1. Solve the following system of equations. If there are no solutions, say so; if the solution is unique, say so; if there are infinitely many solutions, find the general solution and give two solutions explicitly.

 $\begin{cases} a - b + c + d + e = 0\\ a - 3b + 5c + 7d + 9e = -4\\ a - 2b + 2c + 3d + 3e = 1\\ 4a - 5b + 5c + 6d + 6e = 1 \end{cases}$

2. The matrix A is a 5×6 real matrix, X represents a vector in \mathbb{R}^6 and b is a vector in \mathbb{R}^5 . Consider the following two systems of equations:

 $(H) \quad AX = 0 \qquad \text{and} \qquad (N) \quad AX = b$

The vectors (0, -1, 1, 2, 1, 0) and (0, 2, -2, -4, -2, 0) are solutions of system (H). The vectors (2, 0, 1, 1, 1, 1) and (-2, 1, 1, 0, 2, 1) are solutions of system (N).

(a) Find two linearly independent solutions of (H) different from those given above.

- (b) Find two solutions of (N) different from those given above.
- 3. The matrix E is a 5 × 6 real matrix, X represents a vector in \mathbb{R}^6 and d is a vector in \mathbb{R}^5 . Consider the following two systems of equations:

$$(H) \quad EX = 0 \qquad \text{and} \qquad (N) \quad EX = d$$

The vectors (0, -2, -1, 3, 2, 0) and (0, 4, 2, -6, -4, 0) are solutions of system (H). The vectors (1, 1, 3, 0, 1, 1) and (-2, 1, 1, 0, 2, 1) are solutions of system (N).

- (a) Find two linearly independent solutions of (H) different from those given above.
- (b) Find two solutions of (N) different from those given above.

4. Let
$$B = \begin{pmatrix} 2 & 2 & -1 & -3 \\ 2 & 2 & -3 & -1 \\ -1 & -3 & 2 & 2 \\ -3 & -1 & 2 & 2 \end{pmatrix}$$

5

(a) Give facts from linear algebra theory that explain why $\mathcal{R}(B)$, the range of B, and $\mathcal{N}(B)$, the null space of B, are orthogonal complements, that is, explain why $\mathcal{N}(B) = \mathcal{R}(B)^{\perp}$.

(b) For
$$z = \begin{pmatrix} 2 \\ -1 \\ 4 \\ 3 \end{pmatrix}$$
 write z as $z = x + y$ where x is in $\mathcal{R}(B)$ and y is in $\mathcal{N}(B)$
. Let $F = \begin{pmatrix} 2 & 1 & 3 & 2 \\ 1 & 2 & 2 & 3 \\ 3 & 2 & 2 & 1 \\ 2 & 3 & 1 & 2 \end{pmatrix}$

(a) Give facts from linear algebra theory that explain why $\mathcal{R}(F)$, the range of F, and $\mathcal{N}(F)$, the null space of F, are orthogonal complements, that is, explain why $\mathcal{N}(F) = \mathcal{R}(F)^{\perp}$.

(b) For
$$z = \begin{pmatrix} -2 \\ 2 \\ 1 \\ 4 \end{pmatrix}$$
 write z as $z = x + y$ where x is in $\mathcal{R}(F)$ and y is in $\mathcal{N}(F)$.

- 6. For each of the situations (a)-(f) below, decide which of the statements in the box can correctly complete the sentence. Include all correct responses.
 - (a) If A is an 8×13 matrix whose rank is 6, then _____
 - (b) If A is an 8×13 matrix whose rank is 8, then _____
 - (c) If A is an 8×13 matrix whose rank is 10, then _____
 - (d) If A is a 13×7 matrix whose rank is 9, then _____
 - (e) If A is a 13×7 matrix whose rank is 7, then _____
 - (f) If A is a 13×7 matrix whose rank is 5, then _____
 - (i) AX = b is solvable for every vector b.
 - (ii) there are some vectors b for which AX = b is not solvable.
 - (iii) for some vectors b, the system AX = b has exactly one solution.
 - (iv) for some vectors b, the system AX = b has infinitely many solutions.
 - (v) the given information is contradictory, no such system is possible.
- 7. The matrix C is a 7×9 matrix and the dimension of $\mathcal{R}(C)$, the range of C, is 4.
 - (a) What is the dimension of $\mathcal{N}(C)$, the nullspace of C?_____
 - (b) What is the dimension of $\mathcal{R}(C')$, the range of C'?_____
 - (c) What is the dimension of $\mathcal{N}(C')$, the nullspace of C'?_____
 - (d) What is the dimension of $\mathcal{N}(C')^{\perp}$, the orthogonal complement of $\mathcal{N}(C')$?_____

8. *M* is the subspace spanned by
$$u_1 = \begin{pmatrix} 1\\1\\-1\\0\\1 \end{pmatrix} u_2 = \begin{pmatrix} 1\\-1\\0\\1\\1 \end{pmatrix} u_3 = \begin{pmatrix} 1\\0\\1\\-1\\1 \end{pmatrix}$$
 and $u_4 = \begin{pmatrix} 1\\0\\0\\0\\0\\1 \end{pmatrix}$
(a) Find an orthonormal basis for *M*.
(b) Find vectors *u* and *v* such that *u* is in *M*, *v* is in M^{\perp} , and $u + v = \begin{pmatrix} -1\\3\\0\\0\\2 \end{pmatrix}$

9. The following system is inconsistent.

$$\begin{cases} x + y - z = 11 \\ x - 2y - z = -0.5 \\ -2x + y + 2z = -1 \\ -3x + 2y + z = -2 \end{cases}$$

(a) Find the least squares solution of this system.

(a) Find the least squares solution of this system.
(b) Let C be the coefficient matrix for this system, that is,
$$C = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -2 & -1 \\ -2 & 1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

Letting
$$b = \begin{pmatrix} 11 \\ -0.5 \\ -1 \\ -2 \end{pmatrix}$$
, what vector in $\mathcal{R}(C)$, the range of C , is closest to the vector b ?

What is the distance from b to $\mathcal{R}(C)$, the range of C?

10. The matrix J is a 4×4 real matrix whose eigenvalues are 2, 3, and 1:

$$\begin{pmatrix} -1\\2\\1\\0 \end{pmatrix}$$
 is a basis for the eigenspace corresponding to $\lambda = 2$;
$$\begin{pmatrix} 0\\2\\1\\-1 \end{pmatrix}$$
 is a basis for the eigenspace corresponding to $\lambda = 3$;
and $\begin{pmatrix} 2\\0\\0\\-1 \end{pmatrix}$ and $\begin{pmatrix} 1\\1\\1\\-1 \end{pmatrix}$ are a basis for the eigenspace corresponding to $\lambda = 1$.

(a) Is J diagonalizable? YES NO Cannot be determined from the given information (b) Is J' = J? YES NO Cannot be determined from the given information

- (c) Is J positive definite? YES NO Cannot be determined from the given information
- (d) Find the two eigenvalues of $J^3 2J^2 J + 5I$ and find bases for the corresponding eigenspaces.

(e) Find
$$Jw$$
 where $w = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -4 \end{pmatrix}$

11. F is a 3×4 matrix that satisfies

$$F\begin{pmatrix}1\\2\\0\\1\end{pmatrix} = \begin{pmatrix}1\\1\\-1\end{pmatrix}, \quad F\begin{pmatrix}1\\1\\1\\1\end{pmatrix} = \begin{pmatrix}2\\1\\0\end{pmatrix}, \quad F\begin{pmatrix}0\\1\\2\\1\end{pmatrix} = \begin{pmatrix}0\\1\\3\end{pmatrix}, \text{ and } F\begin{pmatrix}2\\1\\1\\2\end{pmatrix} = \begin{pmatrix}0\\1\\3\end{pmatrix}$$

(a) Find a vector X such that $FX = \begin{pmatrix} 2\\2\\-2 \end{pmatrix} = 2 \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$ (b) Find two vectors $Y_1 \neq Y_2$ such that $FY_1 = FY_2 = \begin{pmatrix} 1\\3\\5 \end{pmatrix} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix} + 2 \begin{pmatrix} 0\\1\\3 \end{pmatrix}$ (c) Is there a vector Z, with Z DIFFERENT FROM $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$, for which $FZ = \begin{pmatrix} 2\\1\\0 \end{pmatrix}$?

If not, explain why not. If so, find another such Z.

- 12. Let H be an 5 × 5 matrix whose (only) eigenvalues are $\lambda_1 = -3$, $\lambda_2 = -2$, $\lambda_3 = 3$, and $\lambda_4 = 4$
 - (a) What are the eigenvalues of $J = H^2 + 5H + 2I$.
 - (b) If v is an eigenvector for H with eigenvalue 3, what is Jv, where $J = H^2 + 5H + 2I$ as above?
 - (c) Explain, that is, using a theorem, how you know that H is invertible.
 - (d) What are the eigenvalues of H^{-1} ?
- 13. (a) What property do the vectors p = (1, -2, -2) and q = (3, 0, 0) have that make it possible for there to be a unitary matrix U so that Up = q? Find a unitary matrix U so that Up = q.
 - (b) Supposing you have found matrix U above, explain how to find a unitary matrix V so that Vq = p.

14. The matrix A is a square, $n \times n$ matrix and b is a vector in \mathbb{R}^n .

In each of the following, a condition is given and then a statement. When the given condition is true, decide if the statement is *always true* or *always false* or *sometimes true, sometimes false*, and circle the appropriate answer.

(a)	Condition: $det(A) = 0$. Statement: The equation $AX = b$ has no solutions.		
	always true	always false	sometimes true, sometimes false
(b)	b) Condition: The vectors w_1, w_2, \dots, w_j are linearly independent. Statement: The vectors Aw_1, Aw_2, \dots, Aw_j are linearly independent.		
	always true	always false	sometimes true, sometimes false
(c)	(c) Condition: The vectors Aw_1, Aw_2, \dots, Aw_j are linearly dependent. Statement: The vectors w_1, w_2, \dots, w_j are linearly dependent.		
	always true	always false	sometimes true, sometimes false
(d)	Condition: A is a 3×3 Hermitian matrix with characteristic polynomial $\lambda^3 - 2\lambda^2 + \lambda = \lambda(\lambda - 1)^2$. Statement: There is a basis for \mathbb{R}^3 consisting of eigenvectors of A		
	slueve true		sometimes true, sometimes felse
(\mathbf{o})	Condition: The metric 4	aiways faise	sometimes true, sometimes taise
Statement: The columns of the matrix A are an orthonormal set of vectors			e an orthonormal set of vectors
	always true	always false	sometimes true, sometimes false
15. The	matrix B is a square, $n \times n$	matrix and c is a vect	for in \mathbb{R}^n .
In ea decic appr	ach of the following, a conc le if the statement is <i>alway</i> opriate answer.	lition is given and the us true or always false	en a statement. When the given condition is true, or <i>sometimes true, sometimes false</i> , and circle the
(a)	Condition: The vectors w Statement: The vector	w_1, w_2, \cdots, w_j are linear rs Bw_1, Bw_2, \cdots, Bw_j	ly dependent. are linearly independent.
	always true	always false	sometimes true, sometimes false
(b)	(b) Condition: The equation $BX = c$ has infinitely many solutions. Statement: $det(B) = 0$.		
	always true	always false	sometimes true, sometimes false
(c)	(c) Condition: The columns of the matrix B are an orthonormal set of vectors.Statement: The matrix B is invertible.		
	always true	always false	sometimes true, sometimes false
(d) Condition: <i>B</i> is a 3×3 matrix with characteristic polynomial $\lambda^3 - \lambda = \lambda(\lambda - 1)(\lambda + 1).$			tic polynomial
	Statement: There is a basis for \mathbb{R}^3 consisting of eigenvectors of <i>B</i> .		
	always true	always false	sometimes true, sometimes false
(e) Condition: <i>B</i> is an $n \times n$ Hermitian matrix that is not invertible. Statement: There is a basis for \mathbb{R}^n consisting of eigenvectors of <i>B</i> .			t is not invertible. g of eigenvectors of B .
	always true	always false	sometimes true, sometimes false

16. Let
$$L = \begin{pmatrix} 4 & 10 & 0 & -10 \\ -2 & 8 & -1 & -3 \\ 0 & -5 & 4 & 5 \\ -2 & 9 & -1 & -4 \end{pmatrix}$$

- (a) Find the three eigenvalues of L
- (b) Find a basis for each of the eigenspaces for the eigenvalues (identifying which) in part (a).
- (c) Find a basis of \mathbb{R}^4 consisting of eigenvectors of L.
- (d) Find three eigenvectors, u, v, and w of L such that $u + v + w = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

17. Let
$$G = \begin{pmatrix} -2 & -4 & -8 & 12 \\ 9 & 9 & 10 & -9 \\ 9 & 3 & 16 & -9 \\ 3 & 1 & 2 & 7 \end{pmatrix}$$

- (a) Find the three eigenvalues of G
- (b) Find a basis for each of the eigenspaces for the eigenvalues (identifying which) in part (a).
- (c) Find a basis of \mathbb{R}^4 consisting of eigenvectors of G.

(d) Find three eigenvectors, u, v, and w of G such that $u + v + w = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$.

18. The matrix $K = \begin{pmatrix} 2 & 6 & -3 & 1 \\ 0 & -1 & 1 & 0 \\ 3 & 7 & -4 & 1 \\ 4 & 8 & -7 & 3 \end{pmatrix}$ has two positive and two negative eigenvalues.

Let M be the subspace spanned by the eigenvectors corresponding to the negative eigenvalues of K. (The subspace M is called the *stable manifold* of K.)

- (a) Find the matrix for the orthogonal projection of \mathbf{C}^4 onto M.
- (b) Find the point of the stable manifold M that is closest to (1, -1, 1, 0).

19. The matrix $K = \begin{pmatrix} 7 & 3 & 2 & 1 \\ 4 & -1 & 1 & 1 \\ 3 & 0 & 2 & -1 \\ -3 & 2 & -2 & 0 \end{pmatrix}$ has two positive and two negative eigenvalues.

Let M be the subspace spanned by the eigenvectors corresponding to the negative eigenvalues of K. (The subspace M is called the *stable manifold* of K.)

- (a) Find the matrix for the orthogonal projection of \mathbf{C}^4 onto M.
- (b) Find the point of the stable manifold M that is closest to (1, -1, 1, 0).

20. (a) Let
$$B = \begin{pmatrix} 5 & 0 & -2 & -2 \\ -3 & -2 & 8 & 18 \\ 3 & 3 & -3 & -12 \\ -2 & -3 & 5 & 14 \end{pmatrix}$$

Show that $x = (1, 1, 1, 0)$ and $y = (2, -3, 3, -2)$ are eigenvectors of B , but $z = (1, 1, 0, 0)$ is not.

(b) Find the eigenvector of B with eigenvalue 3 that is closest to z.

- 21. Let A be an $n \times n$ matrix such that $A' = A = A^{-1}$. Let $P = \frac{1}{2}(I A)$. Prove that P = P' and that $P^2 = P$.
- 22. Let D be an $n \times n$ matrix with D' = D and rank(D) = n k. Suppose v_1, v_2, \dots, v_k are linearly independent vectors such that $Dv_j = 0$ and suppose w is a vector such that $\langle v_j, w \rangle = 0$ for $j = 1, 2, \dots, k$. Prove that there is a vector u so that Du = w.
- 23. (a) Suppose R and S are $n \times n$ matrices such that RS = SR. Let u be an eigenvector for R with eigenvalue α . Prove that either Su is zero or Su is also an eigenvector for R with eigenvalue α .
 - (b) Suppose R, S, u, and α are as in part (a) and suppose, in addition, that the eigenspace of R corresponding to α is one-dimensional. Prove that in this case, u is an eigenvector for S also.
- 24. (a) Suppose u is an eigenvector for A' and v is orthogonal to u. Show that Av is also orthogonal to u.
 - (b) Use part (a) (whether you proved it or not) to show that if A is a 2×2 Hermitian matrix, and u is an eigenvector of A, then any non-zero vector v that is orthogonal to u is also an eigenvector of A.