Math 444 Recursive Sequence Problem

Define the function s from \mathbb{N}, the set of natural numbers, to \mathbb{Q} in the following recursive (inductive) way:

$$
s(1)=2 \text { and for } n \in \mathbb{N}, \quad s(n+1)=\frac{s(n)}{2}+\frac{1}{s(n)}
$$

Prove: For each n in \mathbb{N}, we have $1 \leq s(n) \leq 2$.

Usually, we do not think about functions defined on the natural numbers in this way, instead, we call such a function a sequence and instead of writing $s(n)$ we write a_{n} for the terms of the sequence (actually values of the function) where $a_{n}=s(n)$. The following is the more usual way to state the same problem:

Definition We define a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ by

$$
a_{1}=2
$$

and for each positive integer n,

$$
a_{n+1}=\frac{a_{n}}{2}+\frac{1}{a_{n}}
$$

Prove: For each n in \mathbb{N}, we have $1 \leq a_{n} \leq 2$.

