In class today, we faced the question "If A is a real matrix, does the null space of A in \mathbb{R}^{n} have the same dimension as the nullspace of A in \mathbb{C}^{n} ?" and the question "If A is a real matrix, λ is a real number, and v is a vector in \mathbb{C}^{n} that is an eigenvector of A for λ, is there a vector w in \mathbb{R}^{n} that is an eigenvector of A for λ ?" The answer for both questions is YES!
Proof. Let v be a vector in \mathbb{C}^{n} such that $A v=0$. Then taking complex conjugates, we get

$$
\bar{A} \bar{v}=\overline{A v}=\overline{0}
$$

where \bar{v} is the vector whose $j^{\text {th }}$ component is $\overline{v_{j}}$ where v_{j} is the $j^{\text {th }}$ component of v and \bar{A} is the matrix whose entries are the conjugates of the entries of A. But since A is a real matrix and 0 is a real vector, we have

$$
A \bar{v}=\bar{A} \bar{v}=\overline{A v}=\overline{0}=0
$$

In other words, if v is in the null space of A, then \bar{v} is also in the nullspace of A. This means that $x=(v+\bar{v}) / 2$ and $y=(v-\bar{v}) /(2 i)$, which are both real vectors, are also in the null space of A. (The vectors x and y might be called the real and imaginary parts of v.) It follows easily, now, that the dimensions of the null space of A in \mathbb{R}^{n} and \mathbb{C}^{n} are the same.

Similarly, we can easily see that if $A v=\lambda v$ where λ and A are real, then $A \bar{v}=\lambda \bar{v}$, so the conjugates of eigenvectors for A are also eigenvectors and so are the real and imaginary parts. Thus, A has real eigenvectors.

You may have seen this argument in Math 26200 in connection with the solution of the differential equation $y^{\prime \prime}+y=0$ which has complex solutions $e^{i x}$ and $e^{-i x}$ or real solutions $\cos (x)$ and $\sin (x)$.

page 8

8. Read the paragraphs on the last page, then answer the following questions:
(a) Explain why (fifth line from the bottom of the proof) that the range of V is M.

Let M be the subspace with (orthonormal) basis $v_{1}=(.5, .5, .5, .5)$ and $v_{2}=(.5,-.5,-.5, .5)$ Let G be the 4×4 matrix

$$
G=\left(\begin{array}{rrrr}
5 & 4 & 1 & -1 \\
4 & -11 & 2 & -3 \\
1 & 2 & 0 & 1 \\
-1 & -3 & 1 & -2
\end{array}\right)
$$

(b) Find the minimum value of $\langle G x, x\rangle$ for x in M with $\|x\|=1$.
(c) Find a vector x in M with $\|x\|=1$ and $\langle G x, x\rangle$ equal to the minimum value found in (b).

Last page

Reading for Problem 8

(It is OK to remove this page from the exam!!)

Suppose A is an $k \times k$ matrix such that $A=A^{\prime}$. If we want to minimize $\left\langle A y, y>\right.$ for y in \mathbb{C}^{k} with $\|y\|=1$, we may proceed as follows: There is an orthonormal basis $u_{1}, u_{2}, \cdots, u_{k}$ for \mathbb{C}^{k} consisting of eigenvectors for A, say $A u_{j}=\lambda_{j} u_{j}$. The eigenvalues of A are real numbers and we assume that they have been arranged so that

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}
$$

For y in \mathbb{C}^{k} with $\|y\|=1$, there are scalars α_{j} so that

$$
y=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{k} u_{k}
$$

and

$$
\begin{gathered}
1=\|y\|^{2}=<y, y>=<\alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{k} u_{k}, \alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{k} u_{k}> \\
=\sum_{i=1}^{k} \sum_{j=1}^{k} \overline{\alpha_{i}} \alpha_{j}<u_{i}, u_{j}>=\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}+\cdots+\left|\alpha_{k}\right|^{2}
\end{gathered}
$$

Now

$$
\begin{gathered}
<A y, y>=<A\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{k} u_{k}\right), \alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{k} u_{k}> \\
=<\alpha_{1} \lambda_{1} u_{1}+\alpha_{2} \lambda_{2} u_{2}+\cdots+\alpha_{k} \lambda_{k} u_{k}, \alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{k} u_{k}>=\lambda_{1}\left|\alpha_{1}\right|^{2}+\lambda_{2}\left|\alpha_{2}\right|^{2}+\cdots+\lambda_{k}\left|\alpha_{k}\right|^{2}
\end{gathered}
$$

But since $\lambda_{j} \geq \lambda_{k}$, this shows

$$
<A y, y>\geq \lambda_{k}\left|\alpha_{1}\right|^{2}+\lambda_{k}\left|\alpha_{2}\right|^{2}+\cdots+\lambda_{k}\left|\alpha_{n}\right|^{2}=\lambda_{k}\left(\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}+\cdots+\left|\alpha_{k}\right|^{2}\right)=\lambda_{k}
$$

On the other hand, $\left\|u_{k}\right\|=1$ and $\left\langle A u_{k}, u_{k}\right\rangle=\left\langle\lambda_{k} u_{k}, u_{k}\right\rangle=\lambda_{k}$, so we see that λ_{k} is the minimum value of $\langle A y, y\rangle$ for $\|y\|=1$.

Now for M a k-dimensional subspace of \mathbb{C}^{n} and B an $n \times n$ Hermitian matrix, suppose we wish to minimize $\langle B x, x\rangle$ such that x is in M and $\|x\|=1$. Choose $v_{1}, v_{2}, \cdots, v_{k}$ an orthonormal basis for M, and let V be the $n \times k$ matrix with these columns. Since V has orthonormal columns, $V^{\prime} V=I$, and if y is a vector in \mathbb{C}^{k}

$$
\|V y\|^{2}=\langle V y, V y\rangle=\left\langle V^{\prime} V y, y\right\rangle=\langle y, y\rangle=\|y\|^{2}
$$

The fact that M is the range of V, implies that for x in M with $\|x\|=1$, there is y in \mathbb{C}^{k} with $V y=x$ and $\|y\|=1$. It follows that

$$
<B x, x>=<B V y, V y>=<V^{\prime} B V y, y>
$$

so minimizing $\langle B x, x\rangle$ with x in M and $\|x\|=1$ is the same as minimizing $\left\langle V^{\prime} B V y, y>\right.$ with y in \mathbb{C}^{k} and $\|y\|=1$. Since $\left(V^{\prime} B V\right)^{\prime}=V^{\prime} B V$, we can find this minimum value as above.

