- Write your answers on the test paper!
- For decimal approximations, it is enough to give 2 decimal places.
- Show enough of your work that your reasoning can be followed.
- There are 7 pages, 7 questions, and 100 points on this test.
(10 points) 1. Find all solutions of the following system:

$$
\left\{\begin{aligned}
v+w+x+y+z & =0 \\
w+2 x+3 y+4 z & =3 \\
5 v+6 w+7 x+8 y+9 z & =3 \\
v+w+x &
\end{aligned}\right.
$$

If there is a unique solution or no solution, say so. If there are infinitely many solutions, find the general solution and find three solutions explicitly.
(15 points) 2. Consider the following two systems of equations.

$$
\text { (H) }\left\{\begin{aligned}
a+b+2 c-d+e-f & =0 \\
2 a+b-c+d-2 e & =0 \\
2 a+b-c+d-2 f & =0 \\
a+3 b-2 c+3 d-e-f & =0 \\
2 a+b+d-2 e-f & =0
\end{aligned}\right.
$$

and

$$
(N)\left\{\begin{aligned}
a+b+2 c-d+e-f & =3 \\
2 a+b-c+d-2 e & =6 \\
2 a+b-c+d-2 f & =2 \\
a+3 b-2 c+3 d-e-f & =3 \\
2 a+b+d-2 e-f & =6
\end{aligned}\right.
$$

The vector $(1,-1,1,2,1,1)$ is a solution of system (H).
The vector $(2,1,1,0,-1,1)$ is a solution of system (N).
Use theorems you know (i.e. do not try to solve the systems completely!) to answer the following questions.
(a) Find two other non-trivial solutions of (H).
(b) Find two other solutions of (N).
(15 points) 3. Let $v_{1}=(1,-1,2), v_{2}=(-1,2,-1), v_{3}=(2,-1,5)$, and $v_{4}=(1,1,5)$.
(a) Explain how you can tell that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a linearly dependent set without doing any calculations.
(b) Write one of the vectors as a linear combination of the rest.

$$
A=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 3 \\
2 & -1 & -5 & 1 & -3 \\
-1 & 1 & 3 & 0 & 4 \\
1 & 1 & -1 & 2 & 2
\end{array}\right)
$$

(a) Find a basis for the nullspace of A.
(b) Choose columns of A that form a basis for the range of $A, \mathcal{R}(A)$.
(c) What is the dimension of the range of $A^{\prime}, \mathcal{R}\left(A^{\prime}\right)$?
(d) What is the dimension of the nullspace of $A^{\prime}, \mathcal{N}\left(A^{\prime}\right)$?
(15 points) 5 . The matrix C is

$$
C=\left(\begin{array}{rrr}
1 & -1 & 1 \\
1 & 2 & -1 \\
1 & -4 & 3
\end{array}\right)
$$

and the matrix D is a 3×5 matrix with rows D_{1}, D_{2}, and D_{3}.
(a) Write D as a block matrix, blocked in rows, and find $C D$ as a block matrix, blocked in rows.
(b) Suppose, now, that the rank of D is 2 and $D_{2}=-2 D_{1}$. Find a basis for the row space of D.
(c) Suppose, as in part (b), that the rank of D is 2 and $D_{2}=-2 D_{1}$. Find a basis for the row space of $C D$.
(15 points) 6 . Let $p_{1}=(1,-1,1,1,1)$, let $p_{2}=(1,1,0,-2,2)$, and let $q=(5,1,2,-4,8)$.
(a) Write q as a linear combination of p_{1} and p_{2}.
(b) Let $r=(1,-5,3,7,-1)$. Write r as a linear combination of p_{1}, p_{2}, and q or show that it is not a linear combination of them.
(c) What is the dimension of the subspace spanned by p_{1}, p_{2}, q, and r ? \qquad Explain your answer!
(15 points) 7. (a) Prove the following theorem:
Let A be an $m \times n$ matrix. If B is an $n \times m$ matrix so that $B A=I$, then $\mathcal{N}(A)=(0)$ (that is, the null space of A is the zero subspace).
(b) Prove the following theorem:
(You may use the result of part (a) even if you did not answer part (a)!)
Let A be an $m \times n$ matrix.
If B is an $n \times m$ matrix so that $B A=I$, then the columns of A are linearly independent.

