Questions from Old First Tests for Math 51100

1. The following system has infinitely many solutions:

$$
\left.\left\{\begin{aligned}
v+2 w-x+2 y-z & =5 \\
w & +2 x-y-2 z
\end{aligned}\right)=4 \begin{array}{rl}
& =4 \\
2 v+3 w & +2 x+y+3 z
\end{array}\right)
$$

Find the general solution and find two solutions explicitly.
2. The following system has infinitely many solutions:

$$
\left\{\begin{aligned}
v+w+x+y+z & =0 \\
w+2 x+3 y+4 z & =-1 \\
9 v+8 w+7 x+6 y+5 z & =1 \\
v+w+x &
\end{aligned}\right.
$$

Find the general solution and find two solutions explicitly.
3. The following system has infinitely many solutions:

Find the general solution and find two solutions explicitly.
4. Let \mathcal{W} be the column space of B, the subspace spanned by the columns of B, where

$$
B=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 3 \\
2 & -1 & -5 & 1 & -3 \\
-1 & 1 & 3 & 0 & 4 \\
1 & 1 & -1 & 2 & 2
\end{array}\right)
$$

(a) What is the dimension of \mathcal{W} ?
(b) Choose columns of B that form a basis for \mathcal{W}.
5. Is the vector $v=\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right)$ in the range of C, where $C=\left(\begin{array}{rrrr}2 & 1 & 1 & 1 \\ -1 & -1 & -2 & 1 \\ 3 & 1 & 0 & -2 \\ 1 & 1 & 2 & 1\end{array}\right)$?

Explain why or why not!!
6. Consider the following two systems of equations.

$$
(H)\left\{\begin{aligned}
-2 a+b+c+e+3 f & =0 \\
3 a-b-2 c-3 d-2 e-2 f & =0 \\
-5 a+2 b+4 c+5 d+5 e+4 f & =0 \\
4 a-b-2 c-4 d-2 e-2 f & =0 \\
-3 a+b+4 c+7 d+5 e & =0
\end{aligned}\right.
$$

and

$$
(N)\left\{\begin{aligned}
-2 a+b+c+e+3 f & =1 \\
3 a-b-2 c-3 d-2 e-2 f & =1 \\
-5 a+2 b+4 c+5 d+5 e+4 f & =1 \\
4 a-b-2 c-4 d-2 e-2 f & =3 \\
-3 a+b+4 c+7 d+5 e & =0
\end{aligned}\right.
$$

The vectors $(-1,0,1,-1,0,-1)$ and $(1,0,-1,1,0,1)$ are solutions of system (H). The vectors $(2,1,0,0,1,1)$ and $(1,-3,2,-1,1,1)$ are solutions of system (N).
Use theorems you know (i.e. do not try to solve the systems completely!) to answer the following questions.
(a) Find two linearly independent solutions of (H) different from those given above.
(b) Find two solutions of (N) different from those given above.
7. Consider the following two systems of equations.

$$
(H)\left\{\begin{aligned}
a-2 b+c+e+3 f & =0 \\
-a+3 b-2 c-3 d-2 e-2 f & =0 \\
2 a-5 b+4 c+5 d+5 e+4 f & =0 \\
-a+4 b-2 c-4 d-2 e-2 f & =0 \\
a-3 b+4 c+7 d+5 e & =0
\end{aligned}\right.
$$

and

$$
(N)\left\{\begin{aligned}
a-2 b+c+e+3 f= & 3 \\
-a+3 b-2 c-3 d-2 e-2 f= & -2 \\
2 a-5 b+4 c+5 d+5 e+4 f= & 6 \\
-a+4 b-2 c-4 d-2 e-2 f= & -1 \\
a-3 b+4 c+7 d+5 e= & 3
\end{aligned}\right.
$$

The vectors $(0,-1,1,-1,0,-1)$ and $(0,1,-1,1,0,1)$ are solutions of system (H). The vectors $(1,1,0,0,1,1)$ and $(-3,0,2,-1,1,1)$ are solutions of system (N). Use theorems you know (i.e. do not try to solve the systems completely!) to answer the following questions.
(a) Find two linearly independent solutions of (H) different from those given above.
(b) Find two solutions of (N) different from those given above.
8. For each of the situations below, decide which of the statements in the box below are true about systems with this matrix as the coefficient matrix. Include all correct responses.
(a) B is a 7×12 matrix.

If the rank of B is 5 , the system $B X=b$ \qquad
If the rank of B is 7 , the system $B X=b$ \qquad .

If the rank of B is 9 , the system $B X=b$ \qquad
(b) C is a 11×7 matrix.

If the rank of C is 5 , the system $C X=b$ \qquad .

If the rank of C is 7 , the system $C X=b$ \qquad
If the rank of C is 9 , the system $C X=b$ \qquad
(i) has at least one solution for every vector b.
(ii) has no solutions for some vectors b.
(iii) has at most one solution for every vector b.
(iv) has infinitely many solutions for some vectors b.
(v) The given information is contradictory, no such system is possible.
(vi) Using (only) the information given does not permit us to conclude that any of the assertions (i) - (v) is necessarily true.
9. The matrix $C=\left(\begin{array}{rrr}1 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -4 & 3\end{array}\right)$
and the matrix D is a 3×5 matrix with rows D_{1}, D_{2}, and D_{3}.
(a) Write D as a block matrix, blocked in rows, and find $C D$ as a block matrix, blocked in rows.
(b) Suppose, now, that the rank of D is 2 and $D_{2}=-2 D_{1}$. Find a basis for the row space of D.
(c) Suppose, as in part (b), that the rank of D is 2 and $D_{2}=-2 D_{1}$.

Find a basis for the row space of $C D$.
10. Let \mathcal{W} be the range of A where

$$
A=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 0 \\
-1 & 1 & -5 & 2 & 3 \\
1 & 0 & 3 & -1 & -2 \\
1 & 2 & -1 & 1 & 0
\end{array}\right)
$$

(a) Find a vector in $\mathbb{R}^{4}, N O T$ one of the columns of A, that is in \mathcal{W} or explain why this is not possible. (Explain how you know your answer is correct!!)
(b) Find a vector in \mathbb{R}^{4}, NOT one of the columns of A, that is NOT in \mathcal{W} or explain why this is not possible. (Explain how you know your answer is correct!!)
11. Let $p_{1}=(1,-1,1,1,1)$, let $p_{2}=(1,1,0,-2,2)$, and let $q=(5,1,2,-4,8)$.
(a) Write q as a linear combination of p_{1} and p_{2}.
(b) Let $r=(1,-5,3,7,-1)$. Write r as a linear combination of p_{1}, p_{2}, and q or show that it is not a linear combination of them.
(c) What is the dimension of the subspace spanned by p_{1}, p_{2}, q, and r ?

Explain your answer!
12. Let \mathcal{U} be the column space of C, the subspace spanned by the columns of C, where

$$
C=\left(\begin{array}{rrrrr}
1 & 1 & -1 & 3 & 0 \\
2 & -1 & 4 & 3 & 5 \\
-1 & 1 & -3 & -1 & -4 \\
1 & 1 & -1 & 3 & 2
\end{array}\right)
$$

(a) Find a vector in \mathbb{R}^{4}, NOT one of the columns of C, that is in \mathcal{U} or explain why this is not possible. (Explain how you know your answer is correct!!)
(b) Find a vector in \mathbb{R}^{4}, NOT one of the columns of C, that is $N O T$ in \mathcal{U} or explain why this is not possible. (Explain how you know your answer is correct!!)
13. Let $w_{1}=\left(\begin{array}{r}1 \\ 2 \\ -1 \\ 1\end{array}\right), w_{2}=\left(\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right), w_{3}=\left(\begin{array}{r}1 \\ -5 \\ 3 \\ -1\end{array}\right), w_{4}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 2\end{array}\right)$, and $w_{5}=\left(\begin{array}{r}-2 \\ 1 \\ 1 \\ -1\end{array}\right)$.
(a) Explain how you can tell that $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$ is a linearly dependent set without doing any calculations.
(b) Write one of the vectors as a linear combination of the rest.
14. Let $y_{1}=\left(\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right), y_{2}=\left(\begin{array}{r}1 \\ -5 \\ 3 \\ -1\end{array}\right), y_{3}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 2\end{array}\right), y_{4}=\left(\begin{array}{r}1 \\ 2 \\ -1 \\ 1\end{array}\right)$, and $y_{5}=\left(\begin{array}{r}2 \\ 1 \\ 1 \\ -1\end{array}\right)$.
(a) Explain how you can tell that $\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$ is a linearly dependent set without doing any calculations.
(b) Write one of the vectors as a linear combination of the rest.
15. Let $y_{1}=\left(\begin{array}{l}0 \\ 2 \\ 1 \\ 1\end{array}\right), y_{2}=\left(\begin{array}{r}3 \\ -1 \\ 1 \\ -5\end{array}\right), y_{3}=\left(\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right), y_{4}=\left(\begin{array}{r}-1 \\ 1 \\ 1 \\ 2\end{array}\right)$, and $y_{5}=\left(\begin{array}{r}1 \\ -1 \\ 2 \\ 1\end{array}\right)$.
(a) Explain how you can tell that $\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$ is a linearly dependent set without doing any calculations.
(b) Write one of the vectors as a linear combination of the rest.
16. Suppose the vectors $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ are a basis for \mathcal{U} which is a subspace of \mathbb{R}^{7}.
(a) What is the dimension of \mathcal{U} ? \qquad
(b) Let $y_{1}=2 u_{1}-3 u_{4}, y_{2}=u_{1}+2 u_{2}-u_{3}, y_{3}=u_{2}+2 u_{3}-u_{4}$, and $y_{4}=-u_{1}+4 u_{2}+3 u_{3}+u_{4}$. Are y_{1}, y_{2}, y_{3}, and y_{4} linearly independent? If so, explain how you know, including justifying how the computation you did relates to your answer.
If not, write one of these vectors as a linear combination of the other three.
(c) What is the dimension of $\operatorname{span}\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$? \qquad
17. Let \mathcal{U} be the range of B where

$$
B=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 0 & 1 \\
-1 & 1 & -5 & 3 & 2 \\
1 & 2 & -1 & 0 & 1 \\
1 & 0 & 3 & -2 & -1
\end{array}\right)
$$

(a) Find a vector in \mathbb{R}^{4}, NOT one of the columns of B, that is in \mathcal{U} or explain why this is not possible. (Explain how you know your answer is correct!!)
(b) Find a vector in \mathbb{R}^{4}, NOT one of the columns of B, that is NOT in \mathcal{U} or explain why this is not possible. (Explain how you know your answer is correct!!)
18. Let \mathcal{W} be the range of A where

$$
A=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 0 \\
-1 & 1 & -5 & 2 & 3 \\
1 & 0 & 3 & -1 & -2 \\
1 & 2 & -1 & 1 & 0
\end{array}\right)
$$

(a) Find a vector, NOT one of the columns of A, that is in \mathcal{W} or explain why this is not possible. (Explain how you know your answer is correct!!)
(b) Find a vector, NOT one of the columns of A, that is NOT in \mathcal{W} or explain why this is not possible. (Explain how you know your answer is correct!!)
19. Let $q_{1}=(0,-4,2,6,-2)$, let $q_{2}=(1,-1,1,1,1)$, and let $r=(5,1,2,-4,8)$.
(a) Write r as a linear combination of q_{1} and q_{2}.
(b) Let $p=(2,0,1,-1,3)$. Write p as a linear combination of q_{1}, q_{2}, and r or show that it is not a linear combination of them.
(c) What is the dimension of the subspace spanned by q_{1}, q_{2}, r, and p ? \qquad Explain your answer!
20. For each of the following, decide if the statement is always true or always false or sometimes true, sometimes false when the given condition is true.
(a) Given: A is a 6×6 matrix, b is in $\mathbb{R}^{6}, A X=0$ has infinitely many solutions.

Statement: The equation $A X=b$ has infinitely many solutions.
always true always false sometimes true, sometimes false
(b) Condition: B is a 6×6 matrix, b is in \mathbb{R}^{6}, and $\operatorname{det}(B)=0$.

Statement: The equation $B X=b$ has no solutions.
always true always false sometimes true, sometimes false
(c) Given: C is a 6×6 matrix with $\operatorname{det}(C)=5$.

Statement: The equation $B X=b$ has infinitely many solutions.
always true always false sometimes true, sometimes false
(d) Given: D is a 6×6 matrix, b is in \mathbb{R}^{6}, and the columns of D are linearly independent.

Statement: The equation $D X=b$ has no solutions.
always true always false sometimes true, sometimes false
(e) Given: E is a 6×8 matrix, b is in $\mathbb{R}^{6}, \mathcal{N}(E)$, the nullspace of E is 2-dimensional.

Statement: The equation $E X=b$ has infinitely many solutions.
always true always false sometimes true, sometimes false
(f) Given: F is a 7×5 matrix, b is in $\mathbb{R}^{7}, \mathcal{N}(F)$, the nullspace of F is 1 -dimensional.

Statement: The equation $F X=b$ has infinitely many solutions.
always true always false sometimes true, sometimes false
(g) Condition: G is an $m \times n$ matrix and the vectors $w_{1}, w_{2}, \cdots, w_{j}$ are linearly independent in \mathbb{R}^{n}.

Statement: The vectors $G w_{1}, G w_{2}, \cdots, G w_{j}$ are linearly independent.
always true always false sometimes true, sometimes false
(h) Given: The vectors $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6} \operatorname{span} \mathbb{R}^{5}$.

Statement: The vectors $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ are linearly independent.
always true always false sometimes true, sometimes false
21. Suppose the vectors $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are a basis for \mathcal{V} which is a subspace of \mathbb{R}^{7}.
(a) What is the dimension of \mathcal{V} ? \qquad
(b) Let $x_{1}=v_{1}+2 v_{2}-v_{3}, x_{2}=2 v_{1}+v_{3}-2 v_{4}, x_{3}=v_{2}+2 v_{3}-v_{4}$, and $x_{4}=-v_{1}+4 v_{2}+2 v_{3}$. Are x_{1}, x_{2}, x_{3}, and x_{4} linearly independent? If so, explain how you know, including justifying how the computation you did relates to your answer. If not, write one of these vectors as a linear combination of the other three.
(c) What is the dimension of $\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$? \qquad
22. Let $r_{1}=(1,-1,1,1,1)$, let $r_{2}=(1,-5,3,7,-1)$, and let $p=(5,1,2,-4,8)$.
(a) Write p as a linear combination of r_{1} and r_{2}.
(b) Let $q=(2,0,1,-1,3)$. Write q as a linear combination of r_{1}, r_{2}, and p or show that it is not a linear combination of them.
(c) What is the dimension of the subspace spanned by r_{1}, r_{2}, p, and q ? Explain your answer!
23. Is the vector $v=\left(\begin{array}{r}1 \\ 2 \\ -2 \\ 1\end{array}\right)$ in the nullspace of C, where $C=\left(\begin{array}{rrrr}1 & 1 & 2 & 1 \\ -1 & -1 & -1 & 1 \\ 6 & 1 & 3 & -2 \\ -1 & 1 & 1 & 1\end{array}\right)$?

Explain why or why not!!

Find a vector in the range of C whose first coordinate is 4 , that is, find a vector w in range C
such that $w=\left(\begin{array}{l}4 \\ ? \\ ? \\ ?\end{array}\right)$
24. Is the vector $v=\left(\begin{array}{r}1 \\ -5 \\ 2 \\ 1\end{array}\right)$ in the nullspace of D, where $D=\left(\begin{array}{rrrr}2 & 1 & 1 & 1 \\ -2 & -1 & -2 & 1 \\ 7 & 1 & 0 & -2 \\ 0 & 1 & 2 & 1\end{array}\right)$?

Explain why or why not!!

Find a vector in the range of D whose first coordinate is 3 , that is, find a vector w in range D
such that $w=\left(\begin{array}{l}3 \\ ? \\ ? \\ ?\end{array}\right)$
25. Suppose the vectors $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ are a basis for \mathbb{R}^{4}.

Let $y_{1}=u_{1}+2 u_{2}-u_{3}, y_{2}=u_{2}+2 u_{3}-u_{4}, y_{3}=-2 u_{1}+u_{2}+2 u_{3}+2 u_{4}$ and $y_{4}=3 u_{1}+5 u_{2}-5 u_{3}+u_{4}$.
Decide if $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ are linearly independent or linearly dependent.
If they are linearly dependent, write one of the vectors as a linear combination of the others.
26. (a) Suppose the vectors $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ are a basis for \mathbb{R}^{4}. Let $y_{1}=2 x_{1}-3 x_{4}, y_{2}=x_{1}+2 x_{2}-x_{3}, y_{3}=x_{2}+2 x_{3}-x_{4}$ and $y_{4}=x_{1}-7 x_{2}+x_{3}-5 x_{4}$.
(b) Decide if $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ are linearly independent or linearly dependent.

If they are linearly dependent, write one of the vectors as a linear combination of the others.
27. Suppose the vectors $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are a basis for \mathcal{V} which is a subspace of \mathbb{R}^{7}.
(a) What is the dimension of \mathcal{V} ?
(b) Let $w_{1}=v_{1}-3 v_{2}+v_{4}, w_{2}=v_{1}+2 v_{2}-v_{3}, w_{3}=2 v_{1}+v_{3}-2 v_{4}$, and $w_{4}=v_{2}+2 v_{3}-v_{4}$. Are w_{1}, w_{2}, w_{3}, and w_{4} linearly independent? If so, explain how you know, including
justifying how the computation you did relates to your answer.
If not, write one of these vectors as a linear combination of the other three.
(c) What is the dimension of $\operatorname{span}\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$?
28. Suppose C and D are 4×4 matrices and v_{1}, v_{2}, v_{3}, and v_{4} are four linearly independent vectors in \mathbb{C}^{4}. Suppose, also, that

$$
C v_{1}=2 v_{1} \quad C v_{2}=0 \quad C v_{3}=2 v_{3} \quad C v_{4}=-v_{4}
$$

and

$$
D v_{1}=v_{1}-v_{3} \quad D v_{2}=3 v_{2} \quad D v_{3}=v_{1}+2 v_{3} \quad D v_{4}=2 v_{4}
$$

(a) Prove that for any vector w in \mathbb{C}^{4}, we have $C D w=D C w$.
(b) Find a basis for the range of $D C$.
29. Suppose K and L are 4×4 matrices and y_{1}, y_{2}, y_{3}, and y_{4} are four linearly independent vectors in \mathbb{C}^{4}. Suppose, also, that

$$
K y_{1}=-y_{1} \quad K y_{2}=2 y_{2} \quad K y_{3}=0 \quad K y_{4}=2 y_{4}
$$

and

$$
L y_{1}=2 y_{1} \quad L y_{2}=y_{2}+y_{4} \quad L y_{3}=3 y_{3} \quad L y_{4}=y_{2}-2 y_{4}
$$

(a) Prove that for any vector z in \mathbb{C}^{4}, we have $K L z=L K z$.
(b) Find a basis for the range of $L K$.
30. An $n \times n$ matrix Q is called a projection if $Q^{2}=Q$.
(a) Show that if P is a projection then $I-P$ is also a projection.
(b) Show that if P is a projection then $(I-2 P)^{-1}=I-2 P$.
31. (a) Prove the following theorem:

Let A be an $m \times n$ matrix. If B is an $n \times m$ matrix so that $B A=I$, then $\mathcal{N}(A)=(0)$ (that is, the null space of A is the zero subspace).
(b) Prove the following theorem:
(You may use the result of part (a) even if you did not answer part (a)!)
Let A be an $m \times n$ matrix.
If B is an $n \times m$ matrix so that $B A=I$, then the columns of A are linearly independent.

