation Xj . Here we have
used the first rn equations in (3.19). As before one defines Rn(D,F10) and
obtains Rn(D,F10) = Rn(D,F10)/Rn(F10). Let us assume m ≥ 2 and at
least one of the components in X2, . . . , Xm is nondegenerate, i.e. P (Xd =
c) < 1 for some d ≥ 2 and arbitrary constant c. Then by Theorem 3.2 one
has

(3.21)
−2 logRn(D0, F10)− (rn + 1)

√

2(rn + 1)
⇒ N (0, 1),

as both rn and n tend to infinity such that r3n/n tends to zero, where
D0 = D(x0). This shows −2 logRn(D0, F10) is approximately chisquare-
distributed with rn + 1 degrees of freedom, whence −2 logRn(D0, F10) =
−2 logRn(D0, F10) + 2 logRn(F10) is approximately chisquare-distributed
with 1 degrees of freedom. The details are delayed to the last section.
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Table 1
Simulated powers of the UJEL tests with side information of known marginal

probabilities p
(0)
1· = .3, p

(0)
·1 = .6, sample size n and correlation coefficient ρ.

n ρ Chisq/Fisher UJEL0 UJEL1 UJEL2

30 Ind .045 .050 .050 .050
-.7 .645 .480 .350 .405
-.5 .325 .175 .120 .130
-.3 .155 .055 .045 .050
-.1 .050 .020 .020 .020
.1 .045 .030 .035 .035
.3 .060 .070 .070 .070
.5 .245 .175 .155 .170
.7 .555 .505 .420 .455

50 Ind .045 .050 .050 .050
-.7 .915 .890 .890 .895
-.5 .510 .500 .495 .520
-.3 .205 .185 .185 .195
-.1 .050 .045 .040 .050
.1 .055 .050 .045 .065
.3 .130 .145 .145 .145
.5 .425 .440 .440 .450
.7 .780 .805 .805 .845

80 Ind .050 .050 .050 .050
-.7 .980 .980 .975 .985
-.5 .700 .700 .700 .715
-.3 .320 .320 .320 .335
-.1 .055 .055 .050 .070
.1 .030 .040 .035 .030
.3 .235 .275 .270 .235
.5 .610 .625 .620 .640
.7 .945 .965 .960 .950

4. Simulation study. In this section, we report some simulation re-
sults on the U-statistic-based JEL (UJEL) tests about the independence of
two categorical variables U, V given in Example 2. One of our intentions is
the power improvement of the UJEL tests with the incorporation of side
information, which is the knowledge about the marginal distributions of
U, V given in (3.7) and (3.8). In practice, the national census data could be
a source of such information and provide nearly exact information of mo-
ments of the marginal distributions of economic variables, see Imbens and
Lancaster [13] and the references therein. Hence these tests can be used to
detect the correlation between two categorical variables such as gender and
salary, where the known marginal probabilities of gender and salary could
be obtained from the census data. We looked at the usual Chisquare test
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Table 2
Simulated powers of the UJEL tests with side information of known marginal

probabilities p
(0)
1· = .3, (p

(0)
·1 , p

(0)
·2 ) = (.25, .5), sample size n and correlation

coefficient ρ.

n ρ Chisq/Fisher UJEL0 UJEL1 UJEL2 UJEL3

30 Ind .045 .050 .050 .045 .050
-.7 .680 .660 .120 .510 .370
-.5 .345 .305 .070 .285 .200
-.3 .145 .135 .055 .165 .100
-.1 .070 .105 .040 .095 .080
.1 .095 .090 .030 .025 .065
.3 .170 .170 .035 .010 .085
.5 .400 .355 .075 .005 .180
.7 .685 .730 .105 .040 .390

50 Ind .055 .050 .050 .050 .050
-.7 .920 .870 .865 .885 .905
-.5 .505 .465 .460 .465 .490
-.3 .235 .180 .175 .195 .200
-.1 .055 .065 .070 .070 .080
.1 .100 .090 .085 .110 .105
.3 .265 .220 .225 .230 .235
.5 .600 .540 .535 .560 .560
.7 .895 .860 .855 .870 .875

80 Ind .050 .050 .050 .050 .050
-.7 .985 .980 .980 .980 .990
-.5 .760 .750 .745 .770 .795
-.3 .285 .295 .290 .315 .345
-.1 .065 .055 .055 .070 .085
.1 .050 .045 .040 .050 .055
.3 .335 .320 .315 .335 .365
.5 .770 .770 .765 .780 .795
.7 .975 .980 .980 .980 .980

100 Ind .050 .050 .050 .050 .050
-.7 1 .995 .995 .995 1
-.5 .885 .875 .875 .900 .895
-.3 .460 .440 .435 .445 .440
-.1 .105 .090 .090 .090 .095
.1 .130 .120 .120 .135 .130
.3 .415 .410 .410 .420 .430
.5 .890 .885 .885 .880 .895
.7 1 1 1 1 1

(or Fisher’s exact test if appropriate) which neglect the side information,
and several UJEL tests: UJELr : r = 0, 1, . . . , 4 which use r known marginal
probabilities of U, V (r constraints), see Example 2 for more details.

The data were generated from the discretization of simulated independent
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Table 3
Simulated powers of the UJEL tests with side information of known marginal

probabilities p
(0)
1· = .3, (p

(0)
·1 , p

(0)
·2 , p

(0)
·3 ) = (.25, .2, .3), sample size n and correlation

coefficient ρ.

n ρ Chisq/Fisher JEL0 JEL1 JEL2 JEL3 JEL4

30 Ind .065 .050 .050 .050 .050 .050
-.7 .665 .625 .135 .510 .455 .260
-.5 .310 .295 .070 .290 .325 .220
-.3 .130 .105 .050 .165 .220 .135
-.1 .080 .100 .055 .095 .145 .120
.1 .095 .095 .075 .025 .085 .100
.3 .215 .155 .080 .010 .080 .140
.5 .415 .380 .100 .005 .095 .200
.7 .705 .665 .145 .040 .110 .265

50 Ind .040 .050 .050 .050 .050 .050
-.7 .900 .875 .240 .500 .660 .600
-.5 .505 .500 .140 .255 .390 .350
-.3 .210 .200 .105 .130 .215 .170
-.1 .060 .100 .100 .100 .130 .120
.1 .065 .090 .055 .055 .065 .070
.3 .265 .220 .075 .075 .050 .120
.5 .570 .470 .145 .140 .060 .240
.7 .925 .870 .245 .245 .110 .500

80 Ind .050 .050 .050 .050 .050 .050
-.7 .985 .980 .980 .980 .980 .980
-.5 .785 .775 .775 .765 .785 .795
-.3 .320 .355 .340 .340 .360 .365
-.1 .060 .070 .070 .070 .075 .075
.1 .050 .055 .045 .050 .050 .065
.3 .365 .365 .365 .375 .370 .380
.5 .785 .775 .775 .805 .815 .810
.7 .985 .995 .995 .990 .990 .990

100 Ind .050 .050 .050 .050 .050 .050
-.7 .995 .995 .995 .995 1 1
-.5 .875 .885 .880 .860 .880 .885
-.3 .420 .435 .430 .430 .450 .445
-.1 .115 .120 .120 .110 .105 .115
.1 .125 .120 .115 .120 .115 .100
.3 .420 .405 .395 .390 .400 .400
.5 .890 .870 .870 .850 .865 .860
.7 1 1 1 1 1 1

(the null hypothesis) and correlated bivariate t distributions with correlation
coefficient ρ = (2i + 1)/10, i = −4,−3, . . . , 3 and degrees of freedom 3. For
a fair comparison, each power of the tests was size-adjusted, that is, the
critical values obtained from the simulated null distributions were used to
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determine whether a test value obtained under the alternative hypothesis
was significant. In this way, all the type I errors of the tests were calibrated
to be 0.05 so that the power comparison among them could be meaningful.

Reported in Tables 1, 2 and 3 are the simulated powers of the tests for
different sample size n and repetitions 200. We observed for small sample
sizes the classic Chi-square/Fisher’s exact test were more powerful than
the UJEL tests in most cases. This seemed to indicate that data of too
small sample sizes in this example were not able to accommodate many
constraints. But we also noticed that even when sample sizes were small or
moderate the UJEL tests had higher power than the classical test in some
cases of weak correlation. This was prominent in Tables 2 and 3. Specifically,
the powers of the UJEL tests in Table 2 for n = 30 and ρ = −0.1 were higher
than that of the classical test, and the UJEL2 and UJEL3 tests for n = 50
and ρ = −0.1, 0.1 were more powerful. Such phenomenon was even more
noticeable for UJEL3 in Table 3 for n = 30 and ρ = −0.5,−0.3,−0.1 and
the UJEL4 test for ρ = 0.1, where the gain in the power of UJEL3 test could
be as large as almost 10% compared to that of the classical test. When the
sample size was slightly larger, i.e. n = 50, the UJEL3 and UJEL4 tests
were more powerful than the classical test for ρ = −0.3,−0.1 and ρ = 0.1,
respectively. These seemed to indicate that for small or moderate samples
the UJEL tests and additional information could be used to improve power
for detecting weak relationships.

For n = 50, 80 in Table 1 and n = 80 in Tables 2 and 3, the UJEL
tests with the incorporation of side information were more powerful than
the Chisquare/Fisher’s exact test. These indicated that data of large sample
sizes were able explain more constraints, the UJEL tests and side information
could be used to improve power. However, when sample size kept increasing
(n = 80 in Table 1, n = 100 in Tables 2 and 3) the advantage of the UJEL
tests and additional information may still exist but became less dominant.
We think that when sample size was sufficiently large the side information
incorporated into the testing procedure through marginal probabilities could
be well recovered from the sample itself by the classical test. Hence in this
case the incorporation of the known marginal probabilities did not bring
much extra gain compared to the classical test.

An final note is that the powers of all the tests corresponding to small
values of the coefficient |ρ| (weak correlation) are very low as they are “close”
to the null hypothesis of independence for a bivariate t distribution.

Discussion. As noted in the literature (e.g. Chen, et al. [3]; Emerson and
Owen [8]), the empirical likelihood tests based on the asymptotic distribution
for small sample sizes may yield larger type I error than the nominal level
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due to the convex hull constraint. To deal with such a problem and calibrate
the type I error to the nominal level, Chen, et al. [3] proposed the addition
of an artificial data point to the data set. In our simulations when type I
errors were not calibrated using the finite sample critical values, the observed
type I errors were also higher than the nominal value when the sample sizes
were small in relation to the dimension. Therefore we applied the method
of Chen, et al. in the simulations and it well shrank the type I errors to
or much closer to the nominal level than the usual EL method. Hence in
applications we suggest to use their method.

5. Asymptotic behaviors of the JEL with a growing number of

estimated constraints. In this section, we shall consider the case that
the kernel h is known but the constraint function gn must estimated by
some measurable function ĝn. We allow the number of constraints to grow
with the sample size and study the asymptotic behaviors of the JEL

Rn(h, ĝn) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjVec
(

Ṽnj(h), ĝn(Zj)
)

= 0
}

.

To derive its asymptotic distribution, recall Cn,Wn in (3.5) and set Ŵn =
n−1

∑n
j=1 ĝn(Zj)

⊗2. We have the following result with the proof delayed to
the last section.

Theorem 5.1. Suppose rnh̃1 is Lindeberg. Suppose ĝn is an estimator
of gn such that

(5.1) rn max
1≤j≤n

‖ĝn(Zj))‖ = op(n
1/2),

(5.2) ‖ 1
n

n
∑

j=1

Ṽnj ĝn(Zj)−Cn‖ = op(r
−1/2
n ), |Ŵn −Wn|o = op(r

−1/2
n )

for which Wn := W (m2Var(h1(Z)),Cn,Wn) satisfies (R), and that

(5.3)
1

n

n
∑

j=1

ĝn(Zj) =
1

n

n
∑

j=1

un(Zj) + op(n
−1/2)

for some measurable function un from Z into Rrn satisfying that
∫

un dQ =

0 and ‖un‖ is Lindeberg. Assume further the dispersion matrix of W
−1/2
n vn(Z)

with vn = (mh̃1,u
⊤
n )

⊤,

(5.4) Un = W
−1/2
n

∫

vnv
⊤
n dQW

−1/2
n ,
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satisfies |Un|o = O(1) and rn/trace(U
2
n) = O(1). Then, as rn tends to infin-

ity with n such that rn = o(n1/2),

−2 logRn(h, ĝn)− trace(Un)
√

2trace(U2
n)

⇒ N (0, 1).

Even though the asymptotic distribution of the JEL with estimated con-
straints in Theorem 5.1 is not a chisquare in general, it is still possible that
it is approximately a chisquare and hence asymptotically distribution free.
Below is such an example.

Example 3 (continued). Joint confidence sets for the mean and
variance component. In a balanced one-way random effects model, we
are interested in constructing joint confidence set for θ = (µ, σ2u)

⊤. Let us
now motivate a U-statistic as a test statistic, see also Nobre, et al. [20]. We
shall exploit MVUE’s and “averaging out” j gives

Uii′ =

(

J

2

)−1
∑

1≤j<j′≤J

2−1(Yij − Yi′j′)
2, i, i′ = 1, . . . , n.

For the between-treatment, i 6= i′, so E((ui − ui′)(ǫij − ǫi′j′)) = 0, hence

(5.5) E(Uii′) = E
(

2−1(ui − ui′)
2 + 2−1(ǫij − ǫi′j′)

2
)

= σ2u + σ2ǫ := σ2,

whereas for the within-treatment, i = i′, thus

E(Uii) = E(2−1(ǫi1 − ǫi2)
2) = σ2ǫ .

LetYi = (Yi1, . . . , YiJ)
⊤ denote the observation vector in the i-th treatment.

Obviously Y1, . . . ,Yn are i.i.d. Note that Uii′ −2−1(Uii+Ui′i′) is a function
of Yi and Yi′ only, say κ(Yi,Yi′). Clearly E(κ(Yi,Yi′)) = σ2u for every
pair (i, i′) of subject indices with i 6= i′, so every such κ(Yi,Yi′) is an un-
biased estimator of σ2u. Since κ(y1,y2) is not argument-symmetric, we sym-
metrize it to get the argument-symmetric kernel h(y1,y2) = 2−1(κ(y1,y2)+
κ(y2,y1)),y1,y2 ∈ RJ . Thus an unbiased estimator of σ2u based on all the
observations is the U-statistic with the kernel h given by

Un(h) =

(

n

2

)−1
∑

1≤i<i′≤n

h(Yi,Yi′).

It can be verified that the above kernel h and the kernel ψ in Example 3
satisfy the relationship

(5.6) h(Y1,Y2) = ψ(X1,X2) +

(

J

2

)−1 J
∑

j=1

2−1(Y1j − Y1·)(Y2j − Y2·).
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This yields that h1(y) = E(h(y,Y2)) and ψ1(x) = E(ψ(x,X2)) satisfy

(5.7) h1(y) = ψ1(x), y = (y1, . . . , yJ)
⊤,

where x has components x1 = y· and x2 = (J − 1)−1
∑J

j=1(yj − y·)
2.

Suppose there is available additional information about the model, for
instance, ε as an i.i.d. copy of εi = ui + ǫi· is symmetric about zero. In this
formulation, the model (3.11) becomes

Yi· = µ+ εi, i = 1, . . . , n.

This is the well known symmetric location model. With symmetry as side in-
formation we now construct an empirical-likelihood-based confidence set for
θ. To this end, let F denote the distribution function of ε, and L2,0(F, odd)
be the subspace of L2,0(F ) consisting of the odd functions. Assume F is
continuous. Symmetry of ε about zero implies

(5.8) E(ak(ε)) = E(ak(Y1· − µ)) = 0, k = 1, 2, . . . ,

where ak’s is an orthonormal basis of L2(F, odd) and µ denotes the true
value of parameter. Since ε and −ε have an identical distribution, it follows

−
(

2F (−t)−1
)

= 1−2P (ε ≤ −t) = 1−2P (ε ≥ t) = 1−2(1−F (t)) = 2F (t)−1.

This shows that 2F (t)−1 is an odd function. Note that ψk(t) = sin(kπt), t ∈
[−1, 1], k = 1, 2, . . . is an orthonormal basis of L2,0(U , odd) (the square-
integrable odd functions with respect to the uniform measure U on [−1, 1]).
Hence the composites ψk(2F (t) − 1) is a basis of L2,0(F, odd) since the
composite of two odd functions is odd. This justifies that we can take ak =
ψk(2F (t) − 1). But F is unknown, we estimate it using the residuals εi =
Yi· − µ0, i = 1, . . . , n by the symmetrized empirical distribution function,

Fµ0(t) =
1

2n

n
∑

i=1

(

1[Yi· − µ0 ≤ t] + 1[−(Yi· − µ0) < t]
)

, t ∈ R.

Again we must justify 2Fµ0(t)− 1 is odd. This is easy to prove. Indeed,

−
(

2Fµ0(−t)− 1
)

= 1− 1

n

n
∑

i=1

(

1[εi ≤ −t] + 1[−εi < −t]
)

= 1− 1

n

n
∑

i=1

(

2− 1[−εi < t]− 1[εi ≤ t]
)

= 2Fµ0(t)− 1.
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This motivates us to utilize the first rn equalities in (5.8) as constraints to
construct the JEL with side information as follows:

Rn(µ, σ
2
u) = sup

{

n
∏

i=1

nπi : π ∈ Pn,

n
∑

i=1

πi(Vni(h)− σ2u) = 0,

n
∑

i=1

πiψk

(

2Fµ(Yi· − µ)− 1
)

= 0, k = 1, . . . , rn

}

,

where Vnj(h)’s are the jackknife pseudo values of the U-statistic Un(h). As
before one can also define Rn(µ, σ

2
u). We shall allow rn to grow to infinity

with the sample n such that r4n/n tends to zero. Suppose rnh1 is Lindeberg.
Then by Theorem 5.1 one has

(5.9)
−2 logRn(µ0, σ

2
u0)− (rn + 1)

√

2(rn + 1)
⇒ N (0, 1),

where (µ0, σ
2
u0) ∈ R×R+ denote the true values of parameter. The proof of

(5.9) can be found in the last section. This shows that under the null hypoth-
esis −2 logRn(µ0, σ

2
u0)) is approximately chisquare-distributed with rn + 1

degrees of freedom, whence −2 logRn(µ0, σ
2
u0)) is approximately chisquare-

distributed with 1 degree of freedom. It is not difficult to calculate

(5.10) h̃1(Y1) =

(

J

2

)−1
∑

1≤j<j′≤n

2−1
(

(Y1j − µ)(Y1j′ − µ)− σ2u
)

.

6. General results. In this section, we first introduce the notation we
use throughout. We then state some results from Peng and Schick [27] which
are tailored for our use. Based on these results, we prove Lemma 2.1 and a
useful general theorem in the end.

6.1. Notation. Throughout we write boldface lower case letters for vec-
tors. Write Vec(a,b) = (a⊤,b⊤)⊤ for the stacking operation of vectors a

and b, A⊗2 = AA⊤ and A ⊗ A for the Kronecker product of a vector or
matrix A. Let ‖A‖ denote the euclidean norm of a matrix A and |A|o be the
operator (or spectral) norm which are defined by

‖A‖2 = trace(A⊤
A) =

∑

i,j

A
2
ij , |A|o = sup

‖u‖=1
|Au| = sup

‖u‖=1
(u⊤

A
⊤
Au)1/2.

Clearly the inequality |A|o ≤ ‖A‖ holds. Thus we have

|Ax| ≤ |A|o‖x‖ ≤ ‖A‖‖x‖
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for compatible vectors x. We should also point out that

|A|o = sup
‖u‖=1

sup
‖v‖=1

u⊤
Av

which simplifies to
|A|o = sup

‖u‖=1
u⊤

Au

if A is a nonnegative definite symmetric matrix. Using this and the Cauchy-
Schwartz inequality it is easy to see that

(6.1)
∣

∣

∣

∫

f⊗2 dµ
∣

∣

∣

o
≤

∫

‖f‖2 dµ,

whenever µ is a measure and f is a measurable function into Rs such that
∫

‖f‖2 dµ is finite.

6.2. General results. Let Tn1, . . . , Tnn be rn-dimensional random vectors.
With them we associate the empirical likelihood

RRn = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjTnj = 0
}

.

To study the asymptotic behavior of RRn we introduce

T ∗
n = max

1≤j≤n
‖Tnj‖, T̄n =

1

n

n
∑

j=1

Tnj , Sn =
1

n

n
∑

j=1

T ⊗2
nj ,

and

T (ν)
n = sup

‖u‖=1

1

n

n
∑

j=1

(u⊤Tnj)ν , ν = 3, 4.

Let λn = λmin(Sn) and Λn = λmax(Sn). We first quote Theorem 6.1 of Peng
and Schick [27] below for our use.

Lemma 6.1. Let rn = r for all n. Suppose

(6.2) T ∗
n = op(n

1/2), n1/2T̄n ⇒ T , Sn = S + op(1)

for some random vector T and r × r positive definite matrix S . Then

−2 logRRn ⇒ T ⊤
S

−1T .

Peng and Schick [27] also introduced the following conditions.
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(A1) T ∗
n = op(r

−1/2
n n1/2).

(A2) ‖T̄n‖ = Op(r
1/2
n n−1/2).

(A3) There is a sequence of regular rn × rn dispersion matrices {Sn} such
that

|Sn − Sn|o = op(r
−1/2
n ).

(A4) T (3)
n = op(r

−1
n n1/2) and T (4)

n = op(r
−3/2
n n).

They also gave the following inequalities

(6.3) T (3)
n ≤ λmax(Sn)T ∗

n , T (4)
n ≤ λmax(Sn)(T ∗

n )
2.

These imply that a sufficient condition for (A1) and (A4) is

(6.4) T ∗
n = op(r

−1
n n1/2).

They studied the case when rn increases with the increasing sample size n.
The following is quoted from Theorem 6.2 of Peng and Schick [27].

Lemma 6.2. Let (A1)–(A4) hold. Suppose that rn increases with n to in-
finity and that there are rn×rn dispersion matrices Vn such that rn/trace(V

2
n)

= O(1) and

(6.5)
nT̄ ⊤

n W
−1
n T̄n − trace(Vn)

√

2trace(V2
n)

⇒ N (0, 1).

Then

(6.6)
−2 logRRn − trace(Vn)

√

2trace(V2
n)

⇒ N (0, 1).

6.3. General results for U-statistics with side information. We now ap-
ply Lemma 6.1 to derive the asymptotic behaviors of the JEL for U-statistics
with side information. Recall that the kernel h is square-integrable. Here we
further assume throughout that h is nondegenerate, that is, Var(h1(Z)) > 0.
Let Tn1, . . . , Tnn be rn-dimensional random vectors. With them we asso-
ciate the JEL for the U-statistic with side information as follows:

Rn(h) = sup
{

n
∏

j=1

nπj : π ∈ Pn,
n
∑

j=1

πjVec(Ṽnj(h),Tnj) = 0
}

,

where Ṽnj(h)’s are the centered jackknife pseudo values of the U-statistic
Un(h). Recall the remainder Rnj in (2.3) and use some algebra to express

(6.7) Rnj =
m
∑

c=2

(

m

c

)

(

cU(n−1)(c−1)(h
∗
(c−1)j)− (c− 1)U

(−j)
(n−1)c(h

∗
c)
)

,
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where h∗(c−1)j(z1, . . . , zc−1) := h∗c(Zj , z1, . . . , zc−1). Using now the inequality

(
∑m

j=1 aj)
2 ≤ m

∑m
j=1 a

2
j for real numbers aj , we derive

E(R2
n1) ≤2m

m
∑

c=2

(

m

c

)2
(

c2Var(U(n−1)(c−1)(h
∗
(c−1)1))

+ (c− 1)2Var(U
(−1)
(n−1)c(h

∗
c))

)

.

It is well known that the variances of the above U-statistics satisfy (see e.g.
p. 189, Serfling [29])

Var
(

U(n−1)(c−1)(h
∗
(c−1)1)

)

= O(n−c+1), Var
(

U
(−1)
(n−1)c(h

∗
c)
)

= O(n−c).

Thus by (2.2) we conclude (2.4) and prove Lemma 2.1. Moreover,

(6.8)
n
∑

j=1

(

Ṽnj −mh̃1(Zj)
)2

= Op(1),

as the expected value of the above sum is O(1). Let us prepare with the
following result.

Lemma 6.3. Suppose that Tn1, . . . ,Tnn are Rrn-valued random vectors
such that (A1) – (A4) are met. Suppose that the jackknife pseudo val-
ues Vn1, . . . , Vnn satisfy (A1) and (A4). Assume that there exists some rn-
dimensional vector Cn such that

(6.9) ‖ 1
n

n
∑

j=1

ṼnjTnj −Cn‖ = op(r
−1/2
n ),

and that the sequence of matrices Wn = W
(

Var(mh̃1(Z)),Cn,Wn

)

satisfies

(R). Then Tnj = Vec(Ṽnj , Tnj) satisfy (A1)–(A4) with Sn = Wn as rn tends
to infinity such that rn = o(n).

Proof. As both Tnj and Vnj satisfy (A1) and (A4), so do Tnj , while they
satisfy (A2) as Tnj satisfy (A2) and in view of (2.6) and nVar(Un) = O(1).
By Cauchy inequality for real numbers aj and bj ,

∣

∣

1

n

n
∑

j=1

(a2j − b2j )
∣

∣

2 ≤ 1

n

n
∑

j=1

(aj − bj)
2 1

n

n
∑

j=1

2(a2j + b2j ).
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Applying this with aj = Ṽnj and bj = mh̃1(Zj) and in view of (6.8), we get

(6.10)
∣

∣

1

n

n
∑

j=1

(

Ṽ 2
nj −m2E(h̃1(Z)

2)
)∣

∣ = Op(n
−1/2).

This, (6.9) and the fact that Tnj satisfy (A3) yield

(6.11) | 1
n

n
∑

j=1

T ⊗2
nj − Wn|o = op(r

−1/2
n ).

This shows Tn satisfies (A3) and completes the proof.
Consider now the case of a fixed number rn = r of constraints. We have

the following.

Theorem 6.1. Let rn = r for all n. Suppose

(6.12) T∗
n = op(n

1/2),
1

n

n
∑

j=1

mh̃1(Zj)Tnj
P→ C,

1

n

n
∑

j=1

T⊗2
nj

P→ W

for some r-dimensional vector C and r × r matrix W such that W :=
W (Var(mh1(Z)),C,W) is nonsingular. Assume

(6.13) n−1/2
n
∑

j=1

(

mh̃1(Zj),T
⊤
nj

)⊤
⇒ T ,

for some (r + 1)-dimensional random vector T . Then

−2 logRn(h) ⇒ T ⊤
W

−1T .

Proof. We shall apply Lemma 6.1 to prove the result by verifying its
three conditions in (6.2) with Tnj = (Ṽnj , T

⊤
nj)

⊤. First by Markov’s inequal-
ity and in view of (2.4), we derive for any ǫ > 0,

P
(

max
1≤j≤n

|Ṽnj | > n1/2ǫ
)

≤
n
∑

j=1

P
(

|Ṽnj | > n1/2ǫ
)

≤ ǫ−2E
(

|Ṽn1|21[|Ṽn1| > n1/2ǫ]
)

→ 0, n→ ∞.

Thus

(6.14) max
1≤j≤n

|Ṽnj | = op(n
1/2).
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This and the first equality in (6.12) imply the first condition in (6.2). It is
well known (e.g. page 188, Serfling (1980)) that

(6.15) Un(h)− θ =
m

n

n
∑

j=1

h̃1(Zj) +O(n−1).

This, (2.6) and (6.13) yield the second condition in (6.2). We now verify
that Tnj satisfy (A1) – (A4). Note first that W is nonsingular hence the
submatrix W is also nonsingular. Applying the inequalities in (6.3) to Tnj

and noticing that r = rn is fixed and (6.4) is a sufficient condition for (A1)
and (A4), we derive by the first equality in (6.12) that Tnj satisfy (A1) and
(A4). It follows from (6.13) that Tnj satisfy (A2), while Tnj satisfying (A3)
follows from the third equality in (6.12). We show next that (6.9) is also met
with Cn equal to the C given in (6.12). This, in fact, follows from the limit
of the second component in (6.13), (6.8), and the following inequalities

‖ 1
n

n
∑

j=1

ṼnjTnj −mh̃1(Zj)Tnj‖2 ≤
1

n

n
∑

j=1

(Ṽnj −mh̃1(Zj))
2 1

n

n
∑

j=1

‖Tnj‖2

= Op(n
−1)trace

( 1

n

n
∑

j=1

T⊗2
nj

)

= Op(n
−1)(trace(W) + op(1)) = Op(n

−1).

Thus the conditions of Lemma 6.3 are met and hence Tnj satisfy (A1)–(A4),
in particular, satisfy the third condition in (6.2). We now apply Lemma 6.1
to complete the proof.

7. Proofs. In this section, we provide proofs of several theorems and
the details for the examples introduced in the previous sections.

For a ∈ R, cr ∈ Rr and r × r identity matrix Ir, let Mr+1 be the
(r + 1) × (r + 1) matrix defined by Mr+1 = W (a2, cr, Ir), where W is the
matrix operation defined in (3.4). Denote the determinant of M by |M|. Us-
ing Laplace’s formula to express the determinant of a matrix in terms of its
minors and mathematical induction we can easily prove the following.

Lemma 7.1. For λ ∈ R and integer r ≥ 1, the characteristic polynomial
of Mr+1 is given by

(7.1) |Mr+1 − λIr+1| = (1− λ)r−1
(

λ2 − (1 + a2)λ+ a2 − ‖cr‖2
)

.

Thus the sequence of matrices Mr+1 satisfies (R) if c2 =: limr→∞ ‖cr‖2 =
∑∞

i=1 c
2
i <∞ such that b2 = a2 − c2 > 0.



JEL GOODNESS-OF-FIT TESTS FOR VECTOR U-STATISTICS 31

Proof. Note first that Mr+1 has three distinct roots, λ = 1 with multi-
plicity r − 1 and

λ1 = (1 + a2 +
√
∆)/2, λ2 = (1 + a2 −

√
∆)/2,

where ∆ = (a2 − 1)2 + 4
∑r

i=1 c
2
i . Since 0 ≤ ∆ ≤ δ =: (a2 − 1)2 + 4c2, it

follows 0 < 1 + a2 ≤ 2λ1 ≤ 1 + a2 +
√
δ <∞ and

0 < 2b2/(1 + a2 +
√
δ) ≤ λ2 ≤ (1 + a2)/2 <∞.

This shows that Mr+1 has r+1 eigen values which bounded away from both
zero and infinity uniformly in r = 1, 2, . . . , hence the sequence of matrices
Mr+1 satisfies (R).

Remark 7.1. Let H1 and H be two Hilbert spaces such that H1 is a
true subspace of H. Let ak : k = 1, 2, . . . be an orthonormal basis of H1.
For ϕ ∈ H, the projection ϕp of ϕ onto H1 is given by the Fourier series
ϕp =

∑∞
k=1 ckak, where ck are the Fourier coefficients. Suppose ϕ 6∈ H1.

By the Hilbert space theory (see e.g. Theorem 4.13, Conway [6]), ‖ϕp‖2 =
∑∞

k=1 c
2
k < ‖ϕ‖2. Since ak is orthonormal, the r×r matrix whose (i, j)-entry

is the inner product of ai and aj is the r×r identity matrix Ir. Consequently,
it follows from Lemma 7.1 that the sequence of matrices W (‖ϕ‖2, cr, Ir), r =
1, 2, . . . satisfies (R).

Let φn = (φ1, . . . , φrn)
⊤ where φk is the trigonometric basis given in

(3.20). Since these basis functions are bounded by
√
2, we see that φ(t) and

its derivative φ′(t) satisfy

(7.2) ‖φn(t)‖2 ≤ 2rn, ‖φ′(t)‖2 ≤ 2π2r3n, t ∈ [0, 1].

Proof of (3.9). To show this, let us first calculate Σ. Write hkl for the
(k, l)-th entry of h. One easily computes

hkl1 (z1) = E(hkl(Z1,Z2)|Z1 = z1) = 2−1(x1k − pk·)(y1l − p·l) + 2−1δkl,

thus the centered version is h̃kl1 (z1) = 2−1
(

(x1k − pk·)(y1l − p·l) − δkl
)

. Let
α = (p1·, . . . , p(K−1)·)

⊤ and β = (p·1, . . . , p·(L−1))
⊤ be the distributions of

U and V respectively. Under the null the components of δ satisfy δkl = 0,
hence the variances and covariances of the components of X are given by

Cov(Xk, Xk) = αk − α2
k, Cov(Xk, Xk′) = −αkαk′ , k 6= k′.
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Similar formulas for Yl also hold. LetA = Diag(α)−α⊗2 andB = Diag(β)−
β⊗2. One easily verifies

E
(

h̃kl1 (Z1)h̃
k′l′

1 (Z1)
)

= 4−1Cov(Xk, Xk′)Cov(Yl, Yl′).

These yield Σ = Var(2h1(Z1)) = 4E
(

h̃1(Z1)
⊗2

)

= A⊗B. Hence in view of
|Σ| = |A|K−1|B|L−1 we see that Σ is nonsingular if and only if both A and
B are nonsingular, which is equivalent to (3.9). To prove this, it suffices to
show |A| =

∏K
k=1 αk where αK = pK·, whereas the same also holds for B.

This can be verified by Laplace’s formula and mathematical induction.
Proof of (3.21). We shall apply Theorem 3.2 to prove the result. Note

first that the kernel is h(X1, . . . ,Xm) = 1[x0 ∈ ∆(X1, . . . ,Xm)] so that
h1(x) = P (x0 ∈ ∆(x,X2, . . . ,Xm)),x ∈ Rm which is bounded by 1. Also
gn = φn ◦ F10 hence ‖gn‖ ≤

√
2rn by (7.2). Since r3n = o(n), it follows

that rnh1 and rn‖gn‖ are Lindeberg. We are now left to show the regularity
(R). Recall that F is the distribution of X = (X1, . . . , Xm)⊤ and F10 is the
distribution of X1. Since there is at least one component in X2, . . . , Xm that
is nondegenerate and m ≥ 2, it follows H1 = L2,0(F10) is a true subspace of
H = L2,0(F ). Clearly h̃1 lives in H but not in H1. It follows from Remark 7.1
that (R) holds. This completes the proof.

Proof of (5.9). We shall prove this by applying Theorem 5.1 with

gn(y) = ψn(2F (y − µ0)− 1) and ĝn(y) = ψn(2Fµ0(y − µ0)− 1)

withWn = Irn andCn = E(2h̃1(Y1)gn(J
−11⊤Y1)), whereψn = (ψ1, . . . , ψrn)

⊤.
By assumption, rnh1 is Lindeberg. Using ‖gn‖ ≤ √

rn, we derive (5.1) in
view of r3n = o(n). We now show Wn = W (4Var(h1(Y1)),Cn, Irn) satisfies
(R). Let D be the common distribution function of ǫ1j and G be the joint
distribution of Y1j−µ0, j = 1, . . . , J . Then by the independence between the
random effect u1 and error ε1j we derive that the distribution of ε1 satisfies
F (t) = P (ε1 ≤ t) = P (u1 + ǫ1· ≤ t) = E

(

D(t− u1)
)

, t ∈ R and

G(t) = P (u1 + ǫ1j ≤ tj , j = 1, . . . , J) = E
(

J
∏

j=1

D(tj − u1)
)

, t ∈ RJ .

Since F is continuous and J ≥ 2, it follows F 6= G. Thus the Hilbert space
H1 = L2,0(F ) is a true subspace of H = L2,0(G). Furthermore, by (5.10)
h̃1 ∈ H but h̃1 6∈ H1. Thus from Remark 7.1 it follows that the matrices Wn

satisfies (R). Let us now prove the first equality in (5.2). To this end, note
first the inequalities

(7.3) ‖ψn‖2 ≤ rn, ‖ψ′
n‖ ≤

√
2πr3/2n , |2(t⊤ψ′

n)(t
⊤ψn)| ≤ 4πr2n‖t‖2.



JEL GOODNESS-OF-FIT TESTS FOR VECTOR U-STATISTICS 33

We break

‖ 1
n

n
∑

i=1

Ṽniψn(2Fµ0(εi))−Cn‖2

≤ ‖ 1
n

n
∑

i=1

(

Ṽni − 2h̃1(Yi)
)2 1

n

n
∑

i=1

‖ψn(2Fµ0(εi))‖2‖

+
1

n

n
∑

i=1

4h̃1(Yi)
2 1

n

n
∑

i=1

(

ψn(2Fµ0(εi))−ψn(2F (εi))
)2

+ ‖ 1
n

n
∑

i=1

(

2h̃1(Yi)ψn(2F (εi))− E
[

2h̃1(Y1)ψn(2F (ε1))
]

)‖2

:= An +Bn + Cn.

By (6.8) and in view of (7.3) and r2n = o(n), we derive An ≤ Op(n
−1)rn =

op(r
−1
n ), while by the square-integrability of h1 and in view r4n = o(n), we

obtain

Bn ≤ Op(1)2π
2r3n4 sup

−∞<t<∞
|Fµ0(t)− F (t)|2 = Op(r

3
n/n) = op(r

−1
n ).

Now it is not difficult to calculate

E(Cn) = n−1E
[

Var
(

2h̃1(Y1)‖ψn(2F (ε1))‖
)]

≤ n−1E
(

4h̃1(Y1)
2‖ψn(2F (ε1))‖2

)

≤ n−1E
(

4h̃1(Y1)
2
)

rn = O(rnn
−1) = o(r−1

n ).

This shows the first equality of (5.2). We prove below that (5.3) hold with
un = gn, that is,

(7.4) n−1/2
n
∑

i=1

(

ψn(2Fµ0(εi)− 1)−ψn(2F (εi)− 1)
)

= op(1).

Clearly
∫

un dQ = 0 and ‖un‖ is Lindeberg in view of ‖un‖ ≤ √
rn. Thus

vn = (2h1,u
⊤
n )

⊤,
∫

v⊗2
n dQ = Wn, and Un = Irn+1, which implies |Un|o = 1

and rn/trace(U
2
n) = rn/(rn + 1) = O(1). We are now left to prove (7.4) and

the second equality in (5.2) which is implied by

(7.5) sup
‖t‖=1

∣

∣

∣

1

n

n
∑

i=1

(t⊤ψn(2Fµ0(εi)− 1))2 − 1
∣

∣

∣
= op(r

−1/2
n ).
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Since ψn(2Fµ0 − 1) and ψn(2Fµ0 − 1) are odd functions, the above two
equations can be written as

(7.6) sup
‖t‖=1

∣

∣

∣

1

n

n
∑

i=1

(t⊤ψn(2Fµ0(|εi|)− 1))2 − 1
∣

∣

∣
= op(r

−1/2
n ),

(7.7) n−1/2
n
∑

i=1

sign(εi)
(

ψn(2Fµ0(|εi|)− 1)−ψn(2F (|εi|)− 1)
)

= op(1).

Also, we have almost surely the identity

2Fµ0(|εk|)− 1 =
1

n

n
∑

i=1

(

1[εi ≤ |εk|] + 1[−εi < |εk|]− 1
)

=
1

n

n
∑

i=1

(

1[|εi| ≤ |εk|]−
1

n

n
∑

i=1

1[εi = |εk|]
)

= (Rk − 1[εk ≥ 0])/n,

where R1, . . . , Rn are the ranks of |ε1|, . . . , |εn|. Using the bounds (7.3) and
r3n = o(n), it is sufficient for us to prove (7.6) and (7.7) with 2Fµ0(|εi|) − 1
replaced by Ri/n. Let a be a Lipschitz function on [0, 1] with Lipschitz
constant L. Then we approximate the sum by an integral as follows:

1

n

n
∑

i=1

a(Ri/n) =
1

n

n
∑

i=1

a(i/n) =

∫ 1

0
a(x) dx+

n
∑

i=1

∫ i/n

(i−1)/n
(a(i/n)− a(x)) dx

and therefore
∣

∣

1

n

n
∑

i=1

a(Ri/n)−
∫ 1

0
a(x) dx

∣

∣ ≤ L/n.

For a = (u⊤ψn)
2 and noting

∫

(u⊤ψn(x))
2 dx = 1 as ψ1, ψ2, . . . are also

orthonormal with respect to the uniform measure on [0, 1], we get

∣

∣

1

n

n
∑

i=1

(u⊤ψn)
2(Ri/n)− 1

∣

∣ ≤ 4πr2n/n = op(r
−1
n ).

This shows (7.6). Let

Tn = n−1/2
n
∑

i=1

sign(εi)
(

ψn(Ri/n)−ψn(2F (|εi|)− 1)
)

.
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Since ε is symmetric, it follows that sign(ε) and |ε| are independent, sign(ε)
is uniformly distributed on {−1, 1} and |ε| has distribution given by G(t) =
2F (t)− 1, t ∈ R+. From this we immediately derive

E
(

‖Tn‖2||ε1|, . . . , |εn|
)

=
1

n

n
∑

i=1

‖ψn(Ri/n)−ψn(G(|εi|)‖2

= 2π2r3n
1

n

n
∑

i=1

|Ri/n−G(|εi|)|2 = Op(r
3
n/n).

This shows Tn = op(1) and hence the desired (7.7).
Proof of Theorem 3.1. We apply Theorem 6.1 with Ṽnj(h) = Ṽnj(h

(1))
and Tnj = (Ṽnj(h

(2)), . . . , Ṽnj(h
(r)))⊤ so that Vec(Ṽnj(h),Tnj) = Ṽnj(h).

Set m = (m1, . . . ,mr)
⊤ and h1 = (h

(1)
1 , . . . , h

(r)
1 )⊤ and w = mh̃1. By (6.8)

and the Cauchy inequality, we derive

∣

∣

∣

1

n

n
∑

j=1

(

Ṽnj(h
(k))Ṽnj(h

(l))−mkh
(k)
1 (Zj)mlh

(l)
1 (Zj)

)
∣

∣

∣

2

≤ 2
1

n

n
∑

j=1

(

Ṽnj(h
(k))−mkh

(k)
1 (Zj)

)2 1

n

n
∑

j=1

Ṽnj(h
(l))2

+ 2
1

n

n
∑

j=1

(

mkh
(k)
1 (Zj)

)2 1

n

n
∑

j=1

(

Ṽnj(h
(l))−mlh

(l)
1 (Zj)

)2

= Op(n
−1) = op(1), k, l = 1, . . . , r.

Hence by the law of large numbers we get

1

n

n
∑

j=1

Ṽnj(h)
⊗2 P→ Var(mh1) = E

(

w(Z)⊗2
)

,

which establishes the second and third equalities of (6.12). If Var(mh1) is
nonsingular, then an application of the central limit theorem gives

n−1/2
n
∑

j=1

w(Zj) ⇒ N (0,Var(mh1)),

which yields (6.13). Moreover, an analogous argument to (6.14) yields the
first equality in (6.12). We now apply Theorem 6.1 to complete the proof.
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Proof of Theorem 5.1. We verify that the conditions of Lemma 6.2
are satisfied with Tnj = ŵnj = Vec(Ṽnj(h), ĝn(Zj)). Note first that as rnh̃1
is Lindeberg one has

(7.8) rn max
1≤j≤n

|Ṽnj | = op(n
1/2)

in view of r2n = o(n). Indeed, for ǫ > 0,

P (rn max
1≤j≤n

|Ṽnj | > n1/2ǫ) ≤ P (rn max
1≤j≤n

|Ṽnj −mh̃1(Zj)| > n1/2ǫ/2)

+ P (rn max
1≤j≤n

|mh̃1(Zj)| > n1/2ǫ/2).

By the Lindeberg property (L1), the last probability converges to zero,
whereas the second probability is bounded by

n
∑

j=1

P (rn|Ṽnj −mh̃1(Zj)| > n1/2ǫ/2) ≤ 4

ǫ2
r2nE(|Ṽn1 −mh̃1(Z1)|2) =

4

ǫ2
r2n
n
,

which converges to zero as n tends to infinity, where the last equality follows
from (2.5). This proves (7.8) hence (A1) in view of (5.1). With the aid of
(6.10), we conclude (A3) from (5.2). The equality (6.15), (2.6), (5.3) in which
vn = (mh̃1,u

⊤
n )

⊤ and rn = o(n) imply

(7.9)
1

n

n
∑

j=1

ŵnj =
1

n

n
∑

j=1

vn(Zj) + op(n
−1/2).

Clearly
∫

vn dQ = 0 and vn is Lindeberg by (L0) as un and h1 are Lindeberg.

Let ξnj = W
−1/2
n vn(Zj) and set

v̄n =
1

n

n
∑

j=1

vn(Zj) and T̄n =
1

n

n
∑

j=1

ŵn(Zj).

It follows from (C) that |W 1/2
n |o + |W −1/2

n |o = O(1). Using this and the
Lindeberg property of ‖vn‖ we derive

Ln(ǫ) = E
(

‖ξn1‖21[‖ξn1‖ > ǫ
√
n]
)

→ 0, ǫ > 0.

Note that trace(Un) ≤ rn|Un|o = O(rn). Then we have trace(Un)/trace(U
2
n) ≤

|Un|orn/trace(U2
n) = O(1) and conclude trace(U2

n) → ∞. Thus Theorem 2
in Peng and Schick [26] yields

nv̄⊤
n W −1

n v̄n − trace(Un)
√

2trace(U2
n)

⇒ N (0, 1).
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Next we calculate

nE
(

‖v̄n‖2
)

= E
(

‖vn(Z)‖2
)

≤ |W 1/2
n |2oE

(

‖W −1/2
n vn(Z)‖2

)

≤ |W 1/2
n |2otrace(Un).

This shows that n‖v̄n‖2 = Op(rn). Thus we derive with the help of (7.9)
and rn/trace(U

2
n) = O(1), that n‖T̄n‖2 = Op(rn) and

nT̄nW −1
n T̄n − trace(Un)
√

2trace(U2
n)

⇒ N (0, 1).

Thus conditions (A1)–(A4) hold with Tnj = ŵnj in view of (6.4) and T ∗
n =

op(r
−1
n n1/2). The desired result now follows from Lemma 6.2.

Proof of Theorem 3.2. We shall prove the result by applying Theo-
rem 5.1 with ĝ = g. It follows immediately that (5.3) automatically holds
with un = gn, whence vn = Vec(mh̃1,gn) yields

∫

v⊗2
n dQ = Wn and hence

Un = W
−1/2
n

∫

vnv
⊤
n dQW

−⊤/2
n = Irn+1 satisfies the required conditions.

As rn‖gn‖ is Lindeberg, we see that (5.1) holds in view of the Lindeberg
property (L1). Next we show the Lindeberg property (L1) also implies (5.2).
In fact, as rnh1 and rn‖gn‖ are Lindeberg, it follows from (L0) that vn

is also Lindeberg. Fix ǫ > 0. Let tn = vn1[‖(rn + 1)vn‖ ≤ ǫ
√
n] so that

sn = vn − tn = vn1[‖(rn + 1)vn‖ > ǫ
√
n]. Set

W̄n,1 =
1

n

n
∑

j=1

t⊗2
n (Zj), W̄n,2 =

1

n

n
∑

j=1

s⊗2
n (Zj).

As Wn satisfies (R), one has λmax(Wn) ≤ B for some B > 0 and all n, so
that

E(‖vn‖2(Z)) = trace(E(v⊗2
n (Z))) = trace(Wn) ≤ B(rn + 1).

Then we find

nE[‖W̄n,1 − E[W̄n,1]‖2] =
rn+1
∑

i=1

rn+1
∑

k=1

Var(tn,i(Z)tn,k(Z))

≤ E[‖tn‖4(Z)] ≤
ǫ2n

(rn + 1)2
E[‖vn‖2(Z)] ≤

ǫ2nB(rn + 1)

(rn + 1)2
,

and
P (W̄n,2 6= 0) ≤ P

(

max
1≤j≤n

‖(rn + 1)vn(Zj)‖ > ǫ
√
n
)

→ 0,

and using (6.1),

|E[W̄n,2]|o ≤ E[‖vn‖2(Z)1[‖(rn + 1)vn(Z)‖ > ǫ
√
n]] = o(r−2

n ).

From these inequalities it immediately yields the desired (5.2).
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