Math 444 Recursive Sequence Problem

Define the function s from \mathbb{N} , the set of natural numbers, to \mathbb{Q} in the following recursive (inductive) way:

$$s(1) = 2$$
 and for $n \in \mathbb{N}$, $s(n+1) = \frac{s(n)}{2} + \frac{1}{s(n)}$

Prove: For each n in \mathbb{N} , we have $1 \leq s(n) \leq 2$.

Usually, we do not think about functions defined on the natural numbers in this way, instead, we call such a function a *sequence* and instead of writing s(n) we write a_n for the terms of the sequence (actually values of the function) where $a_n = s(n)$. The following is the more usual way to state the same problem:

Definition We define a sequence $\{a_n\}_{n=1}^{\infty}$ by

 $a_1 = 2$

and for each positive integer n,

$$a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$$

Prove: For each n in \mathbb{N} , we have $1 \leq a_n \leq 2$.