The following results are true and you can use them in your solutions of the homework problems, if you wish, even though we will not have time to go over them in class.
Lemma. If A is in $\mathcal{B}(X)$ for X a Banach space, then $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}$ exists.
Proof. Note that $0 \leq\left\|A^{n}\right\|^{1 / n} \leq\left(\|A\|^{n}\right)^{1 / n}=\|A\|$ so $\lim \inf _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}$ and $\limsup _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}$ are both finite.

For m, k, and j positive integers, we have

$$
\left\|A^{m k+j}\right\|^{1 /(m k+j)} \leq\left\|A^{m}\right\|^{k /(m k+j}\|A\|^{j /(m k+j)}
$$

Keeping m fixed temporarily, for each $j=0,1,2, \cdots, m-1$, this implies

$$
\limsup _{k \rightarrow \infty}\left\|A^{m k+j}\right\|^{1 /(m k+j)} \leq \lim _{k \rightarrow \infty}\left\|A^{m}\right\|^{k /(m k+j}\|A\|^{j /(m k+j)}=\left\|A^{m}\right\|^{1 / m}
$$

If we have a sequence n_{ℓ} such that $\lim _{\ell \rightarrow \infty}\left\|A^{n_{\ell}}\right\|^{1 / n_{\ell}}=\lim \sup _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}$, for a fixed m, since there are infinitely many n_{ℓ} 's and only finitely many integers j with $0 \leq j \leq m-1$, for at least one of these j 's, call it j_{0}, infinitely many of the n_{ℓ} 's satisfy $n_{\ell}=m k+j_{0}$ for some k, we have

$$
\limsup _{k \rightarrow \infty}\left\|A^{m k+j_{0}}\right\|^{1 /\left(m k+j_{0}\right)}=\underset{k \rightarrow \infty}{\limsup }\left\|A^{m k+j}\right\|^{1 /(m k+j)}=\underset{n \rightarrow \infty}{\limsup }\left\|A^{n}\right\|^{1 / n}
$$

That is, for each m, there is a j_{m} so that

$$
\limsup _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n} \leq \limsup _{k \rightarrow \infty}\left\|A^{m k+j_{m}}\right\|^{1 /\left(m k+j_{m}\right)} \leq\left\|A^{m}\right\|^{1 / m}
$$

Thus, since this is true for each m, we have

$$
\limsup _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n} \leq \liminf _{m \rightarrow \infty}\left\|A^{m}\right\|^{1 / m}
$$

but this means $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}$ exists.

Holomorphic (or Riesz) Functional Calculus

Definition. Let T be in $\mathcal{B}(X)$ for X a Banach space. If f is a complex valued function defined on an open set $\Omega \supset \sigma(T)$ such that f is holomorphic on each component of Ω, we say f is locally analytic on $\sigma(T)$. Denote the algebra of such functions by $\mathcal{A}(T)$.

Let f be locally analytic on $\sigma(T)$ with domain Ω and let γ be a cycle (i.e. a finite set of closed curves γ_{j} for $\left.j=1,2, \cdots, n\right)$ in Ω such that for all points λ of $\sigma(T)$, the index $\operatorname{ind}_{\gamma}(\lambda)=1$ and for all points μ in $\mathbb{C} \backslash \Omega, \operatorname{ind}_{\gamma}(\mu)=0$. Then we define $f(T)$ by

$$
f(T)=\frac{1}{2 \pi i} \int_{\gamma} f(\lambda)(\lambda I-T)^{-1} d \lambda
$$

Theorem 5. (Spectral Mapping Theorem.) The map of $\mathcal{A}(T)$ into $\mathcal{B}(X)$ given by $f \mapsto f(T)$ is an algebra homomorphism of $\mathcal{A}(T)$ into $\mathcal{B}(X)$ such that

- $1 \mapsto I$ and $z^{k} \mapsto T^{k}$
- For complex numbers α and β and f and g in $\mathcal{A}(T),(\alpha f+\beta g)(T) \mapsto \alpha f(T)+\beta g(T)$ and $f \cdot g \mapsto f(T) g(T)$
- $\sigma(f(T))=f(\sigma(T))=\{f(\lambda): \lambda \in \sigma(T)\}$
- If S is in $\mathcal{B}(X)$ such that $S T=T S$, then $S f(T)=f(T) S$ for each f in $\mathcal{A}(T)$
- If f_{n}, for $n=1,2,3, \cdots$ and f are in $\mathcal{A}(T)$ with a common domain Ω and the f_{n} converge uniformly on compact subsets of Ω to f, then $f_{n}(T)$ converges to $f(T)$ in norm.
- Suppose f is analytic on the disk $D_{r}=\{\lambda:|\lambda|<r\}$ and $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. If T is in $\mathcal{B}(X)$ with $\sigma(T) \subset D_{r}$, then $f(T)=\sum_{k=0}^{\infty} a_{k} T^{k}$
- If f is locally analytic on $\sigma(T)$ and g is locally analytic on $f(\sigma(T))$, then $g \circ f$ is locally analytic on $\sigma(T)$ and $(g \circ f)(T)=g(f(T))$

Definition. If T is in $\mathcal{B}(X)$ for X a Banach space and M is a closed subspace of X such that $T x$ is in M for each x in M, we say M is an invariant subspace for T. We say M is a non-trivial invariant subspace for T if M is an invariant subspace for T and $M \neq(0)$ and $M \neq X$.

Theorem 6. (Riesz Projection Theorem.) Suppose T in $\mathcal{B}(X)$ for X a Banach space satisfies $\sigma(T)=K_{1} \cup K_{0}$ where K_{1} and K_{0} are non-empty, disjoint, compact sets. If Ω_{1} and Ω_{0} are disjoint open sets for which $\Omega_{1} \supset K_{1}$ and $\Omega_{0} \supset K_{0}$, define f by $f(z)=1$ for $z \in \Omega_{1}$ and $f(z)=0$ for $z \in \Omega_{0}$. Then

- f is locally analytic on $\sigma(T)$ and $P=f(T)$ is a bounded projection that commutes with T
- If $M_{1}=P X$ and $M_{0}=(I-P) X$, then M_{1} and M_{0} are closed invariant subspaces for T and $X=M_{1} \oplus M_{0}$
- $\sigma\left(\left.T\right|_{M_{1}}\right)=K_{1}$ and $\sigma\left(\left.T\right|_{M_{0}}\right)=K_{0}$

Note: problems $84,85,89$, and 94 are related to these ideas.

